
A Design Overview of a Real-time Terrain

Rendering Program

Alvin Leung

October 25, 1995

Abstract

In this report, we provide an overview of the design of a real-time

3D terrain rendering program being developed for educational use.

The terrain rendering program has four main viewing stages ranging

from solar orbit to low altitude y-by. Each stage has di�erent viewing

characteristics and data requirements. Hence, di�erent rendering tech-

niques, such as pixel mapping and bumpmapping, are used to generate

the images. These techniques are examined in detail. In addition, we

briey discuss the issues related to parallelization, data optimization

and image compression.

1 Introduction

The goal of this terrain rendering project is to provide the user a real time

interactive viewing environment for the available terrain data. We envision

that the user starts out in the solar system, where Mars, Earth and Venus

are visible. Then the user chooses to visit one of the three planets.

This journey can be broken into four main viewing stages: stage one,

from solar orbit to high planetary orbit; stage two, from high planetary

orbit to lower planetary orbit; stage three, from lower planetary orbit to

high altitude ight path; and stage four, from high altitude ight path to low

altitude y-by. Each of these stages has distinct viewing characteristics that

the terrain viewer must respect. As a result, multiple rendering techniques

and data sets are needed to generate the images. In the following sections,

the viewing characteristics, data requirements and rendering techniques of

each stage are investigated.

1



2 From solar orbit to high planetary orbit

At this stage, the user is deciding which planet to visit. Hence, the basic

viewing requirement is to provide enough visual cue to distinguish the plan-

ets. As the user moves closer to a speci�c planet, we would like to show the

most striking features of the planet, for example, the continents and oceans

on Earth and the polar caps of Mars. This information is intended to help

the user properly orient to the viewer's 3D coordinate system.

2.1 Data Requirement

The data required for this stage is a collection of progressively re�ned pixel

maps of the planets. These pixel maps need to correct for spherical projec-

tion to minimize the distortion during the rendering phase. The pixel maps

can be derived from any source as long as \correct" colors are used for the

major planetary features.

2.2 Rendering Technique

We can render the planetary images by mapping the planetary pixel maps

onto the surfaces of the spherical objects (�gure 1). Since the pixel map

is constructed to cover the entire surface area of the sphere, the size of the

sphere is not important. For simplicity, we use the unit sphere.

We use the following mapping functions to map a 2D image onto a

3D spherical surface (as shown in �gure 2). The simplicity of the mapping

functions can be exploited to reduce computation requirement by using look-

up tables and linear interpolation for various values of � and �.

u =
cos(�)+1

2
; where 0� � � < 180�

v = �
360�

; where 0� � � < 360�

The characteristics of this mapping are the elongation and compression

of the 2D pixel map regions as shown in �gure 3. The compression in the v

direction is due to the reduction of the circumference of the circles, which are

on the surface of the sphere and are parallel to x�y plane. The compression

in the u direction is caused by mapping half of the pixel map onto the region

bounded by 60� � � � 120� and 0� � � < 360�. The rest of the pixel map

forms the two elongated regions.

This distortion, if applied to a planar Earth image, will shorten all land

mass between the Tropic of Cancer and Tropic of Capricorn and lengthen

2



Figure 1: A texture mapped Earth.

3



v

u

0

1

0 1

z

y

θ

φ

x

Figure 2: Mapping a 2D plane onto a 3D spherical surface.

Compression

Compression

Elongation

Elongation

Compression

Figure 3: Compressed and elongated regions of the 2D plane.

4



all the land mass from these lines to the polar region in the u direction.

Meanwhile, all land mass located away from the equator is compressed in

the v direction. All continents will be distorted beyond recognition. Conse-

quently, correctly prepared pixel maps are essential.

As the user moves closer to a planet, the user expects to see more detailed

features of the planet. The rendering program can ful�ll this expectation

by using a higher resolution pixel map as the user gets closer to a planet.

The exact relationship between distance and the resolution of the pixel map

used will depend on the quality of the pixel map and the output screen

resolution. Furthermore antialiasing can be accomplished easily, since the

pixels are already loaded in core.

Combining the low computation requirement of this rendering algorithm

with the low maintenance and low storage requirement of the pixel maps, we

have an option to implement the �rst stage of the terrain rendering program

on the client. This reduces the training equipment cost for the student to

learn to use the terrain rendering program. Moreover, the �rst stage can

also serve as a gateway to other related information server.

3 From high planetary orbit to lower planetary

orbit

The user is selecting a Earth's continent size region for the journey. The

user can either enter a coordinate or select a recognizable land mark as the

starting point. A journey starting at a speci�ed coordinate can be trivially

accommodated. On the other hand, for the user to rely on recognizable

landmarks will require the ability to distinguish mountain ranges, canyons,

ice caps and large bodies of water. For most of these features, a pixel map

contains enough information for the user to recognize the feature's charac-

teristics. However, the user requires shadow to distinguish mountain ranges

and canyons. Shadow computation is quite involved [2] [6]. At this alti-

tude, the mountain ranges and canyons are just abnormalities (bumps) on

the sphere surface. Since bumps do not cast very long shadows under most

lighting condition, we can replace the full shadow calculation by a shad-

ing computation without signi�cant lost of image quality. The lost image

quality is caused by the shading calculation's failure to properly account for

shadow casting (�gure 4). A point is in shadow, if there is an object blocking

the light rays from the light source to the point. The computation required

to determine if a point is in shadow or not involves searching part of the

5



a) Shadow Calculation

b) Shading Calculation

Light source

Light source Light source

Light source

In shadow

Shaded

In shadow

Shaded
Missing

Missing

Figure 4: Di�erence in shadow calculation and shading calculation.

database for the light blocking object. Although this process is not partic-

ular challenging, it is CPU intensive. On the other hand, shading computes

the brightness of a point according to the direction of the light source, the

surface normal of the point, the viewer direction, and various adjustable

parameters. Since no other object is considered, no shadow is generated.

As a result, the shaded area is smaller than a properly calculated shadow

and the error is proportional to the height of the shadow casting object and

the angle of the light source. The shading of the terrain can be accomplish

by using a displacement map (also known as bump map). In section 3.2, we

will describe the algorithm to shade with a bump map.

In the terrain rendering program, the light source remains constant both

in intensity and in location. The shading cannot be precalculated because

the rotational rate of the planet does not remain constant as the user drops

into the planet's gravity well. However, we will most likely to violate some

physical laws to avoid disorienting the user. As a result, the shaded area

has to brighten as the terrain features rotate toward the sun and to darken

as they rotate away from the sun. In addition, experience has shown that

continuously varying viewing parameters can help users to grasp the depth

6



∆N

NS NHF

A

B

HFN’

∆N
SN’

B’ A’

Figure 5: The construction of bump map

cue more easily [3].

3.1 Data Requirement

The data required for this phase is one high resolution pixel map and one

bump map of the planet. Both of these maps are corrected for the spherical

projection.

The displacement map can be constructed from the height �eld of the

planet. Each entry of the displacement map consists of a small perturbation,

4N , of the sphere's surface normal, NS. 4N is computed by NHF �NS,

where NHF is the surface normal of the terrain (as show in �gure 5). The

directional information ofNHF is encoded with respected to the global coor-

dinate system for a speci�c orientation of the sphere. The 4N is in the local

coordinate of each surface normal of the sphere. During the shading calcula-

tion, N 0

HF
is reconstructed by combining the perturbation with the surface

normal of a view oriented sphere, N 0

S. Consequently, the transformation to

put NHF in the viewer's perspective is avoided.

7



3.2 Rendering Algorithm

The rendering techniques used in this phase are texture mapping and Phong

shading. The texture mapping algorithm remains the same as in section 2.2.

The basic concept of the shading is to multiply an intensity factor, I , to

the RGB color value of each pixel. The intensity factor is computed by

I = IPkdN
0

HF �L ;

where IP is the maximum intensity value, kd is a di�use reection coe�cient,

N 0

HF is the surface normal and L is the vector pointing toward the light

source. The turnable parameters are IP and kd. IP governs the brightness

of the white light source. kd control the reectivity of the surface. By

relating kd with terrain type, we can make oceans and lakes be a bit more

reective than land to enhance the photo realism of the image. An example

of a bump map is shown in �gure 6.

For this rendering phase, the computation and the storage requirement

are substantially more than the previous stage. As a result, the image will

be generated on a high performance workstation and shipped across a fast

network.

4 From lower planetary orbital to high altitude

ight path

The user is further re�ning the tour destination by selecting a region ap-

proximately the size of a nation state. Terrain features reveal considerable

details at this altitude. Planetary curvature is still noticeable, but much

less pronounce than the previous two stages. The curvature of the terrain

model should be reduced smoothly as the user moves closer to the planet.

This will permit the user to adapt to the at projected terrain model for the

next stage. A transformation function is needed for the smooth transition

between spherical projection and at projection.

4.1 Data Requirement

The data needed in this stage is the lowest resolution of the terrain data sets.

A terrain data set consists of vertices list, edges list, polygons list and texture

maps for the polygons. The low resolution terrain data set has a signi�cantly

smaller number of vertices and the texture map resolution is much lower than

8



Figure 6: Mandelbrot set is rendered as bumps on sphere.

9



planet’s curviture

field of view
Data ouside viewer’s

field of view

View volumn

Visible in viewer’s

right boundary

View volumn
left boundary

View limited by

Intersection points

Figure 7: Finding visible data

the original digital elevation data and satellite image; however, the vertices

are chosen to retain the details of the terrain features (see section 6 for more

information). Furthermore, this data is prepackaged into subblocks. The

size of the blocks are chosen to maximize the performance of the rendering

phase.

4.2 Rendering Algorithm

Although the low resolution terrain data set is considerably smaller than the

full data set, the low resolution data still has signi�cant size due to the re-

dundant information in the vertices, edges and polygons list. Consequently,

only part of the data can be loaded in core. An e�cient method to determine

which part of the data is visible to the user is essential to achieve our goal

of constructing a real-time interactive viewing environment. Identifying the

visible data can be easily accomplished by using the information given by

the viewer's �eld of view and the curvature of the planet (�gure 7).

Since the terrain rendering program is generating images for a y-by

without any fantastic maneuvers, the viewing location and direction at every

time step is very similar to the previous and to the next. To exploit the

locality of these viewing parameters, the terrain data is �rst mapped onto

a 2D grid and then the visibility identi�cation is applied to the grid as

presented in �gure 7. Thus, only the visible data blocks are loaded from the

10



secondary storage and processed in the rendering pipeline.

The visible calculation is essentially rendering a polygon, which bounds

all visible data blocks, onto a very low resolution \screen," the 2D grid. The

bounding polygon is formed by �rst projecting the user's 3D view volume

onto the 2D grid. This gives us the left and right boundaries in �gure 7.

Then, by calculating the intersection points of the left and right boundaries

with the 2D grid's boundary, we �nd the bounding polygon for all the visible

data blocks. Finally, we apply a polygon scan conversion algorithm to mark

the visible data blocks (refer to [3] [2] for more information on the polygon

scan conversion algorithm). If the planetary curvature is in e�ect, then the

distance from the viewer to each data block is computed. The data block is

not visible if it is too far away with respect to the viewer's altitude. Since

there is only one polygon with known shape being scan converted, the scan

conversion subroutine can be optimized to reduce the computation cost.

The bene�t of the visibility calculation is demonstrated in �gure 8. The

grey squares in the �gure represent the visible data blocks and only these

data blocks are rendered. Although only a tiny fraction of some of the visible

data blocks are displayed, no special rendering techniques are performed to

avoid loading these data blocks because they have a high probability for

contributing more to the next image. After the viewer turned 4 degrees to

the right (�gure 8b) with turning rate 240 degree per minutes (40 revolutions

per hour), the visibility calculation subroutine determined that two data

blocks went out of view and three new data blocks come into view. As a

result, choosing an optimal grid size can e�ectively cache the data blocks.

Further, improvement can be made by predicting the viewer's movement.

After the data is loaded into the memory, the standard polygon rendering

pipeline, which consists of transformation, clipping, hidden surface removal

and rasterization, is used (see [2] for more information). The rendered image

is than compressed (see section 6) and delivered via a height speed network

to the client.

5 From high altitude ight path to low altitude

ight path

By now, the user is examining a county size region at a relatively low alti-

tude. The planetary curvature is not noticeable. Furthermore, the skyline

is often masked by terrain features. At a result, we can use at projected

terrain data sets without signi�cant compromising of the image quality.

11



Contributed more to the image

Deactivated
Activated

Barely visible grid

Figure 8: Viewer has turned 4� to the right.

12



The user's �eld of view can be divided into far, mid and near �eld re-

gions. The far �eld provides the viewer reference points to determine the

relative special location and headings with respected to the planet. The

mid �eld shows the relative location and heading of the user with respect to

the impending target. The user can then line up the ight path for closer

examination. The near �eld is for detailed examination of an area.

5.1 Data Requirement

The terrain renderer uses three di�erent resolution terrain data sets to deal

with the di�erent viewing regions. The far region uses the previous low

resolution terrain data, but the data is in at projection. A medium res-

olution data set is used to generate the mid region image. This medium

resolution data also passes through the data optimization treatment, but it

uses more vertices to capture more terrain traits. The near region uses the

�nest resolution height �eld data and satellite image. A 2D grid is imposed

onto the three data sets. Each data set is prepackaged into subblocks as in

the previous stage. Because three data sets are used, we need to guarantee

that the data sets merge seamlessly. By using the highest resolution data

as the boundary points for all subblocks of the three data sets, we have the

perfectly matched subblocks across all resolution data. The trade o� is the

increase of the number of vertices in the lower resolution data sets. The

data optimization for the low and mid resolution is done within each of the

subblocks but excluding the boundary points.

5.2 Rendering Algorithm

The rendering algorithm is essentially the same as for the previous stage.

However, after the visibility identi�cation procedure is done, the resolution

of the data is selected according to the distance of the data block from the

viewer. The far away squares will use the low resolution data. The near

squares will use the high resolution data. Although the data are in di�erent

resolutions, the same rendering pipeline is used to render each subblock.

The �nal image is then delivered to the client by a high speed network.

Since this stage demands the highest computation capability for the server,

it is best performed in parallel.

13



6 Future Work

There are at least three areas, parallelization, data optimization, and image

compression, that need further study and are not covered in this report.

First, in order to increase the rendering speed and the size of the data sets

that can be handled, the terrain rendering program must be implemented

in parallel. The parallelism of the terrain rendering is in the from of object

parallelism, pixel parallelism and frame parallelism. The object parallelism

derives from the terrain data's characteristics of non-overlapping and having

an unambiguous depth order. Consequently, polygons can be rendered in

any arbitrary order and the characteristics ensure the same image is gener-

ated. As in all other graphics applications, all pixels in an image are totally

independent from each other. This implies the pixels can also be rendered in

arbitrary order. By combining object and pixel parallelism characteristics,

the terrain rendering program can distribute and render the data e�ciently

in parallel without compromising the image quality. Because the terrain

program is interactive, the program has to generate multiple images per

second. However, each image is generated with no dependency on the pixel

values of the previous images. Consequently, the terrain rendering program

can render a number of images for di�erent time steps in parallel.

Second, because of the aforementioned viewing requirements and char-

acteristics, data optimization is essential to reduce the needed computing

power. The goal of data optimization is to reduce the number of vertices in

the data set, while retaining the dominant features of the terrain. Although

there are data optimization algorithms [5] [4] available, these algorithms

are speci�cally design for optimizing data points that are captured by a 3D

digitalization process. These data sets are usually extremely dense and un-

organized. On the other hand, the terrain data is relatively lower in density

and well organized. Furthermore, the data optimization algorithms tend to

capture shape corners and edges very well. At the current resolution of the

terrain data, sharp transitions are seldom. As a result, more study is needed

to determine the usefulness of these algorithms on terrain data.

Third, video image compression is necessary to e�ectively use the net-

work bandwidth. A side e�ect is that video image compression also provides

a way to handle computing resources degradation. The MPEG video com-

pression [1], for example, has three type of frames, intra-coded, predictive-

coded, and bidirectional predictive-coded. An image is intra-coded, if it is

encoded by using the information within that image only. The predictive-

coded image uses motion-compensated prediction from a past intra-coded

14



or predictive-coded images. In other words, only the di�erence of the pre-

vious image is sent to reconstruct the image. The bidirectional predictive-

coded uses motion-compensated prediction from a past and a future frame,

i.e., an interpolation of the two images can be formed. In a computing re-

sources rich environment, each frame is generated and encoded with MPEG

compression. In a computing resources poor environment, the information

in bidirectional predictive-coded can be \approximated" from the viewing

parameters. Hence, a less accurate image will be generated, but the \ap-

proximation" may take less CPU cycles to compute than rendering a full

image.

15



References

[1] C. Wayne Brown and Barry J. Shepherd. Graphics File Formats: refer-

ence and guide. Manning, 1995.

[2] Paul Coddington. CPS 713: Terrain rendering for a geographic informa-

tion system, 1994.

[3] James D. Foley, Andries van Dam, Stenve K. Feiner, and John F. Hughes.

Computer Graphics: Principles and Practice. Addison-Wesley, 2nd edi-

tion, 1992.

[4] Hugues Hoppe, Tiny DeRose, Tom Duchamp, John McDonald, and

Werner Stuetzle. Mesh optimization. Computer Graphics, 27:19{26,

August 1993.

[5] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen.

Decimation of triangle meshes. Computer Graphics, 26:65{70, July 1992.

[6] Stephanie Wierich and Paul Coddington. Real-time rendering for a ge-

ographic information system. Journal of Undergraduate Research in

High-Performance Computing, NPAC technical report, SCCS-632, 1994.

16


