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Abstract

We evaluate the Fortran-90 and High-Performance For-

tran (HPF) languages for the compact expression and

e�cient implementation of conjugate gradient iterative

matrix-solvers on High Performance Computing and

Communications(HPCC) platforms. We discuss the

use of intrinsic functions, data distribution directives

and explicitly parallel constructs to optimize perfor-

mance by minimizing communications requirements in

a portable manner. We also consider computational

and data storage issues arising from variations of the

basic conjugate gradient algorithm as well as surveying

typical application problems that require an iterative

solution of large matrix-formulated problems. Some of

the codes discussed are available on the World Wide

Web at http://www.npac.syr.edu/hpfa/ alongwith

other educational and discussion material related to ap-

plications in HPF.

Introduction

High Performance Fortran (HPF)[13] is a language def-

inition agreed upon in 1993, and being widely adopted

by systems suppliers as a mechanism for users to ex-

ploit parallel computation through the data-parallel

programming model.

HPF evolved from the experimental Fortran-D

system [3] as a collection of extensions to the Fortran 90

language standard [15]. We do not discuss the details

of the HPF language here as they are well documented

elsewhere [14], but simply note that the central tenet

of HPF and data-parallel programming is that program

data is distributed amongst the processors' memories

in such a way that the \owner computes" rule allows

the maximum computation to communications ratio.

Language constructs and embedded compiler directives

allow the programmer to express to the compiler ad-

ditional information about how to produce code that

maps well to the available parallel or distributed archi-

tecture and thus runs fast and can make full use of the

larger (distributed) memory.

An excellent review of iterative solvers and some

of the general computational issues for their e�cient

implementation is given in [2]. We focus here on spe-

ci�c implementation issues for the Fortran 90 and HPF

languages.

Consider applications problems that can be for-

mulated in terms of the matrix equation A~x = ~b. The

structure of the matrix A is highly dependent on the

particular type of application and some applications

such as computational electromagnetics give rise to a

matrix that is e�ectively dense [6] and can be solved

using direct methods [9] such as Gaussian elimination,

whereas others such as computational uid dynamics

[4] generate a matrix that is sparse, having most of

its elements identically zero. CG and other iterative

methods are preferred over simple Gaussian elimina-

tion when A is very large and sparse, and where storage

space for the full matrix would either be impractical or

too slow to access through a secondary memory system.

A large number of computationally expensive scienti�c

and engineering applications, e.g. structural analysis,

uid dynamics, aerodynamics, lattice gauge simulation,

and circuit simulation, are based on the solution of large

sparse systems of linear equations. We expand on this

list in the section on Motivating Applications below.

Iterative methods are employed in many of these appli-

cations. While the CG method itself is no longer consid-

ered state-of-the art in terms of its numerical stability

and convergence properties, its computational structure
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is similar to that of methods such as Bi-Conjugate Gra-

dient (BiCG). CG codes have been used in a number of

benchmark suites such as PARKBENCH [12] and NAS

[1].

We focus on the CG and BiCG methods and it is

our intent in this paper to show how HPF makes it sim-

pler to write portable, e�cient and maintainable

implementations of this class of iterative matrix-solvers.

Conjugate Gradient Algorithms

The classic Conjugate Gradient non-stationary iterative

algorithm as de�ned in [8] and references therein can

be applied to solve symmetric positive-de�nite matrix

equations. They are preferred over simple Gaussian al-

gorithms because of their faster convergence rate if A is

very large and sparse.

Consider the prototype problem A~x = ~b to be

solved for ~x which can be expressed in the form of iter-

ative equations for the solution ~x and residual(gradient)

~r:

~xk = ~xk�1 + �k~pk (1)

~rk = ~rk�1 � �k~qk (2)

where the new value of ~x is a function of its old

value, the scalar step size � and the search direction

vector ~pk at the k'th iteration and ~qk = A~pk.

The values of x are guaranteed to converge in,

at most, n iterations, where n is the order of the sys-

tem, unless the problem is ill-conditioned in which case

roundo� errors often prevent the algorithm from fur-

nishing a su�ciently precise solution at the nth step.

In well-conditioned problems, the number of iterations

necessary for satisfactory convergence of the conjugate

gradient method can be much less than the order of the

system. Therefore, the iterative procedure is continued

until the residual ~rk = ~bk � A~xk meets some stopping

criterion, typically of the form: k ~rk k� tol � (k A k � k
~xk k + k ~bk k), where k A k denotes some norm of A

and tol is a tolerance level. The CG algorithm uses:

� =
�
~rk � ~rk

�
=
�
~pk �A~pk

�
(3)

with the search directions chosen using:

~pk = ~rk�1 + �k�1~pk�1 (4)

with

�k�1 = (~rk�1 � ~rk�1)=(~pk�2 �A~pk�2) (5)

which ensures that the search directions form an A-

orthogonal system.

Computational Structure

The non-preconditioned CG algorithm is summarised

as:

~p = ~r = ~b; ~x = 0; ~q = A~p

� = ~r � ~r; � = �=(~p � ~q
~x = ~x+ �~p; ~r = ~r � �~q

DO k = 2, Niter

�0 = �; � = ~r � ~r; � = �=�0
~p = ~r + �~p; ~q = A � ~p
� = �=~p � ~q
~x = ~x+ �~p; ~r = ~r � �~q

IF( stop criterion )exit

ENDDO

for the initial \guessed" solution vector ~x0 = 0.

Implementation of this algorithm requires storage

for four vectors:, ~x, ~r, ~p and ~q as well as the matrix A

and working scalars � and �.

Notice that the work per iteration is modest,

amounting to a single matrix-vector product for A � ~p,
two inner products ~pk �~pk and ~rk �~rk, and several simple

�~x + ~y (SAXPY) operations, where � is scalar, and ~x

and ~y are vectors.

The number of multiplications and additions re-

quired for SAXPY operations, inner products and

matrix-vectormultiplication are O(n), O(n) andO(n2),
respectively, for vector length n.

Other CG Algorithms

The Bi-Conjugate Gradient (BiCG) method can be ap-

plied to non-symmetric matrices, for which the residual

vectors employed by CG cannot be made orthogonal

with short recurrences. More complex algorithms such

as GMRES make use of longer recurrences (which re-

quire greater storage). The BiCG [2] algorithm employs

an alternative approach of using two mutually orthog-

onal sequences of residuals. This requires three extra

vectors to be stored, and di�erent choices of � and �,

but otherwise the computational structure of the algo-

rithm is similar to CG. It can be implemented using the

same BLAS-level [8]operations as CG. BiCG does how-

ever require two matrix-vector multiply operations one

of which uses the matrix transpose AT , and therefore

any storage distribution optimisations made on the ba-

sis of row access vs. column access will be negated with

the use of BiCG.
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The Conjugate Gradient Squared (CGS) algo-

rithm avoids using AT operations but also requires ad-

ditional vectors of storage over the basic CG. CGS can

be built using the operations and data distributions we

describe here, but can have some undesirable numerical

properties such as actual divergence or irregular rates

of convergence and so is not discussed further here.

The Stabilized BiCG algorithm (BiCGSTAB) also

uses two matrix vector operations but avoids using AT

and therefore can be optimized using the data distri-

bution ideas we discuss here. It does however involve

four inner products, so will have a greater demand for

an e�cient intrinsic for this than basic CG.

Preconditioners for Conjugate Gradient

The CG algorithm will generally converge to the solu-

tion of the system A:x = b in at most ne iterations,

where ne is the number of distinct eigenvalues of the

coe�cient matrix A. Therefore, if A has many distinct

eigenvalues that vary widely in magnitude, the CG al-

gorithm may require a large number of iterations before

converging. A preconditioner S for A can be added to

any of the algorithms described here and which will in-

crease the speed of convergence of the CG algorithm.

S is chosen such that A0 = S:A:ST has fewer distinct

eigenvalues than A and is a nonsingular matrix. The

CG algorithm is then used to solve A0:x0 = b0, where

x0 = (ST )�1:x and b0 = S:b. This is described in detail

in [2].

The preconditioning may cause e�ciency trade-

o�s if the preconditioner matrix requires a di�erent data

distribution pattern to the main iterative solver. How-

ever, this overhead is compensated by a reduction in

the number of iterations required to achieve acceptable

performance and therefore in the total wall clock time

for problem completion.

There are certain problems with applying the CG

algorithm directly to the system A0:x0 = b0. Unless S

is a diagonal matrix, the sparsity pattern of A is not

preserved in A0. Moreover, the matrix multiplications

involved in computing A0 can be expensive. In prac-

tical implementations of the preconditioned conjugate

gradient (PCG) algorithm, it is formulated such that

it works with the original matrix A but maintains the

same convergence rate as that for the system A0:x0 = b0.

The PCG algorithm can be expressed as follows:

~r = ~b; ~x = 0

Solve the system S � ~z = ~r

 = ~r � ~z
~p = ~z

~q = A~p

� = ~r � ~r; � = =(~p � ~q)
~x = ~x+ �~p; ~r = ~r � �~q

DO k = 2, Niter

Solve the system S � ~z = ~r

 = ~r � ~z
0 = ; ~p = ~z +  � ~p=0
�0 = �; � = ~r � ~r
~q = A � ~p
� = =~p � ~q
~x = ~x+ �~p; ~r = ~r � �~q

IF( stop criterion )exit

ENDDO

The preconditioner S must be carefully chosen to

keep the overhead of solving M � ~z = ~r in each iteration

inexpensive compared to solving the original system of

equations. We describe below two parallelizable pre-

conditioning methods which do not involve a signi�cant

computation and communication overhead.

Diagonal preconditioning: The preconditioner

matrix S is a diagonal matrix with nonzero elements

only on the principal diagonal. This S can be easily

derived from the principal diagonal of A. If we ALIGN

M (i; i) with A(i; i) in the processors' memories and if

the elements with identical indices reside on the same

processor then solving the system S �~z = ~r is equivalent

to dividing each element of r by the corresponding diag-

onal element of S, and this operation does not require

any communication. The iteration can be performed in

O(n=P ) time on a P processor system.

Incomplete Cholesky(IC) preconditioning: S is

based on an IC factorization of A that factorizes it as

the product of two triangular matrices (i.e. L�LT ). The

locations of the nonzero elements in LT and locations

of nonzero elements in L correspond with the nonzero

elements in the upper and lower triangular portion of A,

respectively. S = L � LT is used as the preconditioner,

and the matrix vector system in the algorithm is solved

in two steps:

1. L � ~u = ~r

2. LT � ~z = ~u

Solution of these triangular systems of equations

take O(
p
n) time regardless of the number of processors

used. The other operations in an iteration of the IC

preconditioned CG algorithm take the same amount of

time as in the diagonal preconditioned CG algorithm.

A Fortran 90 Implementation

The non-preconditioned CG algorithm for a dense sys-

tem can be expressed using Fortran 90 intrinsic func-
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tions as shown in �gure 1, where, for illustrative pur-

poses, we have provided the full array-section notation

for each vector or matrix reference even though these

are not necessary when the entities have been declared

of exactly dimension n.

REAL, dimension(1:n) :: x, b, p, q, r

REAL :: alpha, rho, rho0

REAL, dimension(1:n,1:n) :: A

x(1:n) = 0.0 ! An initial guess

r(1:n) = b(1:n) - MATMUL( A(1:n,1:n), x(1:n) )

p(1:n) = r(1:n)

rho = DOT_PRODUCT( r(1:n), r(1:n) )

q(1:n) = MATMUL( A(1:n,1:n), p(1:n) )

alpha = rho / DOT_PRODUCT( p(1:n) * q(1:n) )

x(1:n) = x(1:n) + alpha * p(1:n) !saxpy

r(1:n) = r(1:n) - alpha * q(1:n) !saxpy

DO k = 2, Niter

rho0 = rho

rho = DOT_PRODUCT( r(1:n), r(1:n) )

p(1:n) = r(1:n) + ( rho/rho0 ) * p(1:n)

q(1:n) = MATMUL( A(1:n,1:n), p(1:n) )

alpha = rho / DOT_PRODUCT( p(1:n) * q(1:n) )

x(1:n) = x(1:n) + alpha * p(1:n) !saxpy

r(1:n) = r(1:n) - alpha * q(1:n) !saxpy

IF ( stop_criterion ) EXIT

END DO

Figure 1: CG Fortran 90 version of dense storage CG.

Note, this is highly arti�cial, since CG �nds its

main use for sparse systems, which would not be stored

using full matrices and vectors as indicated. We simply

use this code to express the full algorithm, and note that

the Fortran 90 intrinsic DOT PRODUCT and array-section

notation allows compact expression of SAXPY and SDOT

[8] operations. An e�cient compilation system would

insert system-optimised run-time library routines for

these statements.

Sparse Matrix Representations

It is e�cient in storage to represent an n�n dense ma-

trix as an n � n Fortran array. However, if the matrix

is sparse, a majority of the matrix elements are zero

and they need not be stored explicitly. Furthermore,

for some very large application problems it would be

simply impractical to store the matrix as a dense ar-

ray either because of the prohibitive cost of enough pri-

mary memory, or because of the slow access speed of

a secondary storage medium. It is therefore customary

to store only the nonzero entries and to keep track of

their locations in the matrix. Special storage schemes

not only save storage but also yield computational sav-

ings. Since the locations of the nonzero elements in
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the matrix are known explicitly, unnecessary multipli-

cations and additions with zero are avoided. A num-

ber of sparse storage schemes are described in [2], some

of which can exploit additional information about the

sparsity structure of the matrix. We only consider here

the compressed row and compressed column schemes

which can store any sparse matrix.

1 6

Compressed  vector  
representation of A

Sparse Matrix  A

row: row:

1 2 6

col :

colcol col

a a a

a a a a

a a

a a

0 0 0

0 0
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a

11 12 15

21 22 24 26

31 33

42 44

55

66
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0000

0

0 0 0 0

Figure 4: Compressed Sparse Column(CSC) represen-

tation of sparse matrix A.

The Compressed Sparse Column (CSC) storage

scheme, shown in �gure 4, uses the following three ar-

rays to store an n � n sparse matrix with nz non-zero

entries:

� A(nz) containing the nonzero elements stored in

the order of their columns from 1 to n.

� row(nz) that stores the row numbers of each

nonzero element.

� col(n+1) whose jth entry points to the �rst entry

of the j'th column in A and row.

A related scheme is the compressed sparse row (CSR)

format, in which the roles of rows and columns are re-

versed.

The serial Fortran 77 code fragment in �gure

5 illustrates how BLAS level library routines such as

SAXPY and SDOT can be employed for a sparsely

stored system.

Each iteration of the CG algorithm in �gure 5

performs three main computations: the vector-vector

operations, inner product (here shown using BLAS rou-

tines) and the matrix-vector multiplication, shown ex-

plicitly in �gure 6.

In any parallel implementation that distributes

the vectors and matrix A across processors' memories,

INTEGER row(nz), col(n+1)

REAL A(nz), x(n), b(n), r(n), p(n), q(n)

REAL SDOT

DO i = 1, n

x(i) = 0.0

r(i) = b(i)

p(i) = b(i)

END DO

rho = SDOT(n, r, r)

CALL SAYPX(p, r, beta, n)

CALL MATVEC(n, A, row, col, p, q, nz)

alpha = rho / SDOT(n, p, q)

CALL SAXPY(x, p, alpha, n)

CALL SAXPY(r, q, -alpha, n)

DO n = 2, Niter

rho0 = rho

rho = SDOT(n, r, r)

BETA = RHO / RHO0

CALL SAYPX(p, r, beta, n)

CALL MATVEC(n, A, row, col, p, q, nz)

ALPHA = RHO / SDOT(n, p, q)

CALL SAXPY(x, p, alpha, n)

CALL SAXPY(r, q, -alpha, n)

IF( stop_criterion ) GOTO 300

END DO

300 CONTINUE

Figure 5: Fortran 77 version of sparse storage CG (CSC

format).

the inner-products and sparse matrix vector multipli-

cation require data communication. However, the data

distributions can be arranged so that all of the other

operations will be performed only on local data.

If all vectors are distributed identically among the

processors, vector-vector operations such as SAXPY re-

quire no data communication in a parallel implementa-

tion since the vector elements with the same indices are

involved in a given arithmetic operation and thus are

locally available on each processor. Using P processors,

each of these steps is performed in time O(n=P ) on any
architecture.

A parallel implementation of the inner product

Q = 0.0

DO j = 1, n

pj = p(j)

DO 10 k = col(j) , col(j+1) - 1

q( row(k) ) = q( row(k) ) + A(k) * pj

END DO

END DO

Figure 6: Sparse matrix-vector multiply in Fortran 77

(CSC format).
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(SDOT) with P processors, takesO(n=P )+ts�logP time

on the hypercube architecture, where ts is the start-

up time. If the reduction intrinsic functions are well

supported by hardware reduction operations then the

communication time for the inner-product calculations

does not dominate.

The computation and communication cost of the

matrix-vector multiplication step depends critically on

the structure of the sparse matrix A. This is discussed

below.

Motivating Applications

Many scienti�c, engineering and other application ar-

eas generate matrices with a variety of structures but

share a common feature in that the majority of entries

are identically zero. Some of these matrices possess a

regularity which is often exploited in alternative itera-

tive schemes avoiding the need for the assembly, stor-

age and solution of the matrix. A compressed storage

scheme can prove more e�cient by saving both memory

and reducing needless computation. The exact storage

scheme used is often tailored to key features of the ma-

trix and several of these are described elsewhere in this

paper. All reduced storage schemes share one common

feature, the use of pointers and lists to identify the ma-

trix row, column and value. This implies that matrix

operations involve indirect addressing as shown in both

the code fragments shown in �gures 5 and 6.

i. ii. iii.

iv. v. vi.

Figure 7: Typical sparse matrices from various applica-

tions.

Sparse matrices can vary considerably, ranging

from completely unstructured sparsity , �gure 7 i) to

a highly banded and regular structure, �gure 7 ii).

Such regular banded matrices typically arise from dis-

crete equation sets based upon regular grids and can be

found in laminar uid ow, structural mechanics and

other engineering and scienti�c applications. Some ap-

plications can generate matrices where the majority of

entries are close to the diagonal but there also being

signi�cant entries outside of this area. For example the

iterative solution of nonlinear equation sets can produce

such matrices, as shown in �gure 7 iii). Note that the

values of these terms many change considerably during

the computation. For irregular or re�ned grids each grid

point may be connected to a di�erent number of neigh-

bours and a general sparse matrix is often generated, as

shown in �gure 7 i). Although each node is connected

to its neighbours in physical space these need not be

adjacent within the matrix.

Disciplines other than those traditionally associ-

ated with the solution of large matrices have started

to address problems through numerical computation.

The problems of power distribution and computer net-

working generate matrices with a bordered structure,

as shown in �gure 7 iv) where dense regions repre-

sent centralised or localised distribution or connectivity

features. Chemical engineering and �nancial modeling

generate matrices with some apparent structure show-

ing the close coupling of key processes, (�gure 7 v).

Recently, considerable interest has been displayed

in the literature for solving more complex sets of

equations with correspondingly complex matrix struc-

tures. Codes solving coupled equation sets can generate

blocked diagonal structures such as those in �gure 7 vi).

These matrices can be derived from high order coupled

equation sets for a single process or from many dis-

tinct models interacting as in a multiblock code. Here

each variable can produce a dense matrix stating its

own relationship with the o� diagonal terms represent-

ing dependencies on other variables. In conventional

approaches terms outside the shaded areas would have

been linearised to the right hand side of the equation

before the solution procedure begins.

Note that the form and structure of the matrix

is often determined by the storage of the parent data.

Sometimes the structure of the matrix can be exploited

to simplify the storage scheme selected and to improve

the stability and reduce the e�ort required for solution.

Exploiting Sparsity

It is not a trivial matter to exploit the sparsity of the

matrices that arise in many applications. There are

a number of tradeo�s that must be considered, includ-

ing simplicity of storage scheme versus memory require-

ments as well as the problems of data reorganisation for

various stages of the calculation compared with the high

memory costs of a dense storage scheme. These include:

schemes such as the general compressed row and com-
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pressed column schemes that do not rely on any inherent

matrix structure; the Yale scheme [10] which is suitable

for very sparse matrices; and others which exploit some

symmetry or structure in the non zero elements [2]. We

focus on the general compressed row or column schemes

here.

Figures 2 and 3 show how matrix row and

columns can be decomposed across processors' mem-

ories. The data decomposition for the entire program

will be a compromise between the demands placed by

each section or dictated by a single dominant section.

The use of the TRANSPOSE or the REDISTRIBUTE and

REALIGN directives may be too expensive (in terms of

communications time) to consider their repeated use at

each iteration of the solver algorithm. Figures 2 and

3 show a matrix distributed according to the BLOCK di-

rective. Note that this simply assigns the memory al-

located to the matrix and vector in a regular manner.

However the matrix may not possess an equal number

of terms in each row (or column) and such a decompo-

sition may result in severe load imbalance. The repli-

cation and broadcast of the entire vector is not in fact

necessary, since only those entries actually referenced

need be transferred between processors. This will re-

duce the communication volume leading to improved

parallel performance. However since the matrices are

sparse, references to o� processor data may be subop-

timal, with many small message exchanged. The cost

and complexity of attempting an optimised domain de-

composition of the problem is acknowledged in many

cases be a non-trivial task. If the structure of the ma-

trix is known in advance or clearly de�ned some degree

of restructuring can improve matters but in general the

owner-computes model of HPF does not allow adequate

freedom for such problems to be expressed e�ciently

without considerable e�ort. This is further compounded

if the structure of the matrix depends greatly on the in-

put datasets and it is not possible to optimise a the

code at compile time. Alternatives have been proposed

[7] [5] and these are still being debated by the HPF

Forum [13].

Sparse Matrix-vector Multiply

In this section we consider the multiplication of an n�n

arbitrarily sparse matrix A with an n� 1 vector p. As

in the dense matrix vector multiplication, each row of

matrix A must be multiplied with the vector x. The

computation and data communication costs varies de-

pending on the distribution of the matrix A and vectors

p and q. We, here, will describe two di�erent data distri-

bution scenarios and show the associated costs of each

scenario.

For the simplicity of the discussion, assume that

the average number of nonzero elements per row in A

is mz, and the total number of nonzero elements in the

entire matrix is nz = mz � n.

It may be desirable to control the number of non

zero elements stored on each processor if there is some

identi�able structure to the sparse matrix that would

otherwise lead to a severe load imbalance. Generally

this would require a data mapping that forces proces-

sors to perform the same number of scalar multiplica-

tions and additions while multiplying the matrix with

a vector. This however requires that A(i; i) and x(i)

no longer necessarily be assigned to the same proces-

sor which requires communication before the required

multiplication.

Row-wise partitioning

In this scenario, the sparse matrixA is partitioned row-

wise among the processors in an even manner. The

vectors p and q are aligned with the rows of the matrix

A in all the processors. This distribution is shown in

�gure 8 and can be expressed in HPF as follows:

!HPF$ DISTRIBUTE A(BLOCK, *)

!HPF$ DISTRIBUTE p(BLOCK)

!HPF$ DISTRIBUTE q(BLOCK)

Since the nonzero elements are at random positions in

A, a row can have a nonzero entry at any column. This

requires the entire vector p to be accessible to each row

so that any of its nonzero entries can be multiplied with

the corresponding element of the vector. As the vector

p is partitioned among the processors, this obligates an

all-to-all broadcast of the local vector elements. This

all-to-all broadcast of messages containing n=P vector

elements among P processors, takes tstart�up � logP +

tcomm � n=P time if a tree-like broadcasting mechanism

is used. Here tstart�up is the start-up time, and tcomm

is the transfer time per byte.

Column-wise partitioning

The matrixAmay be partitioned in a column-wise fash-

ion amongst the processors such that each processor

gets n=P columns. Vectors are partitioned amongst the

processors uniformly. This corresponds to the following

distribution directives in HPF:

!HPF$ DISTRIBUTE A(*, BLOCK)

!HPF$ DISTRIBUTE p(BLOCK)

!HPF$ DISTRIBUTE q(BLOCK)
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where only the distribution of the matrix itself is

di�erent from that for row-wise partitioning.

As illustrated in �gure 9, the vector p is already

aligned with the rows of A, and hence performing the

multiplication will not require any interprocessor com-

munication. However, since each processor will have a

partial product vector q at the end of the operation,

these partial vectors should be merged into one �nal

vector. A global summation operation has to be per-

formed with messages of size n=P where each processor

sends its own portion of the partial vector to the owner

of that portion according to the distribution directives

given. This scenario is easily generalized to the CSC

format that we will use later.

1

2

3

Procs

0 

Vector  qVector  q

Procs

Matrix  A Vector  qVector  q

Procs

Matrix  A Vector  qVector  p

11

Vector  q

0 

2

1

Procs

Vector  p

0 1 2 3

3

Figure 8: Communication requirements of Matrix vector

multiplication where A is distributed in a (BLOCK, *)

fashion.

Vector  qVector  p Vector  q
(Merge of private copies)

0 1 2 3Procs

Matrix  A 

0 

1

2

3

Procs
Procs

0 1 2 3

(merge) (merge) (merge)

Figure 9: Communication requirements of Matrix vector

multiplication where A is distributed in a (*, BLOCK)

fashion.

Computation Costs

In the computation phase, each processor performs an

average of n � n=P multiplications and additions if a

dense storage format is used ormz�n=P multiplications

and additions if a sparse storage format is used.

After the computation phase, each processor has

the corresponding block of n=P elements of the result-

ing vector which is assigned to that processor originally.

Hence,no communication is needed to rearrange the dis-

tribution of the results.

The communication time for column-wise parti-

tioning is the same as the communication time for the

global broadcast used in row-wise partitioning. It is not

possible to reduce the communication time whether the

matrix be partitioned into regular stripes either in a

row-wise or column-wise fashion.

It is important to note that this analysis assumes

that the average number of non zero elements mz is

representative of all rows or columns. In practice, this

is often not the case and individual rows or columns may

have signi�cant variations causing a load imbalance.

HPF Implementation

The data-parallel programming model, upon which

HPF is based, requires some well-de�ned mapping of

the data onto processors' memory to achieve a good

computational load balance and thus an e�cient use of

the parallel architecture. This is not trivial for sparse

storage schemes.

If the matrix A is stored in CSC format then

the following serial code fragment arises for the matrix-

vector multiply (A � ~p = ~q):

q = 0.0

DO j = 1, n

pj = p(j)

DO k = col(j), col(j+1)-1

q(row(k)) = q(row(k)) + a(k)*pj

ENDDO

ENDDO

In this case the use of indirect addressing on the

write operation within the row summation of ~q causes

the compiler to generate serial or sequential code. How-

ever a directive could be used if it was known that there

were no duplicate entries in any one segment of the

loop. Such strategies have often been used successfully

on vector machines although This considerable care on

8



the part of the programmer and signi�cant reordering

of the datasets are required.

If however A is stored in CSR Format then the

following HPF code fragment can be applied:

q = 0.0

FORALL( j = 1:n )

DO k = row(j), row(j+1)-1

q(j) = q(j) + a(k) * p( col(k) )

ENDDO

ENDFORALL

where the FORALL expresses parallelism across the j-

loop. This works because A(i; j) = A(j; i) for the case

of CG where A must be symmetric. This works in

row order, �nishing up with one element of q at each

iteration and iterations are independent of each other.

The HPF code for the CG algorithm for CSR for-

mat can be expressed as in �gure 10.

REAL, dimension(1:nz) :: A

INTEGER, dimension(1:nz) :: col

INTEGER, dimension(1:n+1) :: row

REAL, dimension(1:n) :: x, r, p, q

!HPF$ PROCESSORS :: PROCS(NP)

!HPF$ DISTRIBUTE (BLOCK) :: q, p, r, x

!HPF$ DISTRIBUTE A(BLOCK)

!HPF$ DISTRIBUTE col(BLOCK)

!HPF$ DISTRIBUTE row(CYCLIC((n+1)/np)

(usual initialisation of variables)

DO k=1,Niter

rho0 = rho

rho = DOT_PRODUCT(r, r) ! sdot

beta = rho / rho0

p = beta * p + r ! saypx

q = 0.0 ! sparse mat-vect multiply

FORALL( j=1:n )

DO i = row(j), row(j+1)-1

q(j) = q(j) + A(i) * p(col(i))

END DO

END FORALL

alpha = rho / DOT_PRODUCT(p, q)

x = x + alpha * p ! saxpy

r = r - alpha * q ! saxpy

IF ( stop_criterion ) EXIT

END DO

Figure 10: HPF version of sparse storage CG (CSR

format).

Roundo� and Reduction Operations

While the above analysis has considered the computa-

tional costs there are also some numerical issues to be

addressed. Rounding error can cause signi�cant prob-

lems if there are large di�erences in the sign and mag-

nitude of the individual contributions to the dot prod-

uct. In particular many scienti�c computations gener-

ate nearly equal and opposite terms which, depending

on the exact order of addition, can cause smaller, but

important, terms to be obscured.

If we consider the impact of rounding error on

the two algorithms then in row-wise partitioning the

computation on P processors is performed in exactly

the same order as on a single processor. However the in

the column partitioning scheme only part of each result

vector is computed on each processor.

If this were to be assembled as a partial sum and

these totaled during the merging of private copies nu-

merical di�erences could occur in equation 3. The sum

of partial sums
PX

j=1

N=PX

iP=1

6=
NX

i=1

(6)

is not necessarily equal to the full sum, in �nite arith-

metic.

This could be at least made into a deterministic

(repeatable) de�ciency by exchanging the entire partial

vector and performing the summation on these sets in

a rigid predetermined order. Since this only alters the

volume of data to be communicated it will only inuence

parallel performance if the data volume is considerable.

In the case of a dense matrix it is equivalent to per-

forming a transpose of the matrix from column to row

storage. For sparse matrices, the storage scheme can be

used to reduce the total data exchange to the number

of non-zero terms within the matrix. It is problematic

in using a high level construct such as the INTRINSIC

function DOT PRODUCT and other numeric reduction op-

erations, that the user has no strict way of controlling

the order in which operations are carried out.

We note that is therefore unrealistic to expect ar-

bitrary precision reproduction on an arbitrary processor

con�guration, without some sacri�ced performance. In

practice, it is hoped that the problem data will be rel-

atively insensitive to such considerations.

Conclusions

We have discussed conjugate gradient algorithms, and

have shown that the key issue for an e�cient implemen-
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tation is a matrix-vector multiply routine. This in turn

must be able to exploit the sparse data storage scheme

employed by the rest of the application code.

The advantages of HPF include the potential for

faster computation on parallel and distributed comput-

ers, and additional code portability and ease of main-

tainance by comparison with message-passing imple-

mentations. Disadvantages (in common with any par-

allel implementation over serial implementations) are

additional temporary data-storage requirements of par-

allel algorithms.

Current HPF distribution directives only allow ar-

rays to be distributed according to regular structures

such as BLOCK and CYCLIC. Whilst this is adequate

for dense or regularly structured problems it does not

provide the necessary exibility for the e�cient storage

and manipulation of arbitrarily sparse matrices.

Although we have described the limitations of the

current HPF-1 de�nition and the basic requirements

for the further development of HPF-2, we have not at-

tempted to discuss how these should be incorporated

within the compiler itself through directives, intrinsic

functions or some other mechanism. Instead we have

indicated in general terms that the provision of some

additional exibility to cope with irregular problems

such as those described within this paper is essential

if HPF is to be widely adopted in place of existing mes-

sage passing technologies.

We also repeat the general observation [11] that

implementations of numerically intensive applications

on parallel architectures often encounter a tradeo� be-

tween the most rapidly converging (in terms of numer-

ical analysis) algorithm which do not parallelize well),

and less numerically advanced algorithms which, be-

cause they can be parallelized may produce the desired

result in a faster absolute time.
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