
A Model and Compilation Strategy

for Out-of-Core Data Parallel Programs

Rajesh Bordawekar� Alok Choudhary�

Ken Kennedyy Charles Koelbely Michael Palecznyy

Abstract

It is widely acknowledged in high-performance comput-

ing circles that parallel input/output needs substan-

tial improvement in order to make scalable computers

truly usable. We present a data storage model that al-

lows processors independent access to their own data

and a corresponding compilation strategy that inte-

grates data-parallel computation with data distribution

for out-of-core problems. Our results compare several

communication methods and I/O optimizations using

two out-of-core problems, Jacobi iteration and LU fac-

torization.

1 Introduction

There can be no argument that high-performance I/O

is essential to high-performance computing. Many users

see parallelism as the best way to achieve this perfor-

mance, thus motivating the calls for \parallel I/O." In-

formal surveys of users of high-performance computing

have determined that their needs fall into three cate-

gories:

1. Out-of-core calculations. Although parallel

computing systems typically have large aggregate

memories, some programs require huge data struc-

�NPAC and ECE Dept. SyracuseUniversity, supported in part

by NSF Young Investigator Award CCR-9357840, grants from In-

tel SSD and IBM Corp., and by USRA CESDIS Contract #5555-

26. This work was performed in part using the Intel Touchstone

Delta system operated by Caltech on behalf of the Concurrent

Supercomputing Consortium. Access to this facility was provided

by CRPC.
yCRPC and CS Dept., Rice University. This research was sup-

ported in part by the Center for Researchon Parallel Computation

(CRPC) at Rice University, under NFS Cooperative Agreement

Number CCR-9120008. This work was performed in part using

the Intel Paragon installed at Rice University.

tures that cannot �t into memory for the entire

duration of a run. These large-memory applica-

tions are typically coded so that the data structure

resides on disk (hence, it is \out of core") and at

any one time only a portion of it resides in mem-

ory. Today, out-of-core applications are fairly rare

because they are incredibly tedious to implement,

requiring that almost every loop be transformed,

typically by the programmer. For the purposes of

this paper, we will count in the out-of-core category

any application that uses disk for temporary array

storage.

2. Checkpointing. If the user wishes to be able to

stop a long run and restart it from intermediate

results or restart after a machine crash, the appli-

cation must write out its intermediate state from

time to time. In some cases this must happen quite

frequently, even within a time-critical computation

loop. If this is not done e�ciently, the impact on

running time can be very signi�cant.

3. Real-time I/O. In many applications it is impor-

tant to monitor a calculation as it is carried out. If

this monitoring involves heavy use of graphics, the

output volume could place a signi�cant load on the

running time of the computation. Even if the mon-

itoring is going to be done o�-line, the volume of

data required for playback graphics can also a�ect

running time adversely.

Table 1 shows details of I/O requirements for some

Grand Challenge applications [dRBC93]. In terms of

the above discussion, temporary working storage gen-

erally comes from an out-of-core problem, archival and

secondary storage usually come from checkpointing, and

bandwidth requirements may be related to real-time

I/O or checkpointing. Clearly, if I/O is not handled ef-

�ciently it can be an extreme bottleneck in all of these

cases.

Although all of these problems are important sources

of di�culty for high performance parallel computers, we

shall concentrate in this paper on the problem of sup-

porting out-of-core arrays. We choose this problem both

because it is important and because it is amenable to

Application I/O requirements

Environmental T: 10s of GB.

modeling S: 100s of MB - 1 GB per PE.

A: Order of 1 TB.

4-D data assimilation S: 100 MB - 1 GB/run.

A: 3 TB database. Expected to increase by

orders of magnitude with the Earth

Observing System (EOS) - 1 TB/day.

Particle algorithms in S: 1-10 GB/�le; 10-100 �les/run.

Cosmology and Astrophysics B: 20-200 MB/s

HP Computational Chemistry B: 10-30 MBytes/s during execution.

10-100 MBytes/s post-processing.

Molecular Computation B: 30 MBytes/s.

S: 1-10 GBytes during execution.

Computational Fluid and A: 1 TBytes.

Combustion Dynamics B: 0.5 GBytes/s to disk, 45 MBytes/s

to disk for visualization.

Table 1: I/O Requirements of Grand Challenge Applications, (A: Archival Storage, T: Temporary Working Storage,

S: Secondary Storage, B: I/O Bandwidth)

attack using the compiler and runtime strategies that

we have developed for Fortran D and HPF. I/O exten-

sions to Fortran D are being implemented within the D

System at Rice University, while the PASSION project

at Syracuse University targets HPF.

In this paper, we will assume an abstract machine

model in which a number of processors are intercon-

nected via a high-speed network. We consider two basic

models for I/O on such a machine:

� In the simpler model, each processor is connected

to a local disk of its own. In this scheme, a disk

access is either to a local disk or a remote disk on

a remote node. In the latter case, the access must

be handled by exchanging messages with the node

owning the remote disk.

� In the more complex model, there are two kinds

of nodes|compute nodes and I/O nodes. In this

scheme, every disk access by a compute node re-

quires a message exchange with the I/O node own-

ing the disk being accessed.

As mentioned above, our approach to managing out-

of-core arrays is based on compilers and runtime sys-

tems we have developed for Fortran D and High Perfor-

mance Fortran. In these languages, the major program

arrays are distributed across the memories of a paral-

lel computer system according to distribution speci�ca-

tions that are part of the language. For the purposes of

supporting out-of-core arrays, we will extend this nota-

tion by the addition of speci�cations for disk distribu-

tions as well as memory distributions. Thus, each array

that may reside out-of-core will have a layout that com-

bines two distributions, one for memory and the other

for disk. The compiler and runtime system will be re-

sponsible for organizing and carrying out the transfer of

information between disk and memory, handling all the

details of strip mining and bu�ering.

The plan for this paper is to describe compilation

strategies for compiling out-of-core data parallel pro-

grams. In Section 2, we describe the programming

model that a typical user would see. Section 3 describes

the execution model for the program, while Section 4 de-

scribes the design of a compiler targeting these models.

Section 5 addresses the run-time libraries which imple-

ment the abstract execution model on physical hard-

ware. Preliminary experimental results are discussed

in Section 6. We review related work in Section 7 then

present our conclusions and ideas for future work in Sec-

tions 8 and 9.

2 User Programming Model

Our out-of-core programming model is inspired by the

data-parallel programming paradigm. In essence, data-

parallel programs apply the same conceptual operations

to all elements of large data structures. This form of

parallelism occurs naturally in many scienti�c and engi-

neering applications such as partial di�erential equation

solvers and linear algebra routines [Fox91]. In these pro-

grams, a decomposition of the data domain exploits the

inherent parallelism and adapts it to a particular ma-

chine. Compilers can use programmer-supplied decom-

position patterns such as block and cyclic to partition

computation, generate communication and synchroniza-

tion, and guide optimization of the program. Languages

based on this principle are called data-parallel languages

and include High Performance Fortran (HPF) [Hig93],

Vienna Fortran [ZBC+92], and Fortran D [FHK+90].

Our out-of-core approach builds on HPF.

The DISTRIBUTE directive in HPF partitions an ar-

ray among processors by specifying which elements of

the array are mapped to each processor. This results in

each processor storing a local array associated with each

array in the HPF program; the local array is typically

a section of the entire array. The compiler divides the

computation among the processors, attempting to ex-

ploit the parallelism of the program while placing each

operation so that it accesses local data. One popu-

lar heuristic for doing this is the owner-computes rule,

which maps each assignment statement to the proces-

sor storing the left-hand side. When a computation uses

nonlocal data (for example, when adding array elements

stored on two di�erent processors), the compiler must

insert communication to fetch the data. On shared-

memory machines, this may simply be a read instruc-

tion; on message-passing hardware, it may require send
and receive library calls. On most parallel architectures,

it is vital to optimize the communication operations by

using e�cient libraries, advanced compilers, or both.

For out-of-core computations, we extend HPF's

DISTRIBUTE directive to partition very large arrays for

limited memory. Consider an array that is too large

to �t in main memory; we will refer to such arrays as

Out-of-Core Arrays or OCAs. In our model, the user

declares OCAs to be their full size, that is, the size they

are stored on disk. Only a small section can �t in mem-

ory at one time, however. We introduce a new direc-

tive, IO-DISTRIBUTE, that divides an OCA into pieces

small enough to �t in memory.1 We call the in-memory

pieces In-Core Arrays or ICAs; they are analogous to

the local arrays described above. The programmer may

suggest a desired size for an ICA by adding a param-

eter to the BLOCK directive, e.g., BLOCK(10). Analo-

gously to data-parallel compilation, the system must

move ICAs between memory and disk and map the com-

putations to ICAs to maximize locality. In this case,

locality means that operations should access (read or

write) ICAs that are in memory at the same time. As

we will see, strategies similar to data-parallel languages

can be used to implement and optimize the ICAs. These

optimizations are analogous to collecting messages in

data-parallel compilation. Providing both DISTRIBUTE

and IO-DISTRIBUTE directives allows the user to control

both the parallelism and the I/O behavior of the pro-

gram. If both directives a�ect an array, they are applied

in the order they appear in the source program.

Since we consider memory to be a limited resource,

the compiler must be aware of how much memory

is available to determine the size of bu�ers for asyn-

1There is also an extension of the HPF ALIGN directive called
IO-ALIGN, but we will not need it for the examples in this paper.

To P0

To P3

To P1

To P2

Global Array

P0 P2 P3P1

ICLA

Local Array
Files

Disks
Logical

D0 D1 D2 D3

Figure 1: Local Placement Model for out-of-core com-

pilation

chronous I/O or to automatically generate I/O distri-

butions. This information might be obtained from a

compiler con�guration �le containing a description of

system resources and the results of performance bench-

marks. An alternative is providing the programmerwith

a MEMORY directive or -M MEMORY SIZE compiler
ag.

There is an important complication to out-of-core

computations on parallel computers. On a parallel ma-

chine, each ICA may itself be partitioned among many

processors. Thus, a second level of mapping is needed.

When an ICA is distributed, we refer to the section on

each processor as the In-Core Local Array or ICLA. It
is sometimes convenient to refer to the portion of the

OCA that is mapped to a single processor. We call

this section of the array the Out-of-Core Local Array or
OCLA. (This is equivalent to the union of the ICLAs of

that OCA mapped to that processor.)

3 Execution Model

The user program will be translated into a lower-level

model for execution. Figure 1 illustrates the model used

by our systems, called the Local Placement Model. The
simplest way to view this model is to think of each

processor as having a virtual disk that acts as another

(albeit slower) level of memory. In other words, it is

a straight-forward extension of the usual distributed

memory model. The one-to-one mapping of disks to

processors is conceptually convenient and, as we will see

in Section 5, can be e�ciently implemented by runtime

libraries on many machines. Later, we will see examples

1 REAL A(1024,1024), B(1024,1024)

..........

2 !HPF$ PROCESSORS P(4,4)

3 !HPF$ DISTRIBUTE (BLOCK,BLOCK) ONTO P ::A,B

...........

4 FORALL (I=2:N-1, J=2:N-1)

5 A(I,J) = (B(I,J-1) + B(I,J+1)

& + B(I+1,J) + B(I-1,J))/4

6 END FORALL

Figure 2: HPF Program Fragment

of e�cient library operations that involve collections of

processors; these functions resemble collective commu-

nications in parallel processors.

To implement out-of-core computations in the Local

Placement Model, each processor stores its out-of-core

local array in a separate logical �le called the Local Ar-
ray File (LAF) on its disk. The LAFs can be stored as

separate �les or they can be part of a common �le; we

will assume they are separate �les. The node program

explicitly reads from and writes into the LAF when re-

quired. In this model, a processor cannot explicitly

operate on a �le owned by a di�erent processor. If a

processor needs to read data from a �le owned by a dif-

ferent processor, the required data will be read by the

owner and then communicated to the requesting pro-

cessor. Since each local array �le contains the OCLA

of the corresponding processor, the distributed (or the

user-speci�ed) view of the out-of-core global array is

preserved.

In order to store the data on the disks based on the

distribution pattern speci�ed in the program, redistri-

bution of the data may be needed in the beginning when

the data is staged. This is because the way data arrives

(e.g. from archival storage or over the network) may

not conform to the distribution speci�ed in the pro-

gram. Redistribution requires reading the data from

the external storage, shu�ing the data over the proces-

sors and writing the data to the local virtual disks. This

increases the overall cost of data access. This cost can

be amortized if the out-of-core array is used repeatedly.

4 Compilation Strategies

This section describes the basic compilation strategy for

HPF arrays and then discusses the additional support

needed for handling out-of-core arrays. We explain the

compilation strategy for both cases with the help of the

HPF program fragment given in Figure 2. In this exam-

ple, arrays A and B are distributed by two-dimensional

blocks on a 4� 4 grid.

Figure 3 shows the steps used in compilingan array or

FORALL statement. The strategy for compiling an entire

program is conceptually identical, but may involve more

1. Analyze the distribution pattern of each array used in

the FORALL.

2. Depending on the distribution, detect the type of com-

munication required.

3. Perform data partitioning and calculate local lower and

upper bounds for each participating processor.

4. Use temporary arrays if the same array is used in both

LHS and RHS of the FORALL body.

5. Generate the corresponding loosely synchronous SPMD

node program.

6. Add calls to runtime libraries to perform collective com-

munication.

Figure 3: An HPF Compilation Strategy on Distributed

Memory Machines

Call communication routine to perform overlap shift.

do j = lower bound, upper bound

do i = lower bound, upper bound

A(i,j)=((B(i,j-1)+B(i,j+1)

+B(i-1,j)+B(i+1,j))/4)

end do

end do

Figure 4: Translation of a FORALL statement.

complex analysis to link the statements together. The

compiler uses distribution directives (Figure 2, lines 2-3)

in the source program to �nd the distribution pattern of

the arrays. Using the distribution information, arrays

are partitioned into local arrays. After data distribu-

tion, the compiler analyzes the FORALL body (Figure 2,

Line 5). Since array B is distributed in a block-block

fashion over 16 processors, the array expression requires

fetching data from up to four neighboring processors.

The HPF compiler generates a call to a speci�c collec-

tive communication routine (overlap shift), and the ar-

ray expression is sequentialized into DO loops, as shown

(in pseudocode form) in Figure 4.

4.1 Out-of-core Compilation

For out-of-core programs, in addition to the steps in Fig-

ure 3, the compiler must also perform many more func-

tions, e.g., schedule explicit I/O accesses to fetch/store

appropriate data from/to disks. The compiler has to

take into account the data distribution and memory at

each node, the communication patterns between ICLAs,

the data distribution on disks, the number of disks used

for storing data, and the prefetching/caching strategies

used. The last three items are encapsulated in the com-

piler's choice of a placement model for data storage. In

this section, we use the Local Placement Model to ex-

tend data parallel compilation methods to out-of-core

1. Data-parallel Phase

(a) Analyze parallelism and I/O distribution patterns

of each array.

(b) Partition computation according to parallelism

distribution patterns.

(c) Determine communication required for array ac-

cesses.

(d) Determine local space bounds.

2. Out-of-core Phase

(a) Partition computation (in local space) according

to I/O distribution patterns.

(b) Determine I/O required for array accesses.

(c) Determine in-core bounds.

3. Code Generation Phase

(a) Sequentialize local code.

(b) Insert communication and I/O.

(c) Optimize communication and I/O.

Figure 5: Compilation Phases in the Local Placement

Model

problems. We do this by introducing partitioning along

ICA boundaries and I/O insertion. These steps are

analogous to the computation partitioning and commu-

nication insertion steps in data-parallel compilation.

Figure 5 presents the proposed compilation strategy

for applying the data-parallel and I/O distributions sug-

gested by the corresponding DISTRIBUTE statements in

the source program. The compiler is conceptually di-

vided into three phases. The data-parallel phase dis-

tributes data to multiple processors. First the HPF ar-

rays are partitioned according to the parallelism direc-

tives and local lower and upper bounds for each local

array are calculated. Statements (such as FORALL) are

then analyzed to determine the required communica-

tion. In other words, the compilation in this phase pro-

ceeds in the same manner as for in-core computations,

except that it stops short of generating the SPMD code.

This is a direct consequence of the model. The out-of-

core phase partitions out-of-core data into in-core ar-

rays, according to the IO-DISTRIBUTE statement. (For

convenience, the I/O partitioning directives are propa-

gated in the same phase as the parallelism directives,

although they are independent.) The resulting in-core

arrays are analyzed to determine inter-array communi-

cation and the computation is partitioned to operate

on one in-core array at a time. In-core local arrays are

determined by the intersection of local arrays and in-

core arrays. The code generation phase inserts and op-

timizes communication and I/O, generating an SPMD

node program with explicit message passing and I/O

operations. This process sequentializes the in-core local

operations and inserts the necessary I/O and communi-

cation calls. Section 4.2 describes two models for gen-

erating this communication; which is chosen will a�ect

the placement, organization, and e�ciency of both com-

munication and I/O. The �nal optimizations applied in-

clude overlapping I/O with computation and maintain-

ing data in memory between processing of in-core local

arrays. Results from applying the �rst optimization are

presented in Section 6.

Some additional issues need to be considered when

distributing out-of-core data. Since each processor per-

forms computation on the data in an ICLA, the portion

of the local array currently required for computation is

fetched from disk into memory. The size of the ICLA

is speci�ed at compile time and usually depends on the

amount of memory available. Although a larger ICLA

reduces the number of disk accesses, this bene�t must

be balanced against other memory requirements, e.g.,

bu�er space to overlap I/O and computation, and stor-

age for operands needed to perform the local in-core

computation. When operand storage exceeds the space

available at the node, the computation must be parti-

tioned further and I/O requests must be inserted into

the in-core local computation.

4.2 Compiling Communication

For the FORALL in Figure 2, the communication and I/O

requirements for processor 5 are shown in Figure 6(B).

The out-of-core local array (OCLA) has four slabs, each

of which is equal to the size of the in-core local array

(ICLA). The slabs are shown using di�erent patterns.

The �gure also shows the overlap area for array B in this

example, which consists of the data to be communicated

per processor. This communication can be executed us-

ing either of the following two methods, the Out-of-core
Communication Method and the In-core Communica-
tion Method.

4.2.1 Out-of-Core Communication Method

In this method, the compiler determines what o�-

processor data will be required for the entire OCLA.

That is, the entire light gray area in Figure 6(C) is com-

municated in one step. Figure 7(A)) shows the corre-

sponding pseudocode. Note that communication in this

case requires that the sending processor read its local

array �le, select data, and send it to the destination

processor. This processor stores the data in its own lo-

cal �le, e�ectively expanding its OCLA and the ICLAs

to include the overlap area. Thus, even the commu-

nication step requires accessing the secondary storage

for both send and receive operations. The computation

can then be performed using only the ICLA (i.e. with-

out interprocessor communication), since all the data

has already been communicated.

The key feature of this method is that communica-

OVERLAP

2

3

4

1

OUT-OF-CORE

COMMUNICATION

IN-CORE

COMMUNICATION

(A)

(B)

(C)

(D)

ICLA

SLABS

LAF

1. 2. 3. 4.

P1

P5 P6 P7

P13 P15

P0 P2 P3

P8 P9 P10 P11

P14

P4

P12

ARRAY IN P5

Data to be Communicated

Figure 6: Compiling the FORALL Statement in the Local

Placement Model

tions operations may require access to disk. However,

this method allows the compiler to identify and optimize

collective communication patterns because the commu-

nication pattern depends on the logical shape of arrays

and the access patterns for the entire array (and not on

individual slab size and/or shape). For example, there

are four shift communications in the example shown in

Figure 7. This communication pattern is preserved, al-

though the implementation is somewhat di�erent and

the message size rather large. Libraries like the one de-

scribed in Section 5 can e�ciently execute this type of

pattern.

There are two situations where this method should

not be applied. The �rst occurs when there is a very

large amount of inter-processor communication during

processing of an in-core tile. The out-of-core communi-

cation method stores all the received data into the local

array �le which can lead to signi�cant disk access costs

and increases in �le size. The second is when there are

true dependences from one in-core local array to an-

other. A true dependence between in-core local arrays

means that the value in the destination slab may be

modi�ed after starting computation on the source slab.

Thus, it would not be correct to perform I/O for the

entire out-of-core array before starting computation.

4.2.2 In-Core Communication Method

Figure 6(D) shows an example of the In-core Commu-

nication method. In this method, the compiler ana-

lyzes each slab or ICLA instead of the entire out-of-

core array. Thus, the individual shaded regions in Fig-

ure 6(D) are each sent in separate steps (each shade

in Figure 6(D) represents data to be communicated to

(A) Out-of-Core Communication

C Schedule communication for entire out-of-core data.

Call communication routine to perform overlap shift.

C Partition code based on the local memory Size.

C Repeat operation k times (once for each ICLA).

do 10 l=1, k

C Perform local I/O access.

Call I/O routine to read the ICLA and overlap region.

C Perform local computation on the ICLA.

do j = lower bound, upper bound

do i = lower bound, upper bound

A(i,j)=((B(i,j-1)+B(i,j+1)

+B(i-1,j)+B(i+1,j))/4)

end do

end do

C Perform local I/O access.

Call I/O routine to store the result.

10 enddo

(B) In-Core Communication

C Partition code based on memory size.

C Repeat k times (once for each ICLA).

do 10 l=1, k

C Perform local I/O access.

C Schedule communication for in-core data.

Call communication routine for overlap region.

C Perform local computation on the ICLA.

do j = lower bound, upper bound

do i = lower bound, upper bound

A(i,j)=((B(i,j-1)+B(i,j+1)

+B(i-1,j)+B(i+1,j))/4)

end do

end do

C Schedule communication for in-core data.

Call communication routine.

C Store local data.

Call I/O routine to store the results.

10 enddo

Figure 7: Compilation Alternatives for Out-of-core Pro-

grams in the Local Placement Model

the correspondingly shaded slab shown in Figure 6(B)).

Once the necessary comm data is fetched, the computa-

tion on each slab begins. After the computation is over,

the comm data is again communicated or scattered.

The corresponding pseudocode is shown in Fig-

ure 7(B). In this case, each ICLA must be analyzed

to identify needed out-of-core and nonlocal data. Lo-

cal out-of-core data is obtained from the OCLA, and

nonlocal in-core data is received from its \owner." (Ob-

viously, previously communicated values may be reused

as well.) The possible access methods to obtain nonlo-

cal out-of-core data can be broken down as follows. If

the owning processor previously had the data in mem-

ory, the compiler can schedule it to communicate the

data at that time and schedule the requesting proces-

sor to store the data in its local array �le. Otherwise,

a two-phase method [CBH+94] where the owner reads

the data and sends it to the requesting processor when

needed can be used. A �nal possibility applies if there

is some processing capability at the I/O node itself, in

which case disk-directed I/O can be used to send the

data [Kot94].

The most important point to note here is that data

needed by other processors is communicated while the

slab is in memory when possible. Thus, this method

reduces the number of disk accesses, produces smaller

individual messages (although the total communication

volume is the same), and is more easily applied to se-

rial loops. However, a structured communication pat-

tern is transformed into distinct patterns (for each slab)

as shown by the di�erent shapes of the shaded regions

in Figure 6(D). Optimizing such communication pat-

terns may be di�cult and require extensive compile-

time analysis.

5 Run-time Libraries

In this section, we show how the Local Placement Model

of Section 3 can be mapped onto more realistic hard-

ware. Most current parallel machines do not have one

disk on every node. Instead, a set of nodes are con-

nected to a set of disks via an interconnection network.

The I/O subsystem may have a separate interconnection

network or the disks may be embedded in the proces-

sor grid (and share the same interconnection network).

This section describes the runtime library to implement

the Local Placement Model. The runtime routines can

be broadly classi�ed as 1) Mapping Routines, 2) Access

Routines, and 3) Routines for collective communication.

1. Mapping Routines: Mapping routines map

the execution model (in this case, the Local Placement

Model) on the underlying machine. Mapping routines

include functions to map virtual disks to physical disks.

That is, for a system that has N processing nodes and

D disks, this routine associates each processing node,

pi; 1 � i � N , to one or more disks, dj; 1 � j � D.

Mapping of individual local �les also depends on this

mapping. One way of achieving this mapping is to as-

sociate each processor with a distinct set of disks. An-

other way could be to associate each processing node

with all disks, and thus stripe each local �le over all

the disks. Some of these options may not be possible if

the underlying �le system does not provide the required

exibility.

Another set of routines needed to implement the Lo-

cal Placement Model is the redistribution routines which

will take the input data �les, and based on the distri-

bution, create the local �les. Each �le will have to be

redistributed into local �les based on the out-of-core

distribution. These routines use the two-phase access

strategy [dRBC93] which will read the data from the

input data �le using the most optimal access pattern

(which depends on how the data is stored on disks) and

redistribute the data over the processors using the high

speed processor interconnection network. The proces-

sors will then store the data into appropriate local �les.

2. Access Routines: These routines are used to

stage data in the memory for out-of-core computations

once the local �les are created. These routines essen-

tially include read and write functions. Each of these

functions is provided the o�sets, strides and the size of

the data to be accessed in terms of the out-of-core array

and the in-core array. It is the responsibility of these

routines to convert these accesses into appropriate �le

accesses.

3. Routines for Collective Communication: In

general, a collective communication routine implements

a pattern of communication (e.g. shift) which is im-

plemented using a set of send and receive calls inside

the routine. However, when arrays are out-of-core, a

collective communication routine also requires access-

ing �les because the data to be communicated may not

be present in memory at that time. Thus, an implemen-

tation of a collective communication routine requires

reading data from local �les, communicating data to the

appropriate destination processors, and �nally, writing

the data into the �les of receiving processors.

A detailed description of these routines is given

in [CBH+94].

6 Experimental Results

This section presents experimental results for three out-

of-core applications: Laplace equation solver by the Ja-

cobi iteration method, LU factorization with pivoting,

and three dimensional red-black relaxation. These ap-

plications were compiled by hand using the local place-

ment model, storing the OCLAs for each processor into

a separate �le.

The Jacobi iteration application is essentially a re-

peated execution of the code in Figure 2. New values in

each iteration are computed using the values from the

previous iteration. This requires the newly computed

array to be copied into the old array for the next itera-

tion. In the out-of-core case, this would require copying

the local array �le. We do an optimization in which, in-

stead of explicitly copying the �le, the �le unit numbers

are exchanged after each iteration. This is equivalent to

dynamically changing the virtual addresses associated

with arrays. Hence the program uses the correct �le in

the next iteration. In the out-of-core program, the ar-

ray is distributed across processors by blocks of columns

rather than the 2-dimensional distribution shown ear-

lier. The I/O distribution is then applied by blocks of

Table 2: Performance of Laplace Equation Solver (time in sec. for 10 iterations)

Array Size: 2K � 2K Array Size: 4K � 4K

32 Procs 64 Procs 32 Procs 64 Procs

Direct File Access 73.45 79.12 265.2 280.8

Explicit Communication 68.84 75.12 259.2 274.7

Explicit Communication 62.11 71.71 253.1 269.1

with data reuse

columns, within the processor blocks.

The performance of the Jacobi program on the Intel

Touchstone Delta is given in Table 2. We use the out-

of-core communicationmethod and compare the perfor-

mance of the three implementations|direct �le access,
explicit communication and explicit communication with

data reuse. In the direct �le access version, each pro-

cessor reads data from the local array �le of some other

processor as required by the communication pattern.

This requires explicit synchronization at the end of each

iteration. In the explicit communication version, each

processor accesses only its own local array �le. Data is

read into memory and sent to other processors. Simi-

larly, data is received from other processors into main

memory and then saved on disk. In the third method,

data which was communicated in an earlier iteration is

reused again in the next iteration. In our example, this

occurs when the overlap area needed by an adjacent

processor on the next iteration is sent after performing

computation but before the data is written to disk.

We observe that the direct �le access method per-

forms the worst because of contention for disks. The

best performance is obtained for the explicit communi-

cation method with data reuse as it reduces the amount

of I/O by reusing data already fetched into memory.

If the array is distributed in both dimensions, the per-

formance of the direct �le access method is expected

to be worse because in this case each processor, ex-

cept at the boundary, has four neighbors. So, there will

be four processors contending for a disk when they try

to read the boundary values, thus increasing the over-

all access time. For other data patterns, however, the

direct access method might get some advantage from

disk cacheing at the physical I/O nodes. This points to

an advantage of runtime libraries for these operations|

they can be tuned for particular access patterns rather

than relying on the underlying operating system for per-

formance.

For LU factorization, we use a block distribution

by rows across processors and a block distribution by

columns for the I/O. The in-core algorithm would nor-

mallymodify all columns to the right after scaling a col-

umn with its pivot element. For the out-of-core version,

when the columns to the right are not in the current

in-core array, their modi�cation is \deferred" until the

slab containing them is brought into memory. This is

consistent with the ownership approach for an in-core

local array. When the slab is in memory, each processor

must read the columns on the left to obtain the data

necessary to perform the deferred operations. Essen-

tially, this converts the \right-looking" variant of LU

factorization into a \left-looking" one.

The performance results for LU factorization on an

Intel Paragon with two I/O nodes are shown in Tables 3

and 4. We compare three implementations: (1) virtual

memory, (2) synchronous I/O using the local placement

model, and (3) asynchronous I/O overlapped with com-

putation. All three implementations use the same mem-

ory and computation tiling to allow fair comparisons.2

Inter-processor communication is performed using the

in-core communication method with explicit communi-

cation. The asynchronous I/O version is derived from

the synchronous I/O code by moving I/O across com-

putation when the regular section descriptors (RSDs)

do not intersect. Table 4 shows the performance of a

1600� 1600 factorization problem. These results show

a consistent 35 to 40 percent improvement in perfor-

mance using �le I/O operations over virtual memory.

Table 3 shows the results for a 6400 � 6400 case. The

Paragon system we used did not provide enough virtual

memory paging space for the larger problem, so we were

unable to provide comparisons to virtual memory. We

can, however, compare synchronous with asynchronous

I/O in this case. Although this is a compute-bound ap-

plication, there is a 5 to 10 percent savings from over-

lapping computation on the in-core array with reading

operands needed for further computation on the ICLA.

Red-black relaxation is an iterative �nite-di�erences

method similar to Jacobi iteration in its I/O access re-

quirements. For this application we used one dimen-

sional block data-parallel and I/O distributions in sep-

arate dimensions of the array; the I/O distribution tiles

the last array dimension. The I/O accesses for red-black

relaxation consist of a sequential read of the matrix and

write of the new values each iteration. The sequential

read is divided into successive reads of in-core local ar-

rays which are overlapped with computation of new red

2In the case of virtual memory, this was accomplished by
changing the execution order of loops, an optimization that im-

proved performance by 200 times.

Table 3: Performance of LU factorization with pivoting (time in sec.)

Array Size: 6400� 6400

Number of Processors Synchronous I/O Overlapped I/O % Overlap % of Optimal Overlap

1 12339 10991 11 67

2 7920 7324 7.5 71

4 3464 3206 7.4 71

8 1804 1700 5.7 62

16 1110 999 10 61

Table 4: Performance of LU factorization using virtual memory (time in sec.)

Array Size: 1600� 1600

Number of Processors Virtual Memory Synchronous I/O % reduction

1 483 284 41.2

2 303 195 35.6

4 121 71.6 40.8

and black data points.

The execution times for red-black relaxation are pre-

sented in Table 5. When the problem size is out-of-core,

1 through 8 processors, overlapping I/O and compu-

tation is the fastest followed by the synchronous I/O

version; virtual memory is slower, in part, because the

request sizes for paging are smaller. At sixteen pro-

cessors, the problem was almost entirely in-core and

performance \using" virtual memory improved dramat-

ically. The last column compares synchronous I/O with

overlapped asynchronous I/O. There is a 10% to 27%

speedup using 1 through 8 processors. The reduced im-

provement that occurs at eight and sixteen processors

is caused by two e�ects. The �rst is a decrease in com-

putation time at each node, the second is contention in

the I/O system. Although we are scaling the number of

processors, we are not scaling the number of I/O nodes

or disks.

7 Related Work

Tiling of out-of-core programs has been done by many

applications programmers and we wish to acknowledge

their extensive previous work. As is often the case, pro-

grammers su�er in advance of compiler writers. Our

approach integrates compiler management of out-of-

core data sets with the data-parallel approach of lan-

guages such as Fortran (HPF) [Hig93], Vienna Fortran

[ZBC+92], and Fortran D [FHK+90].

Previous work on compiler improvements at the

memory to disk interface starts with Abu-Sufah and

Trivedi at the end of the 1970's. Abu-Sufah [AS79]

demonstrates that applying loop distribution and loop

fusion can reduce the space-time costs for numerical al-

gorithms. Trivedi [Tri77a, Tri77b] shows that pro�table

opportunities for demand prefetching can be identi�ed

from a program's syntax. Highlights of managing other

aspects of the memory hierarchy include: Allen and

Kennedy on vector register allocation [AK87], Carr and

Kennedy on compiler blocking of scienti�c codes [CK92],

and Mowry on software prefetching for cache [Mow94].

Related projects include disk-directed I/O, by David

Kotz at Dartmouth College, in which I/O proces-

sors direct the transfer of data from disk to proces-

sors. The Jovian framework for optimizing paral-

lel I/O, being developed at the University of Mary-

land, optimizes independent and collective I/O re-

quests at run-time. MPI-IO, designed by IBM T.J.

Watson and NASA Ames Research Centers, pro-

vides parallel �le I/O with a message-passing in-

terface. PANDA, from the University of Illionois

at Urbana-Champaign, explores the performance and

user interface bene�ts of array \chunking". PIOUS,

developed at Emory University, uses a transaction-

based model to provide consistency. Further details

about these projects and many others are available at

\html://www.cs.dartmouth.edu/pario.html".

8 Conclusions

High Performance Fortran has already generated a great

deal of interest in the user and vendor community as

a language for portable parallel programming on high-

performance computers. In order to permit implemen-

tation of large-scale problems, e.g., many grand chal-

lenge problems, support for out-of-core compilation is

important.

For out-of-core compilation, the compilation strat-

egy depends on how data is stored as well as how it

is accessed. We presented a data storage model, the

Local Placement Model, to organize, view, and access

out-of-core data. We also described a general compila-

tion methodology that uses this model. Furthermore,

we demonstrated how communication strategies are af-

Table 5: Performance of Red-Black relaxation (time in sec. per iteration)

Array Size: 320� 320� 320

Number of Processors Virtual Memory Synchronous I/O Overlapped I/O % Overlap

1 634 316 277 12.3

2 368 227 181 20.3

4 375 186 136 27.0

8 334 132 119 10.1

16 621 159 153 3.9
1With 16 processors, the problem is almost entirely in-core.

fected and presented some alternatives for implementing

them for out-of-core data.

Although the techniques described in this paper are

discussed with respect to HPF, they are applicable to

data parallel languages in general.

9 Future Work

Once we have established the notion of an out-of-core

array, it is an easy step to a persistent out-of-core array,
that is, one that has a permanent home on disk and

which can be passed between di�erent programs.

In addition to the Local Placement Model described

in Section 3, alternate storage methods are possible.

One that we plan to investigate is the Global Place-

ment Model, which would maintain all the data in one

�le. This �le could be distributed to disk devices by the

�le system.

As a �nal matter, we will consider the impact of

out-of-core arrays in the distributed computing envi-

ronment, which involves collections of high-performance

workstations interconnected by high-speed networks.

References

[AK87] J. R. Allen and K. Kennedy. Automatic transla-

tion of Fortran programs to vector form. ACM

Transactions on Programming Languages and

Systems, 9(4):491{542, October 1987.

[AS79] W. Abu-Sufah. Improving the Performance of

Virtual Memory Computers. PhD thesis, Dept.

of Computer Science, University of Illinois at

Urbana-Champaign, 1979.

[CBH+94] A. Choudhary, R. Bordawekar, M. Harry,

R. Krishnaiyer, R. Ponnusamy, T. Singh, and

R. Thakur. PASSION: Parallel and Scalable Soft-

ware for Input-Output. Technical Report SCCS{

636, NPAC, Syracuse University, Sep 1994.

[CK92] S. Carr and K. Kennedy. Compiler blockabilty

of numerical algorithms. Proc. of Supercomput-

ing'92, November 1992.

[dRBC93] J. del Rosario, R. Bordawekar, and A. Choud-

hary. Improved parallel I/O via a two-phase

runtime access strategy. In Proceedings of the

Workshop on I/O in Parallel Computer Systems

at IPPS '93, April 1993.

[FHK+90] G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel,

U. Kremer, and C. Tseng. Fortran D language

speci�cations. Technical Report COMP TR90-

141, Rice University, 1990.

[Fox91] G. Fox. The architecture of problems and

portable parallel software systems. Technical

Report SCCS-78b, Northeast Parallel Architec-

tures Center, Syracuse University, Syracuse, NY

13244, 1991.

[Hig93] High Performance Fortran Forum. High Perfor-

mance Fortran language speci�cation. Scienti�c

Programming, 2(1-2):1{170, 1993.

[Kot94] D. Kotz. Disk-Directed I/O for MIMD multipro-

cessors. Technical Report PCS-TR94-226, Dept.

of Computer Science, Dartmouth College, July

1994.

[Mow94] T. Mowry. Tolerating Latency Through Software

Controlled Data Prefetching. PhD thesis, Depart-

ment of Computer Science, Stanford University,

March 1994.

[Tri77a] K. S. Trivedi. Prepaging and applications to the

STAR-100 computer. In Proceedings of the Sym-

posium on High Speed Computer and Algorithm

Organization, pages 435{446, April 1977.

[Tri77b] K. S. Trivedi. On the paging performance of ar-

ray algorithms. IEEE Transactions on Comput-

ers, C-26(10):938{947, October 1977.

[ZBC+92] H. Zima, P. Brezany, B. Chapman, P. Mehrotra,

and A. Schwald. Vienna Fortran - a Language

Speci�cation. Technical Report ICASE Interim

Report 21, MS 132c, ICASE, NASA, Hampton

VA 23681, 1992.

