
Dynamic Load Balancing for Raytraced Volume Rendering on

Distributed Memory Machines�

Sanjay Goil and Sanjay Ranka

School of CIS ond NPAC

Syracuse University, Syracuse, NY, 13244-4100

sgoil,ranka@top.cis.syr.edu

Abstract

We present a technique for adaptive load balanc-

ing for ray traced volume rendering on distributed

memory machines using hierarchical representation

of volume data. Our approach partitions the image

onto processors while preserving scanline coherence.

Volume data is assumed replicated on each processor

since our focus in this paper is to characterize compu-

tation and communication requirements for perform-

ing dynamic load balancing. We show that commu-

nication overheads are negligible to perform dynamic

load balancing while rendering a sequence of frames

on a distributed memory implementation. By exploit-

ing image and frame coherence while distributing the

image space, load balancing can be achieved at a rel-

atively low cost.

1 Introduction

Ray traced volume rendering methods are very

computationally intensive which make them slow for

interactive rendering. The goal of achieving interac-

tive volume rendering rates has led to several opti-

mizations in use of data structures for reducing com-

putation which include hierarchical spatial enumera-

tion of volume data, early ray termination and adap-

tive ray �ring techniques. To further improve on these

optimizations parallel algorithms have been used to

accelerate the process. Most such implementations

distribute image and object data statically over pro-

cessors on a one time basis. Each processor generates

an image from the data assigned to it and in a �-

nal phase combines the partial image into the �nal

�This work was supported in part by NASA under subcon-

tract #1057L0013-94 issued by the LANL, NSF under ASC-

9213821 and AFMC and ARPA under contract #F19628-94-

C-0057. The content of the information does not necessarily

re
ect the position or the policy of the Government and no

o�cial endorsement should be inferred.

result. To achieve an e�cient implementation an eq-

uitable distribution of work load over processors is

necessary. This is not always possible to achieve, es-

pecially for dynamically changing structure of compu-

tation. Rays traverse through volume data composit-

ing voxel data into color and opacity of that pixel.

These applications are usually e�ciently represented

and manipulated by using sparse data structures such

as graphs, trees, and lists in sequential algorithms to

reduce problem size as well as gain asymptotic perfor-

mance. The communication networks and software

available on coarse-grained machines make local ac-

cesses at least an order of magnitude faster then non-

local accesses. This is further accentuated by high la-

tency costs of communication software on distributed-

memory machines. E�ective parallelization of these

applications on coarse-grained MIMD machines re-

quires careful attention for the following two reasons:

Firstly, the amount of work done by the parallel al-

gorithm should be within a small constant factor of

the amount of work done by the sequential algorithm.

Secondly, for many applications, the data structures

used have inherent locality of access and/or change

incrementally. Exploitation of this information is nec-

essary for e�cient use of the various levels of mem-

ory hierarchy present in these architectures (register,

caches, local accesses, nonlocal accesses, etc.). This

requires fast methods for partitioning, repartitioning,

replication, and migration of data. In this paper we

show that dynamic load balancing can be done at a

relatively low cost but owing to image and object co-

herence partitioning the image space once works well

in practical situations. Volume rendering and related

work is discussed in Section 2. We discuss aspects of

data coherence that are needed for data partitioning

in Section 3. The algorithm used for dynamic image

space partitioning is presented in Section 4. Section

5 presents the performance results.

1



2 Volume Rendering

Volume rendering is a technique for visualizing

sampled scalar or vector �elds of three spatial dimen-

sions without �tting geometric primitives to the data.

Since all voxels (volume elements) participate in the

generation of each image, rendering time grows lin-

early with the size of the data set. The principal

advantages of these techniques over others are their

superior image quality and the ability to generate

images without explicitly de�ning surface geometry.

Figure 1 gives an overview of the volume rendering

algorithm.

Sample colors Sample opacities

Pixel colors C(u)

Ray tracing/resampling

Compositing

Voxel values f(i)

Voxel colors C(i)

Classification

Voxel opacities

Ray tracing/resampling

α(ι)

α(C(U) U)

Shading

Figure 1: Overview of volume-rendering algorithm

Many datasets contain coherent regions of empty

voxels. A voxel is de�ned as empty if its opacity

is zero. Methods for encoding coherence in volume

data include octree hierarchical spatial enumeration,

polygonal representation of bounding surfaces and

octree representation of bounding surfaces. For a

dataset measuring N voxels on a side where N =

2M + 1 for some integer M , the hierarchical spa-

tial enumeration can be represented by a pyramid of

M+1 binary volumes. Adaptive termination is imple-

mented by stopping each ray when its opacity reaches

a user-selected threshold level. We use the shear-

warped algorithm described by Lacroute [4]. The al-

gorithm given as

1. Transform the volume data to sheared object

space by translating and resampling each slice

according to S.

2. Composite the resampled slices together in front

to back order.

3. Transform the intermediate image to image space

by warping it according to Mwarp.

It is formalized and written as the factorization of

the view transformation matrix Mview as follows:

Mview = P � S �Mwarp

where P is the permutation matrix which transposes

the coordinate system in order to make the z�axis the

principal viewing axis. S transforms the volume into

sheared object space and Mwarp transforms sheared

object coordinates into image coordinates.

Table 1 summarizes the various approaches that

have been reported in the literature for volume ren-

dering on parallel machines.

3 Data Partitioning

Parallelization strategies for volume rendering have

two goals. Each processor needs to be assigned equal

load and any mapping of data to processors needs to

maintain locality. The former helps to reduce pro-

cessor idle time and the latter helps in keeping over-

heads of communication low. These are referred to

as load balancing and maintaining data locality, two

often con
icting goals. We discuss each of these to

motivate the approach we have taken to analyze re-

quirements for each of the two goals. Strategies used

for data partitioning are classi�ed as follows.

1. Image Space Partitioning: The pixels of an

image are distributed across processors. Each

processor traces rays for the pixels assigned to

it. The volume data is replicated on each proces-

sor. Portions of the image from each processor

are then combined to yield the �nal images. This

method achieves near linear speedup but is not

feasible if the object data set is larger than the

available memory on each node.

2. Object Space Partitioning: The volume data

is partitioned and distributed among processors.

Each processor traces each ray in the local par-

tition only. Each non-resolved ray is transmitted

to the next processor for further tracing. Once

each ray has �nished the �nal composited values

are collected to form the �nal image.

3. Object Data
ow: A partition of the image is

assigned to each processor, which locally traces

and resolves each assigned ray. Volume data is

partitioned among nodes too. Non-resolved rays

will be sent to appropriate processors for tracing

and the \owner" of the ray will get the �nished

result back.

4. Image/Object Partitioning: The volume

data is partitioned among processors. The image

data is also partitioned among processors. Each

processor is responsible to trace rays from pixels

assigned to it. Pixels may be traced in the local



Approach Target Architecture Description

Montani et al. (1992)[6] nCUBE Hybrid image partitioning - ray data
ow approach. Processing nodes
organized as a set of clusters. Image space is partitioned,
Volume data is replicated on each cluster. Static load balancing is used
for distributing data.

Nieh (1992) [7] Stanford DASH Data interleaved among processor memories. Image partitioned into
contiguous blocks for assignment to processors. Task Stealing is used for
dynamic load balancing.

Schr�oder & Stoll (1992) [8] CM-2 Data parallel SIMD implementation, rays proceed in lock step
Vezina et al. (1992) MP-1 Also SIMD with volume transposition to localize data access
Ma, Painter et al. (1993) [3] CM-5 static input data partitioning into subvolumes using a k-D tree

Processing nodes perform local raytracing of their subvolume concurrently.
Karia (1994)[2] Fujitsu AP1000 Data is decomposed into subvolumes and rendered locally on each processor

Scattered decomposition is used for load balancing.

Table 1: Di�erent approaches on parallel volume rendering

volume data that is in the processors memory or

it might fetch data that it needs from other pro-

cessors.

In this paper we have taken the image partitioning

approach to highlight the requirements for dynamic

load balancing. The only form of dynamic load bal-

ancing reported in the literature is performed by task

stealing on a shared memory machine. We report

results for a dynamic load balancing scheme on the

CM-5, a distributed memory machine. Communica-

tion costs are typically higher than computation costs

on most real machines. To keep communication costs

down, various forms of data locality need to be ex-

ploited. There are three kinds of coherence in images

1. Image Coherence: Image coherence is the

property that adjacent pixels of an image are il-

luminated in a similar way. Portions of the im-

age are similar in nearby areas, and this fact can

be exploited when allocating pixels to processors.

Nearby pixels go to same processors. This coher-

ence exists in two dimensions. Exploiting this

property for load balancing is not as straight for-

ward. In an irregular image, where some portions

are bright and some are dark, the work done in

compositing a ray can vary a lot.
2. Object Coherence: Adjacent rays will traverse

similar portions of the object. In hierarchical vol-

ume representations, ray intersections with the

octree can be optimized for adjacent rays. This

helps in reducing communication costs for essen-

tial volume data on processors for ray tracing by

allowing reuse of o�processor data. The data can

be incrementally modi�ed as the previous data

can usually be reused.
3. Frame Coherence: Data accesses in consecu-

tive frames in a multiframe sequence are quite

similar. Figure 2 shows frame coherence for the

brain dataset. This fact is used in the dynamic

load balancing strategy that we propose in this

paper.

Data partitioning for the image space needs to provide

image coherence. By proceeding scanline by scanline

within a slice, scanline coherence is exploited. To pre-

serve this, image partitioning is done by dividing the

scanlines to processors, keeping the load balanced. A

record of the load on each processor is kept which is

used to partition scanlines in the next frame. The

�rst frame is load-balanced by looking at the load of

scanlines of each slice on the processor. This strategy

works well with a replicated object. For distributed

volume, data partitioning the image and the volume

are complimentary. Allocation of rays to processors

needs to be guided by the volume data that is assigned

to a processor. Two dimensional locality needs to be

exploited for maximum reuse of data on processors to

keep the communication costs low.

4 Dynamic Image Partitioning

Complex images can be non-uniform and hence can

require varying amounts of compositing work in dif-

ferent regions of the image. Parallel implementations

have to deal with this and try to distribute portions

of the image to processors so as to allocate nearly

equal work to each processor. Moreover, for a num-

ber of frames in an animation sequence, a change in

the viewing angle might lead to changing workloads.

What was a equitable distribution might no longer be

so.

Scanlines are allocated to processors for tracing

through volume data. We assume that volume data

and its min-max octree is replicated in local memories

of each of the processors. A measure of work done by

each scanline is taken. This is calculated by factoring



Figure 2: Frame 1 and Frame 2 (At 5o rotation from FRAME 1): Each pixel shows the computation work of

a scanline. Scanlines for a slice progress from left to right on the horizontal axis. Slices of a frame are top to

bottom on the vertical axis.

in the complexity of the tree traversal performed for

each portion of the scanline to estimate the data for

the compositing process. Work assignment is done in

terms of number of scanlines allocated to each proces-

sor. Dynamic load balancing is performed at intervals

when the idle time of any processor crosses a certain

threshold value. Figure 3 describes our algorithm.

5 Results

We perform our experiments on two datasets

\brainsmall", a 128 X 128 X 83 voxel set from the

MRI scan of a human head and \headsmall", a 128

X 128 X 113 voxel data set of the CT scan of a hu-

man head. Due to limited memory on each processor

of our CM-5 we are not able to run bigger data sets.

Although, these results carry more meaning on larger

volumes, the idea here is to present the concepts for

providing a framework for dynamic load balancing.

The target architecture in this paper is the Connec-

tion machine (CM-5), a distributed memorymultipro-

cessor.

Load Balancing within a frame Table 4 and Ta-

ble 5 compare the rendering performance between the

three strategies we have compared in this paper. In

the case of a static image partitioning the scanlines

are allocated at the start of the rendering process.

Since there is no estimate of work available yet, equal

number of scanlines are allocated to each processor in

scanline order. To perform load balancing on a frame

when no previous workload information is available,

as in this case, a technique for balancing load across

slices of the frame can be used. Table 2 shows the

cost of repartitioning scanlines within a frame. This

requires not only a recalculation of scanline allocation

to processors but also the movement of partial opac-

ities calculated thusfar between processors. A scan-

line may move from one processor to another within a

frame and the color, opacity and other parameters of

each pixel in the scanline must be moved along with it.

If the amount of scanline movement is large the over-

head of such a repartitioning will not bene�t us. Each

pixel is represented by 12 bytes of data, which makes

it 12� Imagewidth bytes for a scanline (12� 128) in

our case. Further, due to object coherence, scanline

reallocation occurs only at processor boundaries for

nearby slices. Repartitioning, hence need not be per-

formed for every slice as the load on processors does

not create imbalance as to warrant reallocation.

A sender-directed communication protocol is used

in which each processor can �gure out the scanlines

it needs to send to a destination processor. Simi-

larly, at the receiving end, the processor is able to

calculate the amount of data and the image o�set it

needs to receive data at. Owing to slice coherence a

repartitioning scheme every 20 slices for the sample

data sets performs well for load balancing. Since the

sample data sets in this paper are small the cost of

repartitioning during a frame are high to o�set any

gain in load balance. Hence we use a static allocation

scheme for the �rst frame to report our results on dy-

namic load balancing at each frame. This performs

considerably better than the pure static partitioning

scheme since it relies on processor load information

acquired during the rendering of the �rst frame. This

might not work though if data access patterns di�er

substantially from one frame to another. The load es-

timate of the �rst frame might not hold true for later

frames if discrete view angles are considered.



First Frame = True
For each Frame

if(First Frame) f
For each slice in volume

Composite slice and collect load data
Global Synchronization for �nding Min and Max Load for slice
Calculate Idle time of processors
if(Idle Time > threshold1) f

Repartition scanlines among processors
Transfer Opacity and color gathered for pixels in scanlines to new processor.
Accumulate load of each scanline.

g
First Frame = False

g
Global Synchronization to gather each Min and Max for frame
Calculate Idle time of processors
if(Idle Time > threshold2)

Repartition scanlines among processors

Figure 3: Dynamic load balancing by repartitioning scanlines on processors

Image Processors

2 4 8 16 32
brainsmall 17.15 13.85 10.11 10.61 6.63

headsmall 22.10 17.87 13.31 9.25 10.61

Table 2: Average cost of intraframe partitioning: par-

titioning between slices in a frame including partial

opacity updates (Time in milliseconds)

Load Balancing between frames Once the ren-

dering work for an image is known for a frame, it can

be used to determine a distribution of scanlines for

subsequent frames. We use the previous frame's pro-

�le to estimate scanline distribution for a new frame.

Figures 2 highlights frame coherence present in im-

ages, and hence motivate us to use workload infor-

mation from one frame to another. Results for this

are also presented in Table 4 and Table 5. The cost

of repartitioning scanlines at each frame boundary

is shown in Table 3. A reduction is performed on

the workload array of each processor of the previous

frame. Since each processor contains the work done

by the scanlines allocated to it, the result of this op-

eration is to provide a global view of the work pro�le

on each processor. A pre�x scan on this array, per-

formed locally, is used to calculate a processors new

set of scanlines by allocating itself close to average

work.

Figure 4 plots the speedup we achieve using our

dynamic load balancing strategy. The graph ignores

the cost of partitioning the �rst frame since it is a

one time cost and will not be a signi�cant factor while

rendering over many frames in an animation sequence.

No. of Scanlines Processors

2 4 8 16 32

128 4.03 4.04 4.03 4.05 4.05

Table 3: Average cost of interframe partitioning: Cal-

culating new allocation of scanlines for each frame

(Time in milliseconds)

Processors Frames

1� 2 3 4 5
2 I 977 989 977 967 965

II 940 817 820 802 804
III 940 804 811 796 801

4 I 500 501 494 488 489
II 500 404 404 400 401

III 500 387 385 384 384

8 I 344 338 332 332 328
II 344 232 231 229 227
III 344 232 216 230 225

16 I 216 215 212 211 210

II 216 126 126 125 125
III 216 125 111 111 114

32 I 137 137 138 137 136

II 137 92 94 93 93
III 137 90 100 82 105

Table 4: Rendering time for 5 consecutive frames ren-

dered at 5o rotation (clockwise) of brainsmall for (I)

Static partitioning (II) Partition-once for �rst frame

(III) Dynamic load balancing at every frame (Time in

milliseconds). (�) Static partitioning is used for the

�rst frame in each case



6 Conclusions

We have presented an approach for dynamic load

balancing by exploiting image and frame coherence

in volume rendering. A replicated object has been

considered since the main objective of these exper-

iments is to show that the dynamic load balancing

on distributed memory machines is possible by incur-

ring a reasonable overhead in terms of communication

cost. Our experiments on intraframe partitioning re-

sulted in an added overhead due to movement of par-

tial opacity of pixels when a scanline is reallocated

to another processor. However with a faster com-

munication medium this cost can be brought down

to make dynamic intraframe partitioning feasible. A

static assignment for the �rst frame and dynamic load

balancing between subsequent frames works consider-

ably well as shown by our results. We are currently

pursuing a more practical and scalable approach of

extending these techniques for a distributed volume

data.

Processors Frames

1� 2 3 4 5
2 I 2730 2708 2757 2791 2810

II 2730 2155 2165 2163 2167
III 2730 2118 2158 2126 2134

4 I 1437 1468 1513 1529 1528

II 1437 1057 1099 1117 1111
III 1437 1053 1016 1070 1099

8 I 802 801 834 852 846
II 802 586 553 548 550
III 802 576 546 534 546

16 I 396 398 411 427 423
II 396 311 322 290 326
III 396 299 310 285 308

32 I 218 219 219 221 220
II 218 206 185 195 194
III 218 200 187 192 196

Table 5: Rendering time for 5 consecutive frames ren-

dered at 5o rotation (clockwise) of headsmall for (I)

Static partitioning (II) Partition-once for �rst frame

(III) Dynamic load balancing at every frame (Time in

milliseconds). (�) Static partitioning is used for the

�rst frame in each case

References

[1] Goil, S., Primitives for problems using hierarchi-

cal algorithms on distributed memory machines,

The First International Workshop in Parallel

Processing, Bangalore, India, December 1994.

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

S
p
e
e
d
u
p

Number of Processors

brainsmall

Ideal Speedup
Static allocation
Loadbalance Once

Dynamic loadbalancing

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35

S
p
e
e
d
u
p

Number of Processors

headsmall

Ideal Speedup
Static allocation
Loadbalance Once

Dynamic loadbalancing

Figure 4: Speedup achieved for the three strategies

discussed in this paper for the datasets brainsmall and

headsmall

[2] Karia, R., Load balancing of Parallel Volume

Rendering with Scattered Decomposition, Tech-

nical Report, Dept. of Computer Science, Aus-

tralian National University, Canberra, Australia.

[3] Ma, K., Painter. J. S., Hansen, C. D., Krogh,

M. F., A Distributed Parallel Algorithm for Ray

Traced Volume Rendering, Parallel Rendering

Symposium, October 1993.

[4] Lacroute, P. and Levoy, M., Fast Volume Ren-

dering Using a Shear-Warp Factorization of the

Viewing Transformation, SIGGRAPH'94, Au-

gust 1994, Florida.

[5] Levoy, M., E�cient Ray Tracing of VolumeData,

ACM Transactions on Graphics, Vol. 9, No. 3, pp

245-261, July 1990.

[6] Montani, C., Perego, R., Scopigno, R., Paral-

lel Volume Visualization on a Hypercube Archi-

tecture, Proceedings of the Boston Workshop on

Volume Visualization, Boston, October 1992.

[7] Nieh, J., Levoy, M., Volume Rendering on Scal-

able Shared-Memory MIMD Architectures Pro-

ceedings of the Boston Workshop on Volume Vi-

sualization, Boston, October 1992.

[8] Schr�oder, P. and Stoll, G., Data parallel vol-

ume rendering as line drawing, Proceedings of the

Boston Workshop on Volume Visualization, pp

25-32, Boston, October 1992.


