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Abstract

In this paper we address a class of problems consisting of highly structured computations on

data sets that are described by hierarchical data structures. These are often represented as tree

structures to optimize data storage requirements and perform e�cient queries for data access.

Speci�cally, applications that are dynamic and perform many iterations on data are of interest

to us, since the requirements for data evolve over time and require modifying data structures in-

crementally. The computational relationship between the subdomains is known only at runtime,

and may change between computation phases. Parallelization of such applications requires e�cient

distributed data management and has received some attention recently. We study the computa-

tional structure of a few irregular applications falling in this category. This helps us to discuss the

needs of choosing an appropriate data structure and the issues of data partitioning, load balancing

and communication requirements for these applications. Most recent e�orts have been application

speci�c and solutions are not portable across applications or parallel computing platforms. We

wish to characterize requirements for primitives and runtime software support needed to parallelize

irregular applications.

In this paper we present a detailed study of the computational structure of the following eight

hierarchical applications: N-body simulation, Molecular Dynamics, Hierarchical Radiosity, Volume

Rendering and Ray Tracing, Spatial databases, Adaptive meshes and, Image Compression.

This allows us to identify requirements for parallelization across a broad spectrum of applica-

tions. Each of these applications uses a tree data structure. We enumerate tree algorithms that are

used for solving these applications and discuss their parallelization. Next, we present an outline

of common primitives that are required for these applications. Requirements for a runtime sup-

port system are presented for obtaining e�ective parallel solutions using the above primitives on

coarse-grained distributed memory machines.



1 Introduction

Most previous research on coarse-grained MIMD machines has concentrated on parallelizing scien-

ti�c High-level languages like Fortran-D [17], Vienna-Fortran [70] which support parallel operations

on uniform arrays. E�cient parallelizations of dynamic and irregular problems have received much

attention only recently. Runtime support for irregular structures is available in PARTI [45]. These

approaches take advantage of static data accesses and communication patterns. They provide lit-

tle in terms of e�cient solutions for dynamically changing data distribution and communication

patterns.

We study a class of problems that consists of highly structured computations on sets of subdo-

mains that are coupled hierarchically. The computational relationship between the subdomain is

known only at runtime, and may change between computation phases. Parallelization of these ap-

plications on distributed memory machines require exploitation of the hierarchical nature both for

load balance as well as maintaining locality to reduce communication. The following applications

have been investigated, N-body simulation, Molecular Dynamics, Hierarchical Radiosity, Volume

Rendering and Ray Tracing in Computer Graphics, Adaptive meshes, Databases and Image Com-

pression. These applications are usually e�ciently represented and manipulated by using sparse

data structures such as graphs, trees, and lists in sequential algorithms to reduce data storage sizes

as well as to gain asymptotic performance.

The communication networks and software available on coarse-grained machines make local

accesses at least an order of magnitude faster then nonlocal accesses. This is further accentuated

by high latency costs of communication software on distributed-memory machines. E�ective par-

allelization of these applications on coarse-grained MIMD machines requires careful attention for

the following reasons:

� The amount of work done by the parallel algorithm should be within a small constant factor of

the amount of work done by the sequential algorithm, since the number of processors used in

practice is limited to from ten to a thousand. Parallel algorithms, which may be theoretically

optimal, have limited use if the constants involved are large.

� The o�-processor accesses generated by these applications are highly unstructured and may

have many hot spots.

� For many applications, the data structures used have inherent locality of access and/or change

incrementally. Exploitation of this information is necessary for e�cient use of the various lev-

els of memory hierarchy present in these architectures (register, caches, local accesses, nonlocal

accesses, etc.). This requires fast methods for partitioning, repartitioning, replication, and

migration of data.

� Static scheduling, dynamic scheduling, and load balancing are required to reduce processor
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idle time, and synchronization is required to achieve program correctness.

Our goal is to study the scalability of these applications on coarse-grained machines in a rel-

atively architecture-independent fashion. We discuss the structure of the above �ve applications

in detail and present the data partitioning, communication and load balancing primitives that are

required for their e�cient parallelization.

The motivation for this work is from the recent e�orts on parallelizing N-body applications on

parallel machines, and extending their use to applications in computer graphics. Most implemen-

tations have been very speci�c to the problem and most often architecture dependent. The various

phases in the implementation of the algorithm require immaculate control on the computation

and communication functions. Our goal here is to develop an architecture independent infrastruc-

ture for parallelization of treecodes and apply it to challenging visualization applications such as

ray-traced volume rendering [34], Ray Tracing and Hierarchical Radiosity [3], Spatial databases,

Molecular Dynamics, Adaptive Meshes and Image Compression. Singh [57] discusses the paral-

lelization needs of some graphics applications on a shared memory machine and elaborates the

di�culties of parallelization on distributed memory machines.

The rest of the paper is described as follows. Section 2 discusses the distributed memorymodel of

computation. Section 3 presents a survey of eight hierarchical applications and their computational

structure. These include N-body simulation, Molecular Dynamics, Volume Rendering, Ray tracing,

Radiosity, Databases, Adaptive meshes and Image Compression. Primitives for the applications for

distributed memory machines are presented in section 4. Section 5 elaborates the use of primitives

and requirements for a software system for hierarchical applications.

2 Distributed-Memory Machines

A distributed-memory machine consists of a set of processors linked by interconnection networks.

Each processor has its own memory that is directly accessible only by itself. Data exchange and

global operations among processors are accomplished through message passing or appropriate hard-

ware support [29, 16].

The parallel-processing literature abounds with parallel algorithms designed for processors con-

nected through special interconnection networks such as hypercubes, meshes, rings, or toroids.

Available commercial architectures (IBM SP series, CM-5, nCUBE, and Intel Paragon) have sub-

sets of the following properties:

1. Distance. With new routing techniques such as wormhole routing and randomized routing

(as seen on the CM-5) [32, 29, 13, 43], the distance between communicating processors is less

of a determining factor on the amount of time required for communication.
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2. Latency. The start-up time for sending a message is an order of magnitude more than the cost

of transmitting a few bytes of information. The latency of nonlocal access can be signi�cantly

reduced by using active messages [63, 9, 55]. Further, hardware support for accessing data

from nonlocal memory (or moving pages into local memory) can provide a reduction in the

e�ective latency [25, 14, 1].

3. Node Contention. A node can receive only one message (or a limited number of messages) at

a time.

4. Link Contention. If two message paths have common links, the time required for their trans-

mission may be a�ected. This e�ect is limited due to the use of virtual channels and because

link bandwidth is much larger than node-interface bandwidths. Theoretical models typically

assume only one virtual channel per link.

5. Cross Section Bandwidth. For machines which have an underlying mesh architecture (like

Intel Paragon), the cross-section bandwidth may become a bottleneck.

Hardware support for cache coherence in machines (e.g., DASH, KSR) can signi�cantly reduce

programmers' e�orts to maintain coherence of replicated data, and context switching can allow for

multiple threads at low overheads [1]. We would concentrate on machine models without hardware

support for shared memory and multi-threading. However, most of the techniques developed are of

general applicability. One of our goals is to develop architecture-independent primitives that can

be implemented on a wide variety of distributed-memory machines.

The speci�c interconnection network for which primitives would initially be developed for, as-

sume that it can support arbitrary permutations (i.e., at a given time each node can send and

receive one message from an arbitrary processor). This two-level memory model distinguishes ele-

ments needed for computation as being local or nonlocal to a processor. The logP [37] model and

the postal model [46] are theoretical models, based on the above philosophy, for coarse-grained ma-

chines. Due to larger link bandwidths, as compared to node interface bandwidths, many networks

have behavior close to this model (e.g., the IBM SP Series and the CM-5). Later speci�c networks

such as hypercubes and meshes would be studied. A large number of commercial and research

architectures use these interconnection networks.

3 A Survey of Hierarchical Applications

In this section, we describe the structure of several applications and describe the inherent parallelism

available in them. We discuss the main e�orts in parallelizing each of the application that has been

reported in the literature.
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3.1 N-Body methods

Computational methods to track the motions of bodies that interact with each other have been

subjects of study for a long time in the areas of astrophysics, semiconductor device simulation,

molecular dynamics and plasma physics. The N-body problem computes the state (position and

velocity) of N bodies at a given time t > 0, given an initial state at t = 0. The most common

approach is to iteratively calculate the solution by calculating all forces over a sequence of small time

steps. Within each timestep the instantaneous acceleration is approximated by the instantaneous

acceleration at the beginning of the time step, which is done by directly summing the force induced

by each of the other N � 1 bodies. This method is conceptually simple and vectorizes well but its

�(N2) arithmetic complexity rules it out for large-scale simulations involving millions of bodies.

Many physical systems exhibit a large range of scales in their information requirements, in

both space and time. A point in physical domain requires progressively less information at a lesser

frequency from parts of the domain that are farther away from it. Applying this fundamental

insight Appel [2] and Barnes and Hut [4] were the �rst to propose faster N-Body algorithms.

Appel's method requires O(N) steps but has a bigger constant attached to it, whereas the Barnes-

Hut method is O(NlogN) and is used in practice. N-body simulations using adaptive tree data

structures are referred to as treecodes. Parallel implementation of the Barnes-Hut method has been

fairly recent and is reported in Salmon and Warren [60, 61].

In an astrophysical N-body simulation, force interactions between celestial bodies are calculated

according to the laws of Newtonian physics. Accelerations induce by forces due to the other N � 1

bodies are calculated as

d2~xi
dt2

=
P

j 6=i ~aij =
P

j 6=i�
Gmj

~dij

jdijj
3 ; ~dij = ~xi � ~xj :

This formulation leads to a O(N2) algorithm. Several approximate methods have been used to

reduce the overall time and allow larger simulations to be done. The approximation that reduces

the interactions using treecodes is stated as [60]

P
j
Gmj

~dij

jdij j3
�

GM ~di;cm
d3i;cm

+ :::

where ~di;cm = ~xi � ~xcm is the vector from ~xi to the center-of-mass of the particles that are

summed in the left hand side in the above expression. Quadropole, octopole and further terms in

the multipole expansion can be included for better approximations.

In the Fast multipole method presented by Greengard and Rokhlin [22] particles are organized

into cells and then cell-cell interactions are computed prior to the force calculation step. Once this

has been determined, the force on a single particle can be obtained in a time independent of N,
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resulting in a O(N) scaling. The interactions here are more complex and the hidden constants in

the notation are not very clear. Each cluster is characterized by a multipole expansion computed by

traversing the tree in an upward phase. This is followed by a downward phase to combine multipole

expansions and to propagate them to the leaves. At the end of the downward phase each leaf has

data to compute the force induced by bodies in the far �eld, which is the area outside of this leaf

and its neighbors.

The Barnes-Hut algorithm begins by constructing a tree, inserting the bodies into the cluster

hierarchy one at a time. First an octree partition of the three-dimensional box (a region in space)

is computed enclosing the set of bodies. The partition is computed recursively by dividing the

original box into eight octants of equal volume until each undivided box contains exactly one body.

Figure 1 is an example of recursive partition in two dimensions, the corresponding quadtree, which

is called the Barnes-Hut (BH) tree. To minimize the number of interactions, each body computes

interactions with the largest clusters for which the approximation can be applied. The bodies are

added to the tree one at a time. The ith body is added into the BH-tree with i - 1 bodies, the newly

inserted body descending down the tree until it reaches a box of which it is the sole occupant. If

the body reaches a leaf, the leaf is subdivided until each of the two bodies is in its own box.

Each internal node of the BH-tree represents a cluster. Once the BH-tree has been built, the

centers-of-mass of the internal nodes are computed by traversing the tree bottom-up. Once that is

done, each cluster represents the bodies in its region for interaction. For computing accelerations

each body traverses the tree in depth-�rst manner starting at the root. For any internal node

su�ciently far away, the e�ect of the subtree on the body is approximated by a two-body interaction

between the body and a point mass located at the center-of-mass of the tree node. The tree

traversal continues, but the subtree is bypassed. When the traversal reaches a leaf, a direct two

body interaction is computed. The set of nodes which contribute to the acceleration on a body

are called the essential nodes for the body. Each body has a distinct set of essential nodes which

changes with time. Two important criterion help in approximating the force �elds. Firstly, for a

body far away from the cluster, the e�ect of the cluster can be approximated by its center of mass

rather than by each individual interaction with each body in the cluster. Secondly, the depth-�rst

traversal ensures that each body interacts only with the largest clusters for which the approximation

is valid. Once accelerations on each body are known, the new positions and velocities are computed.

The entire process is repeated for the desired number of time steps. The Barnes-Hut algorithm is

shown in Figure 2.

For any particle p the force can be approximated by starting at the root cell of the tree. Let l

is the length of the cell currently being processed and D the distance of p from the cell's center-

of-mass. If l / D < �, where � is a �xed accuracy parameter � 1, then the interaction between

this cell and p is included in the total being accumulated. Otherwise, the cell is resolved into eight

subcells, each one being recursively examined.
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Figure 1: Creation of a BH-tree.

For each time step:

Step 1. Build the BH-tree.

Step 2. Compute centers-of-mass bottom-up.

For each body

Step 3. Start a depth-�rst traversal of the tree, truncating the

search at a internal node where the approximation is applicable.

Step 4. Update the contribution of the node to the acceleration of the body

Step 5. Update the velocity and position of each body.

Figure 2: Barnes-Hut Algorithm
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In this paper, we limit ourselves to the Barnes-Hut algorithm due to its popularity as well as its

hierarchical nature. We provide a brief summary of the di�erent issues required for its vectorization

and parallelization on distributed memory machined with and without hardware support for shared

memory.

3.1.1 Vectorization of Tree Traversals

Barnes [5] introduced a procedure to reduce the number of tree searches by establishing interaction

lists for groups of particles which are close together in space. This shifts the bulk of the computation

from tree descents to force summation, by minimizing the required number of tree traversals. A

major regularity present in all hierarchical algorithms is that the representation of the gravitational

�eld used to calculate the force on particle p is very similar to the representation used to compute

the force on the nearby particle q. The expense of constructing the �eld expansion is thus shared

between the particles within the cell. If there are too many particles in the cell then the cost of

evaluating the local �eld by direct summation dominates and the cost of the multipole expansion

will dominate if there are too few particles per cell. This is the strategy used in the Fast Multipole

Method (FMM) which can be used to vectorize the Barnes-Hut algorithm. If n is a node on the

interaction list Lp of p, and the distance between n and p is much greater than the distance between

p and q, then most likely n 2 Lq. An interaction list Lc is constructed which is guaranteed to satisfy

the usual Barnes-Hut tolerance condition l=D < � everywhere within the small cell c containing p

and q and a few other particles. By reusing the same interaction list Lc for particles p and q to

calculate force, the number of tree descents can be reduced by a factor equal to the number of cells

in the cell c.

Makino [38] succeeded in vectorizing all aspects of the hierarchical tree algorithm by performing

tree descents for many particles simultaneously, vectorizing loops over particles. A further gain can

be realized by combining the Makino and Barnes procedures and performing tree searches for many

groups simultaneously.

A minor disadvantage of both of these approaches is that they do not preserve the basic structure

of the scalar version of the hierarchical tree method. The interaction lists are established for

many particles simultaneously. This can be a hindrance if the force must be computed particle

by particle, as is the case if each particle has a unique time step. The tolerance criterion is

simultaneously applied to all relevant cells at a given level. Those cells at the current level satisfying

the accuracy requirements are added to the list of interactions. The remainder are subdivided and

their descendants are placed on the list of cells to be visited on the next level further down.

Hernquist [23] proposed an algorithm to process the BH-tree level by level rather than node by

node as in the scalar implementation. Vectorization is achieved by looping over all relevant nodes

at the same level, simultaneously. We will restrict ourselves to the basic hierarchical approach

for calculating forces and accelerations while discussing parallelization requirements. We discuss
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e�orts on shared memory machines briey and move on to discuss solutions on distributed memory

machines mainly because these machines are more readily available today commercially.

3.1.2 Parallelization on Shared memory machines

A parallel implementation of the Barnes-Hut algorithm on the DASH [14], a cache coherent shared

memory multiprocessor shared memory machine, has been reported in [57] . The data partitioning

is done using costzones [57] or by using Orthogonal Recursive Bisection (ORB). The data is globally

shared among the processors in shared memory. The tree construction is parallelized by letting

processors insert their particles into the shared tree concurrently. Whenever a processor has to

modify the tree, either by putting a particle in a cell or by subdividing a cell, it must �rst obtain a

lock on that cell to ensure that no other processor tries to modify it at the same time. As the number

of processors increase, the overhead of executing these locks and unlocks becomes substantial. The

ORB partition allocates every processor contiguous partition of space. This e�ectively divides the

tree into distinct sections and assign a processor to each section, which means that there is little

contention for locks after the �rst few levels of the tree are built, since processors will construct

their own disjoint sections without much interference. Much of the contention is due to many

processors simultaneously trying to update the upper levels of the tree.

In another approach outlined in [57], every processor builds its own version of the tree using only

its own particles. These individual trees are then merged together into a single tree used in the rest

of the computation. The number of times a processor has to obtain a lock on the global tree goes

down as entire subtrees are usually merged into the global tree. There is a tradeo� when merging

entire subtrees, since not much concurrency is available in the merging phase. However, results

in [57] show that this method outperforms the previous one. This is essentially the approach one

would take on a distributed memory by building local trees and then getting a global representation

by combining them appropriately to store global information. The tree building and center-of-mass

computation phases require both interprocessor communication and synchronization. The force

calculation for a particle requires the communication of position and mass information from other

particles and cells, but this is not modi�ed during the force calculation phase. Forces on di�erent

particles can be computed in parallel without synchronization. Each processor will read the data

it needs from the global tree, a single copy of which is shared among all processors. The work for

a particle in the update phase is entirely local to that particle and requires neither communication

nor synchronization.

3.1.3 Parallel Implementation on Distributed Memory Machines

On a distributed memory machine the data is distributed across processors. A data distribution

that gives more or less equal work to all processors in desirable to obtain higher e�ciencies. The
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work metric used in the N-body simulation is the calculation of forces for each body. Hence, just the

count of the number of bodies on a processor is not enough, their distribution in space also needs

to be taken into account. This determines the force calculations that will be performed for each

body and ideally we would like that to be perfectly load balanced. During the computation phase

if data for force calculation is not available locally it must be fetched from the processor that has

it. Data should be assigned to processors such that most data for computation should be available

locally. Typically communication for fetching o�-processor data is much more expensive than a

local read. Data partitioning must preserve data locality to reduce communication requirements.

An inappropriate data mapping can increase communication costs and degrade overall performance

by adding to the overhead. A good partitioning would take both load balancing and data locality

into account.

A distinguishing feature of the BH-tree is that it evolves continuously due to ongoing compu-

tation. It is a dynamic data structure and data must dynamically be updated to adapt to the

evolving system. A static data mapping may not distribute data evenly after a period of time. The

data mapping can either be done again at each time step or adjusted incrementally to reect the

changes in the system. Also, as bodies move and the distribution of bodies in space changes, the

work associated with calculating forces can also change leading to di�erential load on processors.

The mapping of bodies to processors must be adjusted to ensure load balance. Thus the BH-tree

is adaptive to dynamic and irregular distribution of bodies. Also, the movement of bodies requires

dynamic data mapping and distributed data management.

The communication pattern is irregular and dynamic. Since the BH-tree is distributed there

is a need for o�-processor data during computation. The data mapping can change from one step

to another, the communication for such data will also change. So, one cannot calculate a static

data pattern and optimize communication for it. It is unpredictable at compile time and hard to

optimize. So �nding a good communication schedule at the �rst iteration to be reused at later

times does not work. A high-performance code can be developed by addressing the following issues

� Mapping of the BH-tree must change adaptively as the simulation proceeds.

� The set of tree nodes essential to a body can only be found by traversing the distributed tree.

The cost of doing this with a dynamic tree can be prohibitive.

� The load balancing must take into account the work each body has to do rather than just

the number of bodies on each processor.

In the following subsections, we describe the important approaches for data partitioning, tree

construction, accessing non local data and tree traversals studied in the literature. See Table 1 for

a summary.
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For each time step:

Step 1. Partition the bodies to processors using ORB

On each processor :

Step 2. Obtain the locally essential tree for this processor

For each body in this processor

Step 3. Start a depth-�rst traversal of the tree truncating the

search at a internal node where the approximation is applicable.

Step 4. Update the contribution of the node to the acceleration of the body

5. Update the velocity and position of each body belonging to this processor.

Figure 3: Parallel implementation of N-body algorithm using adaptive trees (Warren and Salmon,

1992)

Phase Implementation

1. Tree Construction Distributed Adaptive Trees (Warren and Salmon 1992)

Hashed Octree (HOT) (Warren and Salmon 1993)

Octree in shared memory (Singh, Hennessey and Gupta 1992)

2. Data Partitioning ORB tree for bodies. (Warren and Salmon 1992)

Spatial coordinates to keys (Warren and Salmon 1993)

Costzones (Singh, Hennessey and Gupta 1992)

3. Tree Traversal Latency hiding tree traversal (Warren and Salmon 1992)

4. Locally essential data

(Receiver-oriented) Gather essential data for force computation (Warren and Salmon 1992)

(Sender-oriented) Send essential data to processor needing it (Liu P. 1994)

5. Incremental Updates

(Sender-oriented) Incremental Tree Updates (Liu P. 1994)

Incremental updates of locally essential data (Liu P. 1994)

Table 1: Parallel approaches to N-body treecodes
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3.1.4 Data Partitioning

The distributed tree representation is kept at each processor. Each processor owns portions of data,

the amount of which is guided by the workload associated with it. Every body, on a processor,

can only see a fraction of the complete tree in a distributed memory scenario. The distant parts

are seen only at a coarse level of detail, while the nearby sections are seen all the way down to

the leaves, observing that nearby bodies see similar trees. This means that the upper levels of the

tree, have nodes that do not contain data but contain pointers to processors where the data can

be found. Data partitioning can be done using orthogonal recursive bisection (ORB), where space

is recursively divided in two, and half the processors are assigned to each domain until there is

one processor associated with each rectangular domain. A multidimensional binary k-d tree, call it

the ORB tree, can be used by alternating the dimensions of the split. A copy of the ORB tree is

stored on every processor. Each internal node of the ORB tree represents a bisector plane and the

domain it bisects, and each leaf is a processor domain. The ORB decomposition of space among

processors allocates points in space to processors. This is useful for sender-directed communication

of essential data used in relocating bodies which cross processor boundaries and for building the

global BH tree. A owner of data can calculate which processors, if any, require its data by looking

at the partitioning boundaries. This is in contrast with receiver-directed communication, where a

data request is sent out and the appropriate processor(s) will ful�ll it. ORB preserves data locality

well and the cost of incremental load-balancing is negligible [36].

The load distribution changes only slowly across iterations and the ORB can be adjusted with

minimum changes to balance the load again. The incremental update begins with each processor

computing the total number of interactions used to update the state of the local bodies. A tree

reduction yields the number of operations for the subset of processors corresponding to each internal

node. A node is overloaded if its weight exceeds the average weight of the nodes at that level by

some �xed quantity. A top-down search on ORB tree marks those internal nodes which are not

overloaded but one of their children is overloaded. This node is called the initiator. Only the

processors within the corresponding subtree participate in balancing the load for the region of

space associated with the initiator. Since the subtrees for di�erent initiators are disjoint, the non-

overlapping regions can be balanced in parallel. The bodies of the overloaded child have to be

moved to the non-overloaded child at each step. A new bisector plane is computed so that the

right amount of workload can be shifted to the under-loaded child. This is done by determining

the weight within the old plane and any given plane to �nd the correct bisecting plane by a binary

search. The workload within the parallelepiped is computed by traversing the local BH-tree [36].

Another approach of partitioning data is by mapping the bodies by converting the locality

information in terms of a one dimensional key. Each possible cell is identi�ed with a key and

by performing simple bit arithmetic on a key, keys for daughter or parent cells are determined.

The translation of keys into memory locations where cell data is stored is achieved via hash table
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For each processor DO in parallel

Step 1. Construct one dimensional keys for each body interleaving its spatial coordinates

Step 2. Sort the keys in an increasing order

Step 3. Divide the list onto processors weighted by the amount of work corresponding to each

body

On each processor

Step 4. Construct the tree using the bodies local to the processor.

Step 5. Make copies of branches on every processor to complete the full representation

of the tree

Step 6. Gather locally essential data needed for the bodies on this processor

For each body on the processor

Step 7. Traverse the tree representation in the local memory

Figure 4: Hashed Oct Tree (HOT) implementation (Warren and Salmon,1993)

lookup. This scheme provides a uniform addressing mechanism to retrieve data which is in another

processor. This representation of data is called the Hashed Octree method [61]. The key is de�ned

as a result of a map of d oating point numbers, body coordinates in d-dimensional space, into

a single set of bits. The oating point numbers are converted into integers and then bits of the

d integers are interleaved into a single key. This is identical to Morton ordering (also called Z or

N ordering). This function maps each body in the system to a unique key. A hash table is used

to map the key to the memory location holding this data. A hashing function maps the k-bit key

to the h-bit long address. Collisions in the hash table can be resolved by chaining. During tree

traversals, daughter nodes are found by shifting the parent key left by d bits and the result is OR'ed

to daughter numbers 0 to 2h�1. The key provides immediate O(1) access to any object of the tree.

Access to data can be generalized to a global accessing scheme implementable on a message passing

architecture. By taking advantage of the properties of mapping spatial coordinates to keys, a sorted

list of one-dimensional body key coordinates are divided into equal pieces, weighted by the amount

of work corresponding to each body. The work for each body is readily approximated by counting

the number of interactions the body was involved in on the previous timestep. Using Morton

ordered decomposition a processor domain can span one of the spatial discontinuity. Peano-Hilbert

ordering can be used for domain decomposition, which does not contain any spatial discontinuity,

but is harder to describe by body coordinates.

The data distribution described above, leads to a mapping with irregular boundaries. Incre-

mental modi�cation of the tree structures, the HOT tree and the locally essential tree, becomes

increasingly di�cult in such a case. Since boundaries are no longer uniform, the movement of bod-

ies from one partition to another cannot be ascertained purely by looking at spatial coordinates.

Hence, a sender initiated protocol is not suitable for such a scheme.
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3.1.5 Tree Construction

Once the bodies are allocated to a processor using the ORB data partitioning, the adaptive BH-tree

is constructed by building local trees on every processor using the local bodies only. A local tree

is built with respect to the entire spatial domain and not its own processor domain. It represents

the local view of the distribution of bodies within a processor domain. The local trees might not

be structurally consistent with respect to each other. Local trees are made structurally consistent

by adjusting the levels of all leaf nodes which are split by ORB bisector planes. For a tree with N

bodies, each leaf in the BH-tree can contain upto L bodies, L << N , to adapt to the fast multipole

expansion. This accelerates force calculations by reducing the number of tree traversals, but makes

level adjustment more tricky.

Updating the BH-tree incrementally by adjusting the levels after each insertion/deletion within

the localtree is described in [36]. Consider a body � in level ` of a local tree consisting of n levels

(n >= l). � may actually be in a deeper level `0 > ` in the global tree. The level of the cell needs

to be adjusted down to `0 for the owners on the path from `0 to ` to receive contributions from

�. Only bodies that are not in the correct levels need to be adjusted. If the processor domain

covers the entire leaf, consisting of atmost L bodies, the bodies within the leaf do not require

adjustment. Otherwise the leaf's domain spans multiple processors. For each such leaf, �, de�ne

covering processors CP(�) as those processors whose domains overlap with �. The level of a body

then is determined only by its covering processors. Initially the level information of a body �

contains its split leaf and the local bodies in it. The correct level information is found by re�ning

this information further. Each body � receives level information from each member of CP(�). Then

each processor chooses the deeper leaf as the new level.

Once level adjustment is done, each processor computes the center-of-mass and multipole mo-

ments of its local tree. Next, each processor sends its contribution to an internal node to the owner

of the node. The transmitted nodes are combined by the receiving processors completing the con-

struction of the global BH-tree. At this stage each processor contains a tree with nodes containing

bodies it owns and some empty nodes at upper levels to identify all the bodies on other processors.

The owner of a tree node is the processor that contains its geometric center. An owner of a node

keeps track of the forces and the acceleration of the bodies in it. This mapping function can be

easily constructed by di�erent processors consistently using the ORB tree. A local tree node has

correct node information if it is completely covered by one processor domain.

During a time step a body may move into another processor domain and has to be moved from

one local tree to another. Also, the body may remain in the same processor but move into a new

tree node. If there is no body in the leaf then the leaf has to be deleted. If the body joins a leaf

with already L bodies inside, it must be divided until no more than L bodies are in any new leaf.
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3.1.6 Accessing Locally Essential Non Local Data

The ORB has a recursive structure, consisting of log2P levels and P � 1 spatial bisectors to divide

spatial data into P partitions. For each processor a top-down BH-tree traversal collects the data

that is needed for calculating accelerations for the bodies it owns. This is referred to as locally

essential data, some of which might be owned by other processors. This data can be acquired

in two ways. In the �rst method, a processors sends a request for data to the owning processor.

The owners of data then ful�ll the request by sending the requested data. This can either be

demand driven, that is, essential data is requested on a need basis during force computation, or a

communication phase before the start of force calculations can accumulate all the essential data.

This scheme has the advantage that data partitioning schemes that preserve locality, but result

in uneven boundaries, can be used. The disadvantages are that the overheads of �ne-grained

communications are high, which have been addressed by using multi-threaded tree traversals at the

expense of considerable complexity [61].

The second method uses a one way message transfer by doing away with requests for data. Each

processor exploits the ORB partitioning information, to calculate the processors which require its

local data as essential data. A sender-directed communication mechanism is used in which every

processor identi�es its own exportable data, and then exchanges that data with a processor in the

complimentary partition on the other side of the bisector. After log2P exchanges every processor

is in possession of its locally essential tree. . For calculating locally essential trees, the owner of a

tree node sends information to a inuence ring, the possible positions of bodies that the tree node

is essential to. Let x be a tree node and let y be its parent. Let Bx be the region within which

the approximation cannot be applied on x. By is similarly de�ned for y. The bodies outside By

should apply approximation on y instead. The bodies within Bx cannot apply approximation on y

either. Thus x is essential to only to those bodies within the annular region By � Bx. The owner

of a tree node sends information only to processors whose domains overlap with the inuence ring.

The destination set is calculated from the inuence ring and the ORB tree.

By

y

B

x

x

Figure 5: Inuence ring of x
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3.1.7 Tree Traversal

Tree traversals are needed in the force calculation phase. By calculating forces on bodies in groups

the cost of tree traversal can be amortized over several bodies. The key point here being, nearby

bodies on a node will see similar tree structures and will traverse similar paths [5]. A multipole

acceptability criteria (MAC) is used to approximate the far-�eld forces. This determines the depth

of the tree traversals for each body or a group of bodies, if that is the case. An additional multipole

acceptability criteria (MAC) is the evaluation of the force at any point in a processor's domain.

This can be controlled by the distance from the edge of the cell to the boundary of the rectangular

domain. The positions of the bodies can be updated by traversing the locally essential trees. Nodes

which do not have global information can safely be skipped since that cannot be essential data.

There is no communication required in this phase. By calculating accelerations on groups of bodies

the vector units in machines can be utilized e�ectively. There is a reduction in time spent in

traversing the tree although the number of calculations increase [5]. A further reduction in tree

traversal can be obtained by caching essential nodes. The key observation is that the set of essential

nodes for two distinct groups close together in space are likely to have many elements in common,

so the cache can be utilized e�ectively.

A walk-list of cell nodes is maintained, which on the �rst pass contains only the root cell.

Each daughter cell of the input walk list nodes is tested against the MAC. If it passes then the

corresponding cell data is placed on the interaction list. If a daughter cell fails the MAC, it is

placed on the output walk list. After the entire input list is processed the output walk list is copied

to the walk list and the process iterates. The process continues till there are nodes in the walk list.

After this the calculations in the interaction list are processed.

The advantage of this new method is o�set by losing the advantage of sender-directed commu-

nication. It is di�cult for the BH node to compute the set of processors where its data is essential.

This is due to the processor domains having complicated shapes because partitioning is now done

according to the bodies position in the BH-tree. Also, the force computation stage is slowed down

by �ne-grained communication. The startup cost for a large number of small sized messages is high

on current architectures. This is overcome by using multiple threads to pipeline tree traversals and

to update accelerations. If a body does not obtain an essential node in its local tree it initiates

the communication to get the data and continues with the tree traversal on some other part of the

BH-tree. The communication throughput is increased by packing requests/data to/from the same

processor into longer messages, at the expense of added complexity in code.

The MAC used above is di�cult to calculate because the parallel algorithm requires identi�-

cation of locally essential data before the tree traversal begins. With a data-dependent MAC it is

di�cult to determine before hand which non-local cells are required before the traversal begins. A

di�erent approach that does not require building the locally essential trees was proposed by Salmon

[61]. It provides a mechanism to retrieve non-local data as it is needed during the tree traversal.
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For each processor DO in parallel:

Step 1. Build local BH-trees.

For every time step do:

Step 2. Construct the BH-tree representation

Step 2a. Adjust node levels

Step 2b. Compute partial node values on local trees

Step 2c. Combine partial node values at owning processors

Step 3. Owners send essential data

Step 4. Calculate accelerations

Step 5. Update velocities and positions of bodies

Step 6. Update local BH-trees incrementally

If workload is not balanced

Step 7. update the ORB incrementally

Figure 6: A generic implementation of the N-body algorithm using incremental data structures

Calculating accelerations is the most time consuming step. Building locally essential trees lets

each processor obtain the data it requires for calculating accelerations on the bodies owned by the

processor.

3.1.8 Summary

We summarize the phases of computation and communication for the N-body simulation and global

operations and collective communication requirements that it needs on a distributed memory MIMD

machine.

� Data partitioning: Data partitioning can be done using Orthogonal Recursive Bisection. This

ensures regular spatial boundaries which can be used for incremental tree updates. However,

it is not so good in preserving spatial locality. A space �lling approach, like the Morton

ordering or the Peano-Hilbert ordering provide good data locality properties. They lead to

uneven processor boundaries and incremental aspects become hard to implement.

� Tree construction: A tree data structure is employed to apply the multipole approximations

for force calculations. A globally consistent tree is maintained by each processor for the bodies

it owns, and pointers to locate bodies that are owned by other processors. A octree (in 3D)

called the BH-tree is maintained. A many-to-many communication phase is needed to make

this tree structurally consistent.

� Incremental tree updates: As the simulation proceeds and the new positions of bodies are

evaluated, the ORB partitioning and the BH-tree need to be updated to reect the changes.
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This may involve movement of bodies across processor boundaries. In one case a tree needs

delete a body and in the other an insert operation is needed. The BH-tree needs to be

kept balanced for e�cient tree traversals. The ORB tree partitions also need to be adjusted

incrementally, otherwise the ORB tree would need to be constructed from scratch at every

iteration.

� Gathering essential data: As the BH-tree is traversed top-down, bodies in some nodes are

not available in the local memory. If such a case arises, the body data needs to be fetched

from the appropriate processor, information of which is available at the node. This can

either be done during the force calculation phase or in a pre-fetching phase, where all data is

gathered beforehand and plugged appropriately in the local BH-tree. However, if the MAC is

data-dependent, as in the case of [61], then essential data cannot be ascertained before force

calculations begin. This phase requires several many-to-many communication steps.

� Tree walking: A node is opened if it fails the MAC criteria. Then each of the daughter

cells is traversed recursively. This process starts from the root of the tree. It is interrupted

when a node is reached which does not have data in local memory, but has pointers to other

processors. Multiple threads have been used to overlap tree walking with communication

delays [61].

� Load balancing: This issue can be addressed by adjusting the ORB partitioners incrementally.

Otherwise, the ORB tree needs to be constructed from scratch at every iteration. Some

amount of load-imbalance can be tolerated depending on the cost of such an operation. Space

�lling curves can be remapped to maintain load balance.

3.2 Molecular Dynamics

Molecular Dynamics is a widely used technique for the studying liquids, solids, complex molecular

systems in Chemistry, Biology, Statistical Physics and Materials Science. Molecular Dynamics

simulates the local and global motion of atoms, molecules or some larger unit, by integrating

Newtonian equations for a system of N particles. It is a computationally intensive problem and

parallel computers have been used to simulate larger and more realistic systems.

Let us consider a system with N particles represented by a collection of positions and veloc-

ities ~x1; ~x2; :::; ~xN and ~v1; ~v2; :::; ~vN respectively. Let rij be the distance between particle i and

particle j. The total energy of the system is given by E =
P

i

P
j U(rij), where U(rij) denotes the

inter-particle potential between particles i and j. Lennard-Jones potential is the most widely used

potential in modelling liquid behavior, and is given by the equation

U(rij) = 4�[( �
rij
)12 � ( �

rij
)6],
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where � is the length at which the potential crosses zero and � de�nes the energy scale. A

cuto� distance rc can be de�ned beyond which the potential is very small and can be taken to be

e�ectively zero. The force is given by the gradient of the potential, ~Fij = �rU(rij) and Fij = �Fji.

From the forces the acceleration is calculated by using the equation ~aij =
Fij
m

~rij . By integrating

the equations of motion , the new set of coordinates and velocities can be found for time t + �t

from the values at time t.

The computational tasks in molecular dynamics are to �nd the interacting neighbors of a particle

(particles at a distance � rc), compute the forces and integrate the equations of motion and this

cycle continues for the period of the simulation.

In a system of N particles, each particle interacts with 4
3
�rc

3� particles, where rc is the cuto�

distance and � is the average particle density. For each particle, a search for this neighbors is done

which is a O(N2). For a rapidly decaying potential, like the Lennard-Jones, the interations greater

than a distance rc do not contribute and can be ignored. This reduces the search such that for a

particle i the search would be done in the neighborhood @i = jjjri � rj j < rc. The physical domain

is divided into rectangular domains, called cells, of size � rc so that the search can be restricted to

the neighboring cells.

N-body methods have been applied to molecular dynamics by using a hierarchical spatial octree

to represent data. A list of interacting neighbors is maintained for each particle. This method is

called the Verlet neighbor table method and a list of interacting pairs for which the interaction forces

have to be computed is used to save computation.

The overhead of constructing the table is signi�cant and should be amortized by making use of

the table foe several time steps. The table can be reused if no pair of particles originally apart at

a distance rs comes closer than rc, where rs = rc+ �s, �s being a safety distance. The table can be

constructed by using a \cell" method in O(N) time for N particles.

3.2.1 Parallelization on distributed memory machines

CHARMM [10] is a program which calculates empirical energy functions to model macro-molecular

systems. Data decomposition and force decomposition methods are employed for parallelization of

CHARMM, a molecular dynamics software, on MIMD machines in [51]. A regular force decom-

position algorithm partitions atoms evenly over processors. However, the non-bonded interaction

list is distributed unevenly and results in severe load imbalance. The nature of force interactions

is irregular and hence any parallelization needs to take that in account. A hierarchical nature is

embedded in the way force computations are performed. Bonded interactions occur only between

atoms in close proximity to each other and non-bonded interactions are excluded beyond a certain

cuto� range. To preserve locality and reduce communication it is reasonable to assign atoms that

are close to each other on the same processor. The amount of computation associated with an atom
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depends on the number of atoms with which it interacts.

A parallel cell method and a parallel verlet neighbor table method is described in [39] Processors

must synchronize after the completion of the distributed force calculation before any processor can

begin the update of the particle coordinates. This requires the loads to be uniformly balanced to

reduce processor idle-time. Force calculations can proceed without synchronization on a MIMD

platform. For calculating forces, each pair of interacting particles must have their mutual force

calculated by bringing together the particles on a single CPU. Each processor is mapped a rectan-

gular volume of space. Particles in the cells of this region are allocated to processors. Each particle

is owned by some processor, which is responible for its force calculations. The particles at the

boundary region of the processor may be needed by the neigboring processors. An extended space

can be de�ned for each processor (as shown in Figure 7). Once the neighbor table is constructed

for an iteration, a time step consists of a communication step, a force compuation step and an

integration of the equations of motion. The communication step is for the particles at the node

boundaries to be sent to the neighboring processors. Another communication step is needed for

updating the neighbor table to reect the movement of particles.

Extended Volume

Cell range

cutoff

Cell -Processor Layout

Figure 7: Cell processor layout showing the extended volume for particle interactions

3.2.2 Summary

The issues in parallelization of this application for our framework of hierarchical applications are

summarized in this section.

� Data Partitioning: Equal work should be allocated to all processors. The measure of work

is the number of interactions by all the particles on a processor. Particles or cells can be

mapped to processors. The amount of work per cell is distribution dependent and hence data

partitioning is an issue.

� Tree construction:Orthogonal recursive bisection can be used to construct a k-d tree. Particles

are spatially distributed and we need to create the neighbor interaction list, which can be done
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by tree traversals. Since the interactions are limited to neighboring cells, the tree traversals

will be localized in a region, to access parent and sibling nodes.

� Incremental Updates: The neighbor table needs to be updated as particles change position

as the simulation progresses. Particles are deleted from and inserted into the appropriate

partitions. Doing this incrementally is more e�cient than constructing the neigbor list from

scratch.

� Queries: The queries are of the type where a nighbor list for all particles at a distance

rc need to be identi�ed. These queries are spherical and can be approximated by using a

rectangle query, leading to some duplicated e�ort. Communication is generated to acquire

the appropriate data.

3.3 Volume Rendering

Volume rendering is a technique to visualize three dimensional volume data by projecting it onto

a two dimensional plane.. It is used in diverse �elds like medical imaging, modeling physical

phenomenon and molecular structures. Most of these require generating multiple views of the

volumes at di�erent orientations from the viewer. Due to requirements for it to perform in real-

time, parallel algorithms have been proposed and implemented to accelerate volume rendering.

Volume rendering is a technique for visualizing sampled scalar or vector �elds of three spatial

dimensions without �tting geometric primitives to the data. Images are generated by computing

2-D projections of a semitransparent volume, where the color and opacity at each point are derived

from data using local operators. Since all voxels (volume elements) participate in the generation of

each image, rendering time grows linearly with the size of the data set. The principal advantages

of these techniques over others are their superior image quality and the ability to generate images

without explicitly de�ning surface geometry. This gives the images a degree of visual realism.

Rays are cast from every pixel in the image plane into the volume and the data is resampled

at regular intervals along each ray. At each sample point, the eight data values are trilinearly

interpolated to provide a value and gradient that corresponds to the sample's location. Interpolation

os necessary since the volume slice samplings may not coincide with the point the ray is driven

through. This value is then classi�ed to give equivalent color and opacity values. The color is shaded

by calculating the dot product of the local gradient with each light source which is composited to

the ray. Data volumes with contiguous subregions of voxels classi�ed as having zero opacity values,

these do not contribute to the �nal image and their resampling is unnecessary.

The algorithm described in [33] assumes a scalar-valued array forming a cube that is N voxels on

a side. Voxels are indexed by a vector i = (i; j; k) where i; j; k = 1; :::; N , and the value of voxel i is

denoted by f(i). Using local operators, a scalar or vector color C(i) and an opacity �(i) are derived
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for each voxel. Parallel rays are then traced into the data from an observer position. It is assumed

that the image is a square measuring P pixels on a side and that one ray is cast per pixel. Pixels,

and hence, rays are indexed by a vector u = (u; v) where u; v = 1; :::; P . For each ray, a vector of

colors and opacities is computed by resampling the data atW evenly spaced locations along the ray

and by trilinearly interpolating from the colors and opacities in the eight voxels surrounding each

sample location. Samples are indexed by a vector U = (u; v; w) where (u; v) identi�es the ray and

w = 1; :::;W corresponds to the distance along the ray with w = 1 being closest to the eye. The

color and opacity of sample U are denoted C(U) and �(U), respectively. Finally, a fully opaque

background is draped behind the dataset, and the resampled colors and opacities are composited

with each other and with the background to yield a color for the ray. This color is denoted by

C(u). Working front to back color and opacity are composited at each sample location under the

ray. Speci�cally, the color Cout(u;U) and opacity �out(u;U) of ray u after processing sample U

are related to the color Cz(u;U) and opacity �in(u;U) of the ray before processing the sample and

color C(U) and opacity �(U) of the sample by the transparency formula

Cout(u;U)�out(u;U) = Cin(u;U)�in(u;U) + C(U)�(U)(1� �in(u;U))

and

�out(u;U) = �in(u;U) + �(U)(1� �in(u;U))

Many datasets contain coherent regions of empty voxels. A voxel is de�ned as empty if its

opacity is zero. These do not change the opacity of the ray and need not need be rendered.

An optimization to improve performance is to ignore empty voxels while rendering. Methods

for encoding coherence in volume data include octree hierarchical spatial enumeration, polygonal

representation of bounding surfaces and octree representation of bounding surfaces. The second

optimization is based on the observation that, once a ray has struck an opaque object or has

progressed a su�cient distance through a semitransparent object, opacity accumulates to a level

where the color of the ray stabilizes and ray tracing can be terminated. Adaptive termination is

implemented by stopping each ray when its opacity reaches a user-selected threshold level.

In this section we will concentrate on methods that use hierarchical spatial enumeration. An

octree is used to represent voxel data which helps in skipping empty regions of the data set by

appropriate tree traversals[34]. For a dataset measuring N voxels on a side where N = 2M + 1 for

some integer M , the hierarchical spatial enumeration can be represented by a pyramid of M + 1

binary volumes. Volumes in this pyramid are indexed by a level number m where m = 0; ::::;M ,

and the volume at level m is denoted by Vm. Volume V0 measures N � 1 cells to a side, volume

V1 measures (N � 1)=2 cells on a side, and so on upto volume Vm which is a single cell. Cells are

indexed by a level number m and a vector i = (i,j,k) where i; j; k = 1; ::::; N � 1, and the value

contained in cell i on level m is denoted Vm(i). The ray-tracing, resampling and compositing steps

now use this pyramidal data structure.
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Figure 8: Overview of volume-rendering algorithm

For each ray, the point where the ray enters the single cell at the top level is calculated. The

pyramid is then traversed in the following manner: After entering a cell, its value is tested. If it

contains a zero, we advance along the ray to the next cell on the same level. If the parent of the

new cell di�ers from the parent of the old cell, we move up to the parent of the new cell. This is

done since if the parent of the new cell is unoccupied we can advance the ray further on the next

iteration than if we had remained at the lower level. If, however, the cell being tested contains a

one, we move down one level, entering whichever cell encloses our current location. At the lowest

level, samples are drawn at evenly spaced locations along that portion of the ray falling within the

cell, resample the data at these sample locations, and composite the resulting color and opacity

into the color an opacity of the ray.

Adaptive termination of ray tracing is done by quickly identifying the last sample location along

a ray that signi�cantly changes the color of the ray i.e if Cout(u;U)�Cin(u;U) > �, for some small

� > 0. Since �in(u;U) increases monotonically along the ray, no signi�cant color change occurs

beyond the point where �out(u;U) �rst exceeds 1 � �. Higher value of � reduce rendering time,

while lower values reduce image artifacts.

An algorithm in which image quality is adaptively re�ned over time is presented in [35]. An

initial image is generated by casting a uniform but sparse grid of rays into the volume data, less

than one ray per pixel, and interpolating between resulting colors and resampling at the display

resolution. Subsequent images are generated by alternately casting more rays and interpolating.

Rays are distributed according to measures of local image complexity. Recursive subdivision based

on color di�erences is used to concentrate these rays in regions of high image complexity, and

recursive bi-linear interpolation is used to form images from the resulting non-uniform array of

colors.
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Figure 10 shows in two dimensions how a typical ray might traverse a hierarchical enumeration.

The level-zero cell corresponding to each nonempty voxel is denoted by a shaded box. The largest

empty cell enclosing each empty voxel is denoted by an unshaded box. The sequence of points where

the ray enters the next cell at the same level is denoted by circular dots. In regions containing

many nonempty level-zero cells, the spacing between these dots is close to the spacing between

voxels. These points are not evenly spaced on the ray. If the data is resampled at nonuniformly

spaced points, a noise component may be added to the resulting image. To avoid this, a set of

evenly spaced sample locations is superimposed, shown as dividing lines in Figure 10, and limit to

resampling the data at these locations.

Recently a shear-warped algorithm has been reported in [30]. It is currently acknowledged to be

the fastest sequential volume rendering algorithm. It is a modi�cation of the object space technique

discussed above. Considering a N �N pixel viewing plane and an N �N �N voxel dataset, we

observe that �(N2) rays are driven through the N slices of the volume (the volume is N slices of

N �N voxels). A total of N3 interpolations and k�N3 resampling weights are computed for each

iteration, where k is the number of weights that need to be computed for each iteration. Shear-

warp method reduces the resampling calculations to N , by shearing the volume such that each

ray can be assumed perpendicular to the slices. Each slice can then be translated and resampled

using weights which are invariant across the slices. However, this genrates an intermediate image

which then needs to be warped to produce the �nal image. For each pixel in the �nal image, the

four nearest neighbors in the intermediate image are located and the �nal value of the pixel is

interpolated from the color value of these neighbors. This requires �(N2) computation. Using early

ray termination, skipping runs of transparent voxels by using run-length encodings, this technique

has been improved further.

Level 0

containing 4 X 4 X 4 cells

Voxel(5,5,5)

Voxel(1,1,1)Cell (1,1,1)

on level 0

Cell i = (i,j,k)

level m

mhaving value V   (i)

Level 2 
containing 1 cell 

Figure 9: Hierarchical enumeration of object space for N = 5
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Figure 10: Ray tracing of hierarchical enumeration

3.3.1 Parallelization on Shared Memory Machines

An implementation of ray traced parallel volume rendering using the single address space distributed

memory has been done on the Stanford DASH [42]. The data volume is partitioned and distributed

to the local memories of the multiprocessor nodes. The image space is statically divided and

allocated in equal areas to the processors. Rays are cast by each processor from the subimages

that they are responsible for. Voxels required at the resampling points along each ray are accessed

directly if available in local memory, or are fetched from the remote nodes where they reside.

Dynamic load balancing is realized by allowing idle processors to grab images from others that

still have work to do. The algorithm uses an octree representation, adaptive image sampling

and early ray termination as optimizations. The performance of the algorithm depends on data

coherence. Adjacent rays traversing through the same volume will tend to access the same voxel.

Communication overheads will diminish at each processor if this fact is utilized in the algorithm.

Though good cache performance is realized in [42], no analysis is presented for expecting such

behavior. We do not discuss other e�orts on shared memory machines, since out primary focus is

on distributed memory machines.

3.3.2 Parallelization on Distributed Memory Machines

Parallel data distributed volume rendering was �rst done on an NCUBE by Montani et al., dividing

the volume in slices along one dimension of the volume and using a static load balancing scheme

to redistribute the data among processors [41]. Processing nodes are organized as clusters and the

image space is partitioned as to assign a subset of pixels to each cluster. A hybrid strategy to ray

tracing parallelization is applied, using ray-dataow within an image partitioning approach.
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A ray tracing volume renderer that samples data volumes decomposed and distributed over

the local memories of the parallel nodes is implemented by Karia [27]. Every node renders and

creates a partial image of the projection of each of the subvolumes it holds. Subsequently, all nodes

communicate and composite their partial images in a divide and conquer way to generate the �nal

image. The rendering stage, which requires the bulk of the computation, does not require any

communication. Communication is only required in the �nal compositing stage. Prior to rendering

every processor classi�es the data stored locally by mapping each voxel's value to its respective

color and opacity. After data distribution, certain processors may hold subvolumes that are empty,

and avoid rendering them altogether. This creates an imbalance among the nodes in the amount

of useful rendering being done for the volume.

Green and Paddon [65] have discussed methods of exploiting coherence of references to entries

in the object space which use a combination of dynamic and static caching techniques. A frequency

distribution of object usage is determined by measuring the frequency of reference of objects while

processing di�erent rays. They have advocated the use of a software cache on a processor to exploit

the locality of reference that arises from consecutive memory references to similar addresses in main

memory.

The colors and opacities computed at each sampling point along a ray are composited using the

over operator. For any two sample points Si and Sj , whose colors and opacities are respectively

[ci; �i] and [cj; �j ], their composition using the over operator is de�ned as Si over Sj = Si +

(1� �i)Sj

The over operator is associative [28]. Hence, its application to any sequence of samples Si:::Sn

may be grouped arbitrarily as follows

(S1 over S2:::Si)

over (Si+1 over Si+2:::Sj)

over ...

over (Sk+1 over Sk+2:::Sn)

Table 2 summarizes the various approaches that have been reported in the literature for volume

rendering on distributed memory machines.

3.3.3 Data Partitioning and Coherence Issues

Parallelization strategies for volume rendering have two goals. Each processor needs to be assigned

equal load and any mapping of data to processors needs to maintain locality. The former helps to

reduce processor idle time and the latter helps in keeping overheads of communication low. These

are referred to as load balancing and maintaining data locality, two often conicting goals. We
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Approach Target Architecture Description

Montani et al. (1992) nCUBE Hybrid image partitioning - ray dataow approach. Processing nodes

organized as a set of clusters. Image space is partitioned,

Volume data is replicated on each cluster. Static load balancing is used

for distributing data.

Nieh (1992) Stanford DASH Data interleaved among processor memories. Image partitioned into

contiguous blocks for assignment to processors. Task Stealing is used for

dynamic load balancing.

Schr�oder & Stoll (1992) CM-2 Data parallel SIMD implementation, rays proceed in lock step

Vezina et al. (1992) MP-1 Also SIMD with volume transposition to localize data access

Ma, Painter et al. (1993) CM-5 Static input data partitioning into subvolumes using a k-D tree

Processing nodes perform local raytracing of their subvolume concurrently.

Karia (1994) Fujitsu AP1000 Data is decomposed into subvolumes and rendered locally on each processor

Scattered decomposition is used for load balancing.

Table 2: Di�erent approaches on parallel volume rendering

discuss each of these to motivate the approach we have taken to analyze requirements for each of

the two goals.

Strategies used for data partitioning are classi�ed as follows.

Image Space Partitioning The pixels of an image are distributed across processors. Each pro-

cessor traces rays for the pixels assigned to it. The volume data is replicated on each processor.

Portions of the image from each processor are then combined to yield the �nal images. This

method achieves near linear speedup but is not feasible if the object data set is larger than

the available memory on each node.

Object Space Partitioning The volume data is partitioned and distributed among processors.

Each processor traces each ray in the local partition only. Each non-resolved ray is transmitted

to the next processor for further tracing. Once each ray has �nished, the �nal composited

values are collected to form the �nal image.

Object Dataow A partition of the image is assigned to each processor, which locally traces and

resolves each assigned ray. Volume data is partitioned among nodes too. Non-resolved rays

will be sent to appropriate processors for tracing and the \owner" of the ray will get the

�nished result back.

Image/Object Partitioning The volume data is partitioned among processors. The image data

is also partitioned among processors. Each processor is responsible to trace rays from pixels

assigned to it. Pixels may be traced in the local volume data that is in the processors memory

or it might fetch data that it needs from other processors.

Communication costs are typically higher than computation costs on most real machines. To
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keep communication costs down, various forms of data locality need to be exploited. There are

three kinds of coherence in images which we discuss next.

Image Coherence Image coherence is the property that adjacent pixels of an image are illumi-

nated in a similar way. Portions of the image are similar in nearby areas, and this fact can

be exploited when allocating pixels to processors. Nearby pixels go to same processors. This

coherence exists in two dimensions. Exploiting this property for load balancing is not as

straight forward. In an irregular image, where some portions are bright and some are dark,

the work done in compositing a ray can vary a lot. Any load distribution strategy should

take that into account.

Figure 11: Frame 1: Ray work pro�le for brainsmall and Frame 2 at a 5o rotation - Each pixel

shows the computation work of a scanline. Scanlines for a slice progress from left to right on the

horizontal axis. Slices of a frame are top to bottom on the vertical axis.

Object Coherence Adjacent rays will travel similar portions of the object. This is the essential

idea of object coherence. In hierarchical volume representations, ray intersections with the

octree can be optimized for adjacent rays (explained in a later section). This helps in reducing

communication costs for essential volume data on processors for ray tracing by allowing reuse

of o�processor data. The data can be incrementally modi�ed as the previous data can usually

be reused. Another kind of coherence is available as the rays traverse the slices of the volume.

The volume data gradually changes as the ray traverses through each slice. From one slice to

another slice coherence is present as seen in Figure 11.

Frame Coherence Consecutive frames in a multiframe sequence are quite similar. Figure 11

shows frame coherence for the brain dataset. This fact is used in the dynamic load balancing

strategy that we have proposed in [20]. Workload information from previous frame can be

used to predict the load characteristics of the current frame.
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Data partitioning for the image space needs to provide image coherence. By proceeding scanline

by scanline within a slice, scanline coherence is exploited. To preserve this, image partitioning is

done by dividing the scanlines to processors, keeping the load balanced. A record of the load on

each processor is kept which is used to partition scanlines in the next frame. The �rst frame is

load-balanced by looking at the load of scanlines of each slice on the processor. This strategy works

well with a replicated object. For distributed volume, data partitioning the image and the volume

are complimentary. Allocation of rays to processors needs to be guided by the volume data that

is assigned to a processor. Two dimensional locality needs to be exploited for maximum reuse of

data on processors to keep the communication costs low.

Each ray intersects the tree starting at the root. Tree traversal is done to �nd the smallest

cell with a uniform color (white or black) that the ray intersects in a slice. The size of the cell

determines the number of rays that are covered by this traversal. There is no need for additional

tree traversals for these rays for the slice. This is done for each scanline in a slice. Rays in the

scanline then pass through each slice accumulating opacities as they traverse the volume.

3.3.4 Summary

In this section we present the requirements for maintaining hierarchical data structures for volume

rendering of multiple scenes of a 3D volume.

� Data Partitioning: Pixels from the resulting 2D view frame are distributed to processors,

such that the work on each processor is balanced. This cannot be ensured by allocating equal

number of pixels, since pixels have di�erent work associated with them. A measure of work

of rays being traced through pixels is maintained to estimate the workload on a processor.

Work is represented by resampling, translation, tree traversal and compositing for the ray

�red through a pixel. Scanline coherence can be preserved by allocating contiguous rows of

scanlines to processors. The number of scanlines per processor would be data dependent and

can either be adjusted between slices or between frames. See [20] for details.

� Tree Construction: The object data is represented by an octree. In parallel implementations,

a distributed tree needs to be maintained to distribute data across the available processors,

considering that each processor has memory only addressable by it. A k-d tree can be main-

tained to organize spatial volume data into partitions. A local tree can be built from the data

a processor owns.

� Locally essential data: Each processor �res rays into the volume through the pixels it owns.

Since the volume data is distributed, rays might need to fetch o�processor volume data

for compositing calculations. It can be determined by each processor independently which

processor requires the data it owns, depending on the orientation of the view plane. A sender-
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oriented protocol can be used to supply each processor with the data it needs for intersection

and compositing calculations.

� Incremental updates: For rendering multiple sequences, with a change in the viewing angle,

the rays �red from the pixels of each processor will intersect di�erent parts of the volume

data. Owing to object coherence and small angle changes in contiguous frames, most of the

o�processor data can be reused. The tree can be incrementally modi�ed for each frame,

instead of fetching all the data from scratch. Figure 12 shows the incremental data region

when the view angle is changed by a small amount.

Viewing Plane Volume dataViewing Plane Volume data

(a) (b)

P P Q

Figure 12: Ray intersections with volume (a) Viewing plane is aligned with the XY plane (b)

Viewing plane is at an angle from the XY plane

� Tree traversals: Intersection of rays with voxel data at the appropriate level by skipping the

empty regions is achieved by a traversing the tree from the top and �nding the cell node

with a homogeneous color. Intersection calculations are done at the highest level so that

unncessary calculations can be saved.

3.4 Adaptive meshes

Many large physical systems can be modeled and represented by partial di�erential equations.

Multigrid methods have been used to �nd solutions to these equations. A continuous domain can

be discretized by overlaying a grid on top of it. The new discretized domain is now de�ned by the

grid points. The grid points de�ne a mesh. The characteristics of the solution guide the structure

of the starting grid. In many problems, portions of the domain where high resolution is desired are

localized. These allow the use of adaptive mesh re�nement techniques, which allow a �ner solution

in more interesting areas of the problem domain and coarser solutions in areas of lesser interest.

This can be considered as a multilevel method, where new levels are created by subdividing the
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mesh at the existing level. Subdivision is adaptive and is controlled by an error estimate. The

lower the error tolerance for a speci�c subdomain, the �ner is the mesh at a deeper level of the

grid hierarchy. Adaptive mesh re�nement can be considered as a hierarchical tree representation of

grids with each level, except the root, representing a uniform subdivision of the parent grid. The

root represents the starting mesh with the initial grid points.

The Berger-Oliger adaptive mesh re�nement scheme [8] is popularly accepted for the formulation

of adaptive �nite di�erence (AFD) methods. An adaptive grid hierarchy can be represented as a

directed acyclic graph (DAG), where each node of the graph represents a component grid. The

root corresponds to the base grid and the levels of the DAG correspond to the re�nement in the

grid hierarchy, nodes at the same level comprising of the component grids at the same level of

re�nement. A node can be denoted as Gl
n, 0 � l < L, L being the lowest level in the hierarchy, and

0 � n < 2l. The adaptive grid hieraarchy is shown in Figure 13. The grid spacing at a level l is an

integral multiple of the grid spacing at level l + 1. Also, component grids at the same level must

be locally uniform with space and time resolutions. The AFD integration algorithm de�nes the

order of operations on the grid hierarchies and is composed of the time integration, error estimation

and regridding and inter-grid operations components. All component grids at a level l + 1 must

be integrated to the current time T before integration begins for level l at time T + �t. Regions

needing re�nement are agged based on the error estimate and a re�ned grid is generated wherever

the error estimate is greater than required. Inter-grid operations are needed for the following:

� Initialization of the re�ned component grids by using the interior values of an intersecting

component grid at same level or by prolongating values from the underlying coarser component

grid.

� Updating underlying coarse component grids using values on a nested �ner grid integrated to

the same time T . This can be done by using the same values (injection) or an appropriate

interpolation.

� Averaging any overlapping component grids at any level to update the coarser component

grids underlying the overlap region.

The hierarchical structure of adaptive mesh re�nement technique can be modeled as the generic

tree-structured computation we are addressing in this paper. Inter-grid operations can be viewed

as operations on tree nodes.

3.4.1 Parallelization on distributed memory machines

A parallel implementation of the adaptive mesh re�nement method will require operations on

the hierarchy of grids which include, creation of the grid, grid partitioning among processors,
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Figure 13: (a) Grid re�nement and (b) associated grid hierarchy

communication among grids at one level and communication between grids at di�erent levels.

This allows us to primarily exploit data-parallelism by partitioning the grids across processors and

task-parallelism expressed as independent updates to component grids and integration across levels

in the grid hierarchy. The re�nement at a particular level is not known a priori and hence can

di�er across the processors. This can lead to imbalance in the amount of work allocated to each

processor. Hence dynamic load balancing is needed at runtime to distribute the work evenly among

the processors.

A distributed DAG of grids has to be maintained across the processors. This is updated when

grids are re�ned at each level. Communication is generated for inter level grid updates since every

processor needs to keep a global view of the grid hierarchy. Prolongation de�ned from a coarser grid

to a nested �ner grid, and restrictions de�ned from a �ner grid to it's parent grid, generate irregular

communication of scatter/gather nature. Generally, a �ner grid is distributed over a larger number

of processors than a coarser grid, since the former has more grid points and hence more work

associated with it. Intra-grid interactions may result in near-neighbor communication. This can be

overlapped with computation if the interior-to-boundary ratio is large. Communication patterns are

random when component grids are clustered or during grid redistribution. The grid decomposition

scheme is critical to the e�ective parallelization of AFD methods. A composite distribution scheme

can limit the cost of irregular communication for inter-grid updates by mapping the overlapping

grids at di�erent levels to the same processor. Locality maintaining mappings like the space �lling

curves de�ne a mapping from a d-dimensional space to a linear ordering. Especially, Morton

ordering and Peano Hilbert ordering are useful in partitioning space to preserve locality. Data

partitioning can be performed by splitting the one-dimensional list appropriately. Redistribution

can also be done by readjusting the points of the split. Grid partitioning among processors can be

done in one of the following ways [44]:
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� Individual grid partitioning: Each grid at every level is partitioned across processors. This

generates communication pattern in which many processors may communicate with one pro-

cessor generating a bottleneck. This happens when a �ne grid needs to update its underlying

coarse grid. Moreover, inter-level parallelism is not expolited since the grids at di�erent levels

are allocated to the same processor and their integration is sequential.

� Comprehensive partitioning: The work total across all the grids at all levels is distributed

across processors. This distribution does not exploit the parallelism available in the problem

since it will leave some processors idle while performing update calculations.

� Independent level partitioning: Each level of the grid hierarchy is partitioned independently.

This scheme expolits the parallelism across grids at the same level, but generates irregular

communication that if not scheduled appropriately may cause a bottleneck.

The fast adaptive composite grid method (FAC) [40] is a multilevel scheme that nominally uses

global and local uniform grids for adaptive solution of partial di�erential equations. It provides

parallelism by producing several independent re�nement regions. Asynchronous version of FAC

(AFAC) allows for processing of the re�nement levels in a parallel mode. Using multigrid as

the individual grid solver, FAC has been applied to a variety of uid ow problems, including

incompressible Navier-Stokes equations, in both two and three dimensions. The local grids add

computational load irregularly to processors. Load balancing is thus required to implement AFAC

e�ciently on distributed memory machines. The independence of the various re�nement levels in

the AFAC process allows the assignments of computational tasks to processors to be made level by

level. This simpli�es the load balancing, since the levels can be ordered in a list and the partition of

such a list is inherently one-dimensional. The relationship between the levels of the composite grid is

expressed in a tree of arbitrary branching factor at each vertex. Each grid exists as a data structure

at one node of this tree. The composite grid tree is replicated in each node. In the case of a change

to the composite grid (adding, deleting or moving a grid), the change is communicated globally

to all processors so that the representation of the composite grid in each processor is consistent.

Storage of the matrix values uses a one-dimensional array of pointers to row values. These rows

are allocated and deallocated dynamically, allowing the partitioned matrices to be repartitioned

without recopying the entire matrix.

Edelsohn [15] has discussed the motivation of using the hierarchical approach for adaptive

subdivision of meshes.

3.4.2 Summary

� Data Partitioning: Space �lling curves can be used to partition the grid hierarchy across the

processors. By maintaining appropriate data structures, repartitioning during load balancing

can also be achieved.
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� Tree Construction: Grid hierarchy represented as a distributed DAG is a hierarchical rep-

resentation with an arbitrary degree at each node. A distributed tree structure with the

appropriate �elds is constructed as the base grid.

� Incremental updates: The grid hierarchy is dynamic and hence needs to be updated at each

level. Indexing by code of the space �lling curve can be used to move data appropriately.

� Tree traversals: Inter-grid and intra-grid updates need to go up or down in the grid hierarchy.

This can be modeled as tree traversals on the nodes which basically are coarser or �ner grids

at di�erent levels of the tree.

3.5 Hierarchical Radiosity

A more complex problem using hierarchical algorithms is that of calculating radiosity of a scene

in Computer Graphics. The radiosity of a surface is de�ned as the light energy leaving the surface

per unit area. Given a description of a scene the idea is to calculate the radiosities of all surfaces

resulting in the calculation of illumination of the scene. A scene is a collection of large polygonal

patches. These polygons are subdivided into small enough elements that the radiosity of an element

can be assumed to be uniform over its surface. Any larger piece is termed as a patch, formed by

combining elements or other patches including the original polygon. The radiosity of an element

i can be expressed as a linear combination of all other elements j. The coe�cients in the linear

combination are the form factors between the elements. Form factor between element j and i

(Fji) is the fraction of light energy leaving element j arriving at i. This leads to a linear system

of equations which can be solved for the element radiosities once all the form factors are known.

Enforcing a energy balance at every element yields a system of equations of the form :

Bi = Ei + �i
Pn

j FijBj

where Bi is the radiosity, Ei is the emissivity, �i is the di�use reectance, Fij is the form factor

and n is the number of elements in the scene. This system of equations can be e�ciently solved

using iterative techniques like the Gauss-Siedel method. Its physical implication is equivalent to

each patch successively gathering light. The other alternative is of shooting light from patches in

order of their brightness. The most expensive part of the calculation is computing form factors,

given for two in�nitesimal elements by

Fij =
cos �i cos �j

�rij
2 dAj

The angle �i(�j) relates to the normal vector of element i( or j ) to the vector joining the two

elements.
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To take into account occlusion, di�erential form factors are accumulated only if the two in-

�nitesimal elements are mutually visible. The form factor matrix is n�n, where n is the number of

elements. The order of form factor calculation is thus O(n2). Applying the insights of the N-body

problem that

1. Numerical calculations are subject to error, and therefore, the force acting on a particle need

only be calculated to within a given precision.

2. The force due to a cluster of particles at some distant point can be approximated within a

given precision, with a single term, reducing the total number of interactions.

the complexity is reduced to O(n+ k2), where k is the number of polygons.

The radiosity problem shares many similarities with the N-body problem. First there are n(n-

1)/2 pairs of interactions in both. The magnitude of the form factor falls o� as 1=r2, same as the

gravitational force.

The major di�erence between the two problems is the way the hierarchical data structures

are formed. The N-body algorithm begins with n particles and clusters them in larger and larger

groups. the hierarchical radiosity algorithm begins with a few large polygons and subdivides them

into smaller and smaller patches. Subdividing is based on the error of a potential interaction which

gives an automatic method for discretization of the scene. The principle of superposition, that the

potential due to cluster of particles is the sum of the potentials of the individual particles, cannot

be directly adopted because of occlusion. Intervening opaque surfaces can block the transport of

light between two other surfaces which makes the system non-linear. Lastly, the N-body problem

is based on a di�erential equation , whereas the radiosity problem is based on an integral equation.

3.5.1 Sequential Algorithm

The input to the algorithm is a set of polygons depicting the scene. These are inserted into a

Binary Space Partitioning (BSP) tree [18] to facilitate e�cient visibility computation between pairs

of patches. Every input polygon is initially given a list of other input polygons that are potentially

visible from it to enable it to compute interactions. The polygon radiosities are computed by

iterating over the steps shown in Figure 14.

The tree data structure used here is not a single tree but a forest of quadtrees representing

individual polygons. Each polygon has its own quadtree, with the roots being leaves of the BSP

tree used for visibility testing. At every quadtree node visited in this traversal, interactions of the

patch at that node are computed with all other patches in its interaction list. The interaction

between two patches involves computing both the visibility and the unoccluded form factor between

them and multiplying the two to obtain the actual form factor. Both of these quantities are
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For every polygon quadtree

Start at the root, computing the form factors due to all polygons on its

interaction list, subdividing it or other polygons hierarchically as necessary.

Compute the radiosity of the polygon �rst by a downward traversal of the tree

followed by a upward sweep adding the radiosities.

Continue till convergence is achieved.

Figure 14: Radiosity algorithm

computed approximately, introducing an error in the computed form factor. An estimate of the

error is also computed. If this is larger than a user de�ned tolerance the patch with the larger

area is subdivided to compute a more accurate interaction. Children are created for the subdivided

patch in its quadtree if they do not already exist. If the patch being visited (say i) is subdivided,

patch j is removed from its interaction list and added to each of its children's interaction lists. If

patch j is subdivided, it is replaced by its children on patch i's interaction list. Patch i's interaction

list is completely processed in this manner before visiting its children in the tree traversal. During

this downward traversal, the radiosities gathered at the ancestors of patch i and at patch i itself

from other patches are accumulated and passed on to i's children. After the traversal of a quadtree

is completed, an upward pass is made through the tree to accumulate the area-weighted radiosities

of a patch's descendants into its own radiosity. Thus the radiosity of a patch is the sum of three

quantities

1. Area-weighted radiosities of its descendants

2. The radiosity a patch gathers in its own interactions

3. The radiosity gathered by its ancestors

3.5.2 Available Parallelism

Parallelism is available at three stages. First, the polygons are independent of each other and can

be processed simultaneously. Second the visibility computation can proceed in parallel. Third, the

interactions computed for patches can be done in parallel. Singh [57] has discussed the parallel

approaches on shared and distributed memory machines.

35



3.5.3 Parallel approaches on a shared memory machine

To exploit the parallelism across polygon-polygon interactions every processor needs to be assigned

an equal number of them. This can either be done statically or processes can obtain interactions

dynamically until none are left in the queue. Singh shows that the dynamic scheme works better

than the static scheme. Apart from the distance between two patches, the angle and visibility

between them are also important factors for interactions. Usual schemes that rely only on spatial

distribution thus do not su�ce. There are three primary forms of locality in the application.

1. A form of object locality can be obtained by having a processor work mostly on interactions

involving the same input polygon or its subpatches in every iteration.

2. Locality can be exploited across each patch by processing sibling patches consecutively, using

a breadth �rst traversal of the quadtree.

3. During visibility testing, using a depth �rst search, locality is exploited by ensuring that the

same subset of BSP-tree nodes is traversed by a processor in successive visibility calculations

Load balancing can be provided by allowing on the y task stealing. Each processor has a queue

of polygons on which the interaction have to be calculated. A processor can either steal polygons

from other processors and process them or steal patch-patch interactions. The granularity of tasks

is a patch and all its interactions in the �rst case and a single patch-patch interaction in the second.

If an interaction subdivides one of the patches and thus spawns a new interaction it is placed at

the end of the creating processor's queue.

3.5.4 Parallel approaches on a distributed memory machine

Singh [57] suggests two parallel implementation of the radiosity algorithm on distributed memory

machines which we discuss next.

The local quadtrees approach lets each processor maintain local copies of all the quadtree

data that they need, modify the data locally as needed in an iteration and only communicate the

modi�cations to other interested processors at iteration boundaries. In the absence of task stealing,

the approach consists of phases of local computation punctuated by phases of communication.

Also, there is no complete logical version of the forest of quadtrees on any one processor. Polygons

are statically assigned to processors. The growing interactions on processors might lead to load

imbalance in the system. Allowing idle processors to steal tasks from other processors can lead to

load balancing.

In the global quadtrees approach a single copy of the forest of quadtrees is maintained in

distributed form over the processing nodes. Every processor holds the BSP tree and the quadtrees
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assigned to it in its local memory and knows the locations of the rest of the quadtrees through

a global naming scheme. A processor can store non-local data it references in a local cache. To

maintain coherence caches can be ushed at iteration boundaries. Modi�cations to data are always

communicated to the master copy. The main disadvantages of this approach are that it requires

�ne-grained communication that is not phase-structured. It requires every reference to a quadtree

datum to check whether the datum is local, nonlocal but cached locally, or remote.

3.5.5 Discussion

The complications to hierarchical radiosity arise from the dynamically changing quadtrees of

patches, since they are built as computation proceeds. These data structures are not read-only

but are actively read and written by di�erent processors in the same computational phase dur-

ing the calculation of the form factors. The following issues have to be addressed for any viable

implementation

1. Naming of patches on di�erent processors in a globally consistent manner to ease access to

data during form factoe calculations.

2. Local quadtree versus Global quadtree approach needs to be investigated for its communica-

tion overhead. A level-by-level approach is proposed in this paper. Polygons are distributed

among the processors. Each processor processes upto k levels, for a constant k, at which time

the load at each processor is checked and if it falls below a threshold, patch-patch interactions

are transferred to it from processors having more load.

3. Task stealing has been advocated for load balancing which has not been implemented e�-

ciently yet on a distributed memory machine. Coherency is complicated by movement of

patches between processors. We will investigate issues in handling messages for data, control,

coherence, synchronization and load balancing while performing computation.

3.6 Image Compression

Applications using wavelet theory can use quadtree based decomposition for thier solution. Binary

data compression and image compression are areas where wavelet theory has been widely applied.

An approximation to the original image can be formed by using a wavelet transform A discrete

sequence x(n) of length N where n;N 2 Z is used to derive two subsampled signals yh(n) and

yg(n) corresponding to the low and high pass versions of the original sequence x(n) respectively.

Each of the signals is of length N=2. The signal yh(n) is obtained by convolving the sequence x(n)

with a low pass �lter h(n) and dropping every other sample. Similarly yg(n) is obtained by using a

high pass �lter g(n). The process of decomposing the sequence x(n) into two subsequences at half
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resolution can be iterated on either or both sequences. To achieve better frequency resolution at

lower frequencies, the scheme is commonly iterated on the lower band.

In the �rst stage of wavelet decomposition this scheme is applied to 2-D images by applying

the above scheme along the rows and then along the columns. The second stage applies the same

procedure for the low-pass band. To obtain further stages of wavelet decomposition, the procedure

can be applied to the low-pass band of the previous stage. This generates a pyramidal representation

of the input image. Figure 15 shows a subband decomposition scheme that can be represented as

a tree for computation.
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ĝ(n)
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Figure 15: A subband decomposition scheme to be used with the Discrete Wavelet Transform.

Each wavelet picks up information about the image essentially at a given location and at a

given scale. For portions of an image that has more interesting features, more coe�cients can

be used and where the image is nice and smooth a fewer coe�cients can result in a good quality

approximation. Hence there is an adaptive nature to the subdivision of the image form which

makes image compression fall in the category of applications discussed so far. The details of this

method can be found in [66] [67]. The Discrete Wavelet Transform (DWT) was developed in �lter

bank representations for subband coding for images and speech signals. The work on Quadrature

Mirror Filters (QMF) has beeen used to decompose and reconstruct a signal.

4 Software System Requirements

The software requirements for hierarchical applications can be divided into Architecture dependent

and Architecture independent activities. Current distributed memory machines are available in dif-
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ferent con�gurations with varying interconnection networks. Message passing routines are typically

architecture dependent and provided by the vendor. Global communication operations built using

the basic communication primitives send and receive are also implemented by the machine vendor.

Hierarchical applications deal with treecodes and require basic tree manipulation routines.

Queries on the tree data structure need to be performed to access and modify data structures.

A library of routines providing primitives for tree construction and providing operations on the

distributed data structure is needed. Load balancing aspects for the tree should be addressed at

di�erent levels by Global tree and Local tree management routines. Queries will extensively use

data structure movement, which in most cases will be subtrees and will need encoding on the

sender side for transmission. The receiver will decode the data to reconstruct the subtree. This

high level data movement will use the low level data movement provided by the machine, using

global communication whenever appropriate.

The main objective is to build an architecture independent software system for hierarchical

applications and we would like to keep the architecture dependent part as small as possible. Com-

munication libraries like PVM and MPI provide a layer of architecture independence and can be

used.

Figure 16 highlights the software system that is needed for the applications discussed in this

paper.

5 Conclusions

We have enumerated the computational structure of applications that use hierarchical algorithms. A

discussion on the primitives for tree-codes, required for an e�ective solution on distributed memory

machines, has been presented. We have identi�ed a class of problems that require similar software

support on parallel machines. Hierarchical methods were �rst used for N-body simulations and

were later extended to other problems notably in Computational Fluid Dynamics and Computer

Graphics. However, not much e�ort has been made for a coherent software support system for these

methods on parallel machines, notably on distributed memory systems. Our e�ort is to develop

a common paradigm for these problems which makes programming these methods easier for their

users.
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