
Primitives for Problems using Hierarchical Algorithms on

Distributed Memory Machines

Sanjay Goil

School of Computer and Information Science and

Northeast Parallel Architectures Center

Syracuse University

Syracuse, NY, 13244-4100

sgoil@npac.syr.edu

Abstract

In scienti�c computing a class of problems has been

identi�ed that consists of highly structured computa-

tions on sets of subdomains that are coupled in a ir-

regular manner. The computational relationship be-

tween the subdomain is known only at runtime, which

can also change between computation phases. This

can lead to load imbalance and unreasonable compu-

tation overheads on parallel machines. We present

an outline of primitives that are required and the run-

time support needed to ease the programming tasks

involving dynamic computation structures. We study

some applications that exhibit di�erent computational

structure but are classi�ed under hierarchical methods

and suggest primitives that bind them in a common

paradigm. This paper describes the structure of the

N-body simulation, Volume Rendering and Radiosity

applications. The common primitives they require for

an e�cient implementation on a distributed memory

parallel machine are elaborated.

1 Introduction

A class of problems has been discussed here, whose
implementation includes the need for irregular data
access patterns, irregular and adaptive communica-
tion, and adaptive load balancing. Most previous

research has concentrated on parallelizing scienti�c
computations with uniform structures whereas e�-
cient parallelizations of dynamic and irregular prob-
lems have received much attention only recently.
Many high-level languages like Fortran-D [3], Vienna-
Fortran [12] support parallel operations on uniform
arrays. Some runtime support for irregular struc-
tures is however available in PARTI [7], but these

approaches take advantage of static data access and
communication patterns. These do not provide ef-
�cient solutions for dynamically changing data dis-
tribution and communication patterns as are seen in
the problems we are addressing here. On parallel ma-
chines available today the cost of communication is
higher than the cost of computation. Irregular prob-
lem domains give rise to unpredictable and irregular
patterns of communication. To exploit the perfor-
mance of a parallel machine we need to enhance the
computation to communication ratio.

We derive motivation for this work from Salmon's
work on the N-Body problem [8]. He has implemented
the Barnes-Hut algorithm on the NCUBE and the In-
tel Touchstone Delta. The various phases of the algo-
rithm require immaculate control on the computation
and communication functions. This makes the imple-
mentation hard to understand and port on di�erent
machines. We present here primitives that can be
used by a programmer while hiding the pain in ma-
nipulating each byte of data on his own. These ideas
have been extended to ray-traced Volume Rendering
[6]. Hanrahan [2] has extended the hierarchical struc-
ture of the N-body algorithm to develop hierarchical
algorithms for radiosity. We investigate the possible
approaches that would lead to an e�cient implemen-
tation on a distributed memory machine, using our
primitives.

In the next section we discuss the hierarchical na-
ture of the applications and the need for primitives
that bind them in a common paradigm. A software
system with runtime support for these primitives on
a distributed memory machine can then solve any of
these problems. Section 3 introduces the primitives.
Section 4 discusses the relevance of these primitives
with the Volume rendering application.

1



2 Applications using hierarchical algo-

rithms

2.1 N-Body simulation

Computational methods to track the motions of

bodies that interact with each other are classi�ed as
N-body methods. Their use in the areas of astro-
physics, semiconductor device simulation, molecular
dynamics, plasma physics has received much atten-
tion for a long time. The N-body problem computes
the state (position and velocity) of N bodies at time
T, given an initial state. The common approach is
to iteratively calculate the solution over a sequence of
small time steps. Within each timestep the instanta-
neous acceleration is approximated by the instanta-
neous acceleration at the beginning of the time step,
which is done by directly summing the force induced
by each of the N - 1 bodies. While this method is con-
ceptually simple, vectorizes well, its �(N2) arithmetic
complexity rules it out for large-scale simulations in-
volving millions of bodies.

A point in physical domain requires progressively
less information at a lesser frequency from parts of
the domain that are farther away from it. Using this
fundamental insight Barnes and Hut [1] were the �rst
to propose faster N-Body algorithms which runs in
O(NlogN ) time. However, parallel implementations
have been fairly recent by Salmon and Warren [10].
N-body simulations using adaptive tree data struc-
tures are referred to as treecodes. The Barnes-Hut al-
gorithm begins by constructing an octree, called the
BH-tree, by inserting the bodies into the cluster hier-
archy one at a time. First an octree partition of a re-
gion in space is computed enclosing the set of bodies.
The partition is computed recursively by dividing the
original region into eight octants of equal volume until
each undivided region contains exactly one body. To
minimize the number of interactions, each body com-
putes interactions with the largest clusters for which
the approximation can be applied. The bodies are
added to the octree one at a time. The ith body is
added into the BH-tree with i - 1 bodies, the newly in-
serted body descending down the tree until it reaches
a box of which it is the sole occupant.

The set of nodes which contribute to the accelera-
tion on a body are called the essential nodes for the
body. Each body has a distinct set of essential nodes
which changes with time. A depth-�rst traversal en-
sures that each body interacts only with the largest

clusters for which the approximation is valid. Once
accelerations on each body are known, the new posi-

tions and velocities are computed. The entire process
is repeated for the desired number of time steps.

On distributed memory machine the data is dis-
tributed across the processors. This distribution must
be equitable so as to divide the work on the proces-
sors equally. During the computation phase, if data
for force calculation is not available locally it must be
fetched from the processor that has it. Data should be
assigned to processors such that most data for com-
putation should be available locally. Data partition-
ing must preserve data locality. Typically, commu-
nication for fetching o�-processor data is much more
expensive than a local read. An inappropriate data
mapping can increase communication costs and de-
grade overall performance by adding to the overhead.
The two issues of load balancing and data locality can
be contradictory, the partitioning must take both into
account.

A distinguishing feature of the BH-tree is that
it evolves continuously due to ongoing computation.
The mapping must be dynamically updated so that
it can adapt to the evolving system. A static data
mapping may not distribute data evenly after a pe-
riod of time. The data mapping can either be re-
done at each time step or adjusted incrementally to
re
ect the changes in the system. Also, as bodies
move and the distribution of bodies in space changes,
the work associated with calculating forces can also
change leading to di�erential load on processors. The
mapping of bodies to processors must be adjusted to
ensure load balance. Thus the BH-tree is adaptive
to dynamic and irregular distribution of bodies. Fur-
ther, the movement of bodies requires dynamic data
mapping.

2.2 Volume Rendering

Volume rendering is a technique for visualizing
sampled scalar or vector �elds of three spatial di-
mensions without �tting geometric primitives to the
data. Images are generated by computing 2-D pro-
jections of a colored semitransparent volume. Rays
are cast through the volume, obtaining the value of
the volume data set and compositing these into the
pixel's color and opacity. Since all voxels (volume
elements) participate in the generation of each im-
age, rendering time grows linearly with the size of the
data set (object space). The principal advantages of
these techniques over others are their superior image
quality and the ability to generate images without
explicitly de�ning surface geometry. Many datasets
contain coherent regions of empty voxels. A voxel is
de�ned as empty if its opacity is zero. Methods for



encoding coherence in volume data include octree hi-
erarchical spatial enumeration, polygonal representa-
tion of bounding surfaces and octree representation of
bounding surfaces. An optimization to improve per-
formance is to ignore empty voxels while rendering.
The second optimization is based on the observation
that, once a ray has struck an opaque object or has
progressed a su�cient distance through a semitrans-
parent object, opacity accumulates to a level where
the color of the ray stabilizes and ray tracing can be
terminated. Adaptive termination is implemented by
stopping each ray when its opacity reaches a user-
selected threshold level.

To encode volume data using hierarchical spatial
enumeration, a hierarchy of volumes is used to create
a pyramid. For each ray, the point where the ray
enters the single cell at the top level is calculated. The
pyramid is then traversed in the following manner :
After entering a cell, if its value is zero, we advance
along the ray to the next cell on the same level. If
the parent of the new cell di�ers from the parent of
the old cell, we move up to the parent of the new cell.
This is done to advance the ray further on the next
iteration than if we had remained at the lower level.
However, if the cell being tested contains a one, we
move down one level, entering whichever cell encloses
the current location. At the lowest level, samples are
drawn at evenly spaced locations along that portion
of the ray falling within the cell, resample the data at
these sample locations, and composite the resulting
color and opacity into the color an opacity of the ray.

The main issues for message passing implementa-
tion of volume rendering are

1. Managing the naming, replication and �ne-
grained communication overhead in shared read-
only scene data. Processors need to access scene
(object space) with fairly unstructured access
patterns. Replication of the scene database on
every processor is ruled out as being non-scalable.

2. Load balancing on processors needs to be
achieved. Prepartitioning the image and the ob-
ject space intelligently to improve load balancing
have been tried out [11]. We propose dividing
the Peano-Hilbert spatial representation (Figure
1) of the image to preserve ray coherence and
facilitate incremental load balancing [5].

3. Adaptive sampling to reduce computation time
gives rise to synchronization management issues.
Pixels are shared among neighboring samples re-
gions since the corner pixel values are required
for measuring image complexity.

We discuss these in Section 4 with the help of the
primitives for a parallel implementation.

Figure 1: Peano Hilbert Space Filling Curve

2.3 Hierarchical Radiosity

A more complex problem using hierarchical algo-
rithms is that of calculating radiosity of a scene in
Computer Graphics. The radiosity of a surface is de-
�ned as the light energy leaving the surface per unit
area. Given a description of a scene the idea is to

calculate the radiosities of all surfaces resulting in the
calculation of illumination of the scene. A scene is
a collection of large polygonal patches. These poly-
gons are subdivided into small enough elements that
the radiosity of an element can be assumed to be uni-
form over its surface. Any larger piece is termed as a
patch, formed by combining elements or other patches
including the original polygon. The radiosity of an el-
ement i can be expressed as a linear combination of all
other elements j. The coe�cients in the linear com-
bination are the form factors between the elements.
Form factor between element j and i (Fji) is the frac-
tion of light energy leaving element j arriving at i.
This leads to a linear system of equations which can
be solved for the element radiosities once all the form
factors are known. To take into account occlusion,
di�erential form factors are accumulated only if the
two in�nitesimal elements are mutually visible. The
form factor matrix is n� n, where n is the number of
elements. The order of form factor calculation is thus
O(n2). Applying the insights of the N-body problem
that

1. Numerical calculations are subject to error, and
therefore, the force acting on a particle need only
be calculated to within a given precision.



2. The force due to a cluster of particles at some
distant point can be approximated within a given
precision, with a single term, reducing the total
number of interactions.

the complexity is reduced to O(n+ k2), where k is
the number of polygons.

The radiosity problem shares many similarities
with the N-body problem. First there are n(n-1)/2

pairs of interactions in both. The magnitude of the
form factor falls o� as 1=r2, same as the gravitational
force.

The input to the algorithm is a set of polygons
depicting the scene. These are inserted into a Binary
Space Partitioning (BSP) tree [4] to facilitate e�cient
visibility computation between pairs of patches. Ev-

ery input polygon is initially given a list of other input
polygons that are potentially visible from it to enable
it to compute interactions. Each polygon has its own
quadtree, with the roots being leaves of the BSP tree
used for visibility testing. At every quadtree node
visited in this traversal, interactions of the patch at
that node are computed with all other patches in its
interaction list. The interaction between two patches
involves computing both the visibility and the unoc-

cluded form factor between them and multiplying the
two to obtain the actual form factor. Both of these
quantities are computed approximately, introducing
an error in the computed form factor. An estimate
of the error is also computed. If this is larger than a

user de�ned tolerance the patch with the larger area
is subdivided to compute a more accurate interaction.
Children are created for the subdivided patch in its
quadtree if they do not already exist. After the traver-
sal of a quadtree is completed, an upward pass is made
through the tree to accumulate the area-weighted ra-
diosities of a patch's descendants into its own radios-
ity.

Parallelism is available at three stages. First, the
polygons are independent of each other and can be
processed simultaneously. Second the visibility com-
putation can proceed in parallel. Third, the interac-
tions computed for patches can be done in parallel.
Each processor can maintain local copies of all the
quadtree data that they need, modify the data lo-
cally as needed in an iteration and only communicate
the modi�cations to other interested processors at it-
eration boundaries. Alternatively, a single copy of the
forest of quadtrees can be maintained in distributed
form over the processing nodes. The complications
to hierarchical radiosity arise from the dynamically
changing quadtrees of patches, since they are built
as computation proceeds. These data structures are

not read-only but are actively read and written by
di�erent processors in the same computational phase
during the calculation of the form factors.

3 Discussion of Primitives required

We now describe some of the primitives needed by
each of the applications we have studied. Table 1 lists
the computation phases for the applications described
above. The computational phases for any application
using treecodes are as follows.

1. Creating a sparse representation, an octree, from
dense representation of data.

2. Data partitioning maintaining locality of refer-
ence (static partitioning).

3. Retrieving locally essential data for computation.

4. Dynamic (and incremental) load balancing to
adapt to changes in processor computation load.

5. Incremental updation of locally essential data by
a processor to re
ect new interactions.

3.1 Creating an octree

The primitiveMake octree() is used to construct a
global representation of data on processors. Each pro-
cessor needs to create an octree representation of the
data it contains. This is done by Create local tree(),
which takes dense representation of data on a proces-
sor and creates a hierarchical tree by recursive subdi-
vision of space such that each node satis�es a partic-
ular constraint.

3.2 Data distribution

Data distribution over P processors has to be equi-
table for load balance. This is achieved by the prim-
itive Partition data(). Data distribution needs to en-
sure spatial coherence to reduce interprocessor com-
munication. This can be speci�ed by the type of the
distribution an application needs. Regular grid distri-
bution and Peano-Hilbert spatial ordering are some
examples. There is a portion of the tree at higher

levels with incomplete information about its children.
This is completed in the next phase, where higher and
more abstract parts of the tree are constructed by
exchanging relevant information amongst processors.
Each processor now has pointers to all the data, local
pointers to the data it owns and remote to data on
other processors. Data exchanges can use the primi-
tives Send data() and Get data().



Phase Hierarchical Application

N-Body Simulation Volume Rendering Radiosity

1. Tree Construction ORB tree for bodies. MinMax Octree for Volume Data. Forest of quadtrees for polygons.

Tree Update Add and delete nodes Add and delete nodes from Add and delete nodes for

for load balancing and tree for locally essential polygon subdivision

locally essential data. data.

2. Data Distribution Distribute bodies to Distribute volume data to Distribute Polygons to

processors processors processors

3. Locally essential Gather essential cells/bodies Gather essential voxel data Cannot be determined beforehand.

data for acceleration calculations. for color/opacity calculation

4. Dynamic load Adjust ORB partition and Partition Peano-Hilbert spatial Patch-patch interactions

balancing update tree. representation of image space are incrementally redistributed.

5. Data Locality Incremental ORB partitioning Peano-Hilbert ordering retains Processing sibling patches

provides data coherence. spatial proximity for ray coherence. retains data coherence.

Table 1: Computational phases of hierarchical applications

3.3 Fetch locally essential data

Each processor performs computation for the data
it owns. Typical interaction calculations require o�-
processor data that is not currently in the local mem-
ory. A prefetch stage of obtaining all o�processor
data is the gathering the locally essential data. This
is done by the primitive Build locally essential tree().
By looking at the geometry of the problem (coordi-
nates of bodies in N-body and voxel coordinates for
a ray) each processor can �gure out the level of in-
teraction it needs to perform. This step enables each
processor to then go and prefetch the needed data,
so that computation can proceed without hindrance
from communication.

3.4 Incremental updates

Incremental update of octree() changes the current
octree to re
ect the new position of bodies. Using the
insight that bodies change positions gradually and not
drastically from one iteration to another, most move-
ment of bodies will be to adjacent nodes in the oc-
tree. Each processor uses the array of old and new
coordinates to re
ect the change in the octree. This
in turn is used to incrementally adjust the octree. In-
crement locally essential data() is a primitive that up-
dates the locally essential data for each processor as
access pattern change due to data assignment to pro-
cessors. Using a sender oriented protocol, each pro-
cessor can calculate the data it needs to send to the
receiver.

3.5 Load Balancing

This movement of bodies changes the load char-
acteristics on each processor. This can be adjusted

by using the next primitive, Dynamic load balance().
Once the octree has been adjusted for the new posi-
tions of bodies, the previous run characteristics are
used to approximate the load on each processor. The
primitive Peano hilbert remapping() is used to remap
the spatial distribution of rays to processors in the
Volume rendering application.

4 Usage of primitives for Volume Ren-

dering

In this section we discuss how the primitives de-

�ned above are used for Volume Rendering. Volume
rendering uses hierarchical spatial enumeration of vol-
ume to optimize ray traced composition of each pixel.
Rays are �red for each pixel that traverse the vol-
ume, compositing opacity and color for each slice it
passes through. The volume data is represented as
a pyramid of hierarchy of volumes. When a ray is
traced, it traverses through larger volumes in areas
of low opacity and through smaller ones in areas of
higher detail. Hence an adaptive ray tracing opti-
mization can be performed quite easily. The primitive
Make octree() is used to construct a sparse represen-
tation of the volume data which initially is replicated
on all processors. Eventually a parallel distribution
of the volume among processors will introduce a par-

allel tree building algorithm. Rays can be distributed
to processors by using the Peano-Hilbert space �lling
curve which is distributed among processors by do-
ing a pre�x scan. This is done in Partition data().
Clearly, portions of volume data have to be fetched
from other processors for ray interactions. A prefetch
phase makes all the data locally available. The primi-
tive Build locally essential tree() does that for volume



rendering. The volume data does not change from one
iteration to another. What may change though, is the
viewing angle. This means the ray now interacts with
some additional volume data. An incremental phase
of obtaining the new essential tree can be made us-
ing the Increment locally essential data(). Using the
insight that adjacent rays will need to interact with
nearly the same volume data, and rays in subsequent
frames will trace mostly the same data (Frame coher-
ence), the previous two steps are not very expensive.
The �nal step is to incrementally balance the load
among processors when adaptive ray termination is
used. Di�erent rays travel di�erent distances in vol-
ume data and the initial partitioning may lead to load
imbalance. The primitive Peano hilbert remapping()

can accomplish this by adjusting the dividing lines
in the Peano-Hilbert sequence to re
ect the new load.
Adjacent rays only need to be moved to maintain load
balance.

5 Conclusions

We have enumerated the computational structure
of some problems that use hierarchical algorithms. A
discussion on the primitives for tree-codes, required
for an e�ective solution on distributed memory ma-
chines, has been presented. We have identi�ed a class
of problems that require similar software support on
parallel machines. Hierarchical methods were �rst
used for N-body simulations and were later extended
to other problems in Computer Graphics. However,
not much e�ort has been made for a coherent soft-
ware support system for these methods on parallel
machines, notably on distributed memory systems.
This work is in a very preliminary stage. Our ef-
fort is to develop an understanding of the primitives,
develop a runtime support for them and �nally pro-
vide language support for them to make hierarchical
methods easier to program on parallel machines.

6 Acknowledgements

I wish to thank my advisor Prof. Sanjay Ranka for
motivation, guidance and many helpful discussions.
This work has been funded by National Science Foun-
dation (NSF) under contract number 292-3-38393.

References

[1] Barnes, J. and Hut, P., A hierarchical O(N log N)

force calculation algorithm, Nature, 324, 1986.

[2] Hanrahan, P., Salzman, D., Aupperle, L., A
Rapid Hierarchical Radiosity Algorithm, Com-
puter Graphics Vol. 25, No. 4, July 1991.

[3] Fox, G., Hiranandani, S., Kennedy, K., Koelbel,
C., Kremer, U., Tseng, C., Wu, M., Fortran D
Language Speci�cation, High Performance FOR-

TRAN Forum, January 1992.

[4] Fuchs, H., Abram, G. D., Grant, E. D., Near
Real-Time Shaded Display of Rigid Objects,
Computer Graphics, Vol. 17, No. 3, July 1983.

[5] Goil, S., Software Support for problems using hi-
erarchical algorithms on distributed memoryma-
chines, Technical Report under preparation, Syra-
cuse University.

[6] Levoy, M., E�cient Ray Tracing of VolumeData,
ACM Transactions on Graphics, Vol. 9, No. 3,
pp 245-261, July 1990.

[7] Choudhary, A., Fox, G., Hiranandani, S.,
Kennedy, K., Koelbel, C., Ranka, S., Saltz, J.,
Software Support for Irregular and Loosely Syn-
chronous Problems, Proceedings of the Confer-

ence on High Performance Computing for Flight

Vehicles, 1992.

[8] Salmon, J., Parallel Hierarchical B-body meth-
ods, PhD thesis, Caltech, 1990.

[9] Singh, J. P., Parallel Hierarchical N-body Meth-
ods and thier Implications for Multiprocessors,
PhD thesis, Stanford University, 1993.

[10] Warren, M. and Salmon, J., Astrophysical N-
body simulations using hierarchical tree data
structures, Proceedings of Supercomputing'92,
1992.

[11] Green, S. A., Paddon, D. J., A Highly Flexible
Multiprocessor Solution for Ray Tracing, Visual
Computer, Vol. 6, No. 2, pp 62-73, 1990.

[12] Zima, H., Chapman, B., Vienna FORTRAN
- A Fortran Language Extension for Dis-
tributed Memory Multiprocessors, High Perfor-

mance FORTRAN Forum, 1992


