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Abstract

In this paper, we present a framework for describing the data
ow and dependence information of a
data parallel program. Our framework initially represents the program using a directed Intermediate

Program Locality Graph (IPLG). Using Dependence Access Relations (DARs), the IPLG is reduced to

a Program Locality Graph (PLG).
The information provided by PLG is used by the compiler to reorder the program to improve program

locality. We view the program reordering problem as an optimization problem. To solve this problem, we

present a polynomial time heuristic, called the Range Reduction Heuristic. The best case time complexity
of the heuristic is O(m2

n
2), where m is the number of statements and n is the number of arrays used in

the program. The average case running time of the heuristic approaches the best case performance.

This framework will be implemented as a part of the PASSION (Parallel And Scalable Software for

I/O) compiler to compile out-of-core HPF programs. The PASSION compiler will take advantage of the

improved program locality and use the dependence/data
ow information to perform further optimizations

like (1) Providing Hints to the �le system, (2) Data Retaining Policies, (3) Dead Code Elimination and
(4) Local File Reorganization.

1 Introduction

The performance of a program often depends upon the time required to access data from the memory, either
primary or secondory memory. Large scale multiprocessors use hierarchical memories to reduce large access
times. In multi-level memories, the access cost depends on the memory level. Generally registers have the
smallest access cost while the secondary storage mediums like disks have a very large access cost.
The advent of high-performance computing has allowed researchers to solve large computational applica-
tions. These applications, in addition to requiring a great deal of computational power, also deal with large
quantities of data. Due to a relatively small size of main memory, data often needs of be stored on disks.
Hence, the overall performance of these applications depends on I/O performance of the program.
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Introduction 4

The I/O performance of a program can be improved by reordering the program so that variables are accessed
while they reside in lower levels of the memory hierarchy, as far as possible. In order to perform legal program
ordering, it is necessary to understand the data
ow and dependence characteristics of the given program. In
this paper, we provide an uni�ed framework for representing data
ow and dependence information of data
parallel programs and use it for reordering program statements.

1.1 Contributions of the paper

In this paper, we focus on out-of-core HPF programs. We describe a framework for representing data
ow
and dependence information of HPF programs. The data
ow and dependence information is used to reorder
array assignment statements so that two statements which access the common array variables are closer in
program space. Though this work is targeted towards out-of-core HPF programs, it can be easily applied
to in-core HPF, F90 or any other data parallel programs. Our basic approach is similar to that taken
by [GS90, GV91] but we view the locality improvement problem as an optimization problem. We show that
the global cost can be minimized (corresponding to the overall program optimization) if each step of the
problem optimizes the local I/O cost (i.e. improving the locality of a pair of statements). Our framework
represents an HPF program using a Program Locality Graph (PLG). In order to have a concise representation

of data
ow and dependence properties of the program, we use Dependence Access Relations (DAR). Based
on our framework, we present a locality optimization heuristic called the Range Reduction Heuristic. The
running time of this heuristic is bounded by the number of arrays and the number of statements used in the
program. The worst case running time of the range reduction heuristic is O(m3

n
2), where m is the number

of statements and n is the number of arrays used in the program. The best case running time of the heuristic
is O(m2

n

2). In case of programs involving signi�cant data dependencies, the running time approaches the
best case running time.
The data
ow information provided by the framework will be used by the HPF compiler to perform various
optimizations. These optimizations include

1. Providing caching hints to �le systems.

2. Data Retaining Policies.

3. Dead Code Elimination.

4. Reorganizing data in local array �les [TBC94] according to the statement ordering in the source
program.

1.2 Related Work

Data
ow analysis has been used for by several researchers for program analysis and restructuring: especially
for dead-code elimination and code placement. Morel and Renvoise �rst developed a data
ow framework
for performing partial redundancy elimination [MR79] and since then has been re�ned and used by several
researchers for a wide variety of problems [JD82a, JD82b, Dha88a, Dha88b]. For example, Dhamdhere used
partial redundancy elimination for placing register load and stores [Dha90] while Carr and Kennedy have
used it with dependence analysis to perform scalar replacement [CK94]. Data
ow analysis has also been used
to optimizing communication. Amarasinghe and Lam used Last Write Trees to optimize communication for
regular array accesses [AL93]. Hanxleden et al. presented a data
ow framework, called GIVE-N-TAKE, to gen-
erate communication statements for the Rice FORTRAN-D compiler [vKK+92, vK93]. The GIVE-N-TAKE

framwork has been since extended to perform advanced communication optimizations like amalgamation and
vectorization [KN94]. Gupta et al. applied partial redundancy elimination techniques on available section
descriptors to determine availability of data on virtual processors [GSS94]. Ferrante et al. described how to
compute array section data called, Communication Sets, using data
ow analysis [FGS94]. Other problems
where data
ow analysis has been used include analysis of array sections by Gross and Steenkiste [GS90] and
detection of array accesses in parallel programs by Granston and Veidenbaum [GV91].
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1.3 Organization of the paper

The rest of the paper is organized as follows. Section 2 describes the out-of-core compilation strategy used
by the PASSION compiler and presents an example of out-of-core HPF program. Section 3 explains in detail
how an HPF program is represented as a Program Locality Graph. Section 4 introduces the concept of
range and proposes two locality cost models. The Range Reduction Algorithm is presented and analyzed
in section 5. Section 6 illustrates various compiler optimizations in which the information obtained from
data
ow analysis is used. Finally, we conclude in Section 7.

2 Motivation

2.1 Out-of-core Compilation

In out-of-core programs primary data structures reside on disks. We call this data out-of-core or (OOC)
data. Computations on OOC data, therefore, require staging data in smaller granules that can �t in the
main memory of a system (in-core data). That is, the computation is carried out in several phases, where,
in each phase part of the data is brought into memory, processed, and stored back onto secondary storage (if
necessary). The staging of data can be done either by user-controlled explicit I/O or by system-controlled
paging. In both cases, computation on in-core data requires secondary memory accesses resulting in I/O.
In this work, we focus on out-of-core computations performed on distributed memory machines. In dis-
tributed memory computations, work distribution is often obtained by distributing data over processors. For
example, High Performance Fortran (HPF) provides explicit directives (TEMPLATE, ALIGN and DISTRIBUTE)
which describe how the arrays should be partitioned over processors [For93, KLS+94]. Arrays are �rst aligned
to a template (provided by the TEMPLATE directive). The DISTRIBUTE directive speci�es how the template
should be distributed among the processors. In HPF, an array can be distributed as either BLOCK(m) or
CYCLIC(m). In a BLOCK(m) distribution, contiguous blocks of size m are distributed among the processors.
In a CYCLIC(m) distribution, blocks of size m are distributed cyclically. The DISTRIBUTE directive speci�es
which elements of the global array should be mapped to each processor. This results in each processor
having a local array associated with it. Our main assumption is that local arrays are stored in �les from
which the data is staged into main memory. When the global array is an out-of-core array, the corresponding
local array is also stored in �les. The out-of-core local array can be stored in �les using two distinct data
placement models. The �rst model, called the Global Placement Model (GPM) maintains the global view
of the array by storing the global array into a common �le. The second model, called the Local Placement
Model (LPM) distributes the global array into one or more �les (or distinct sections of one �le) according
to the distribution pattern. In this paper, we only consider the local placement model [CBH+94].

2.1.1 The PASSION Compiler

As a part of the PASSION (Parallel And Scalable Software for I/O) project, we are developing a compiler
to compile out-of-core programs. The PASSION compiler is targeted for out-of-core programs written using
data-parallel languages like Fortran 90D [BCF+93] and High Performance Fortran [For93]. The PASSION
compiler performs the following tasks

� Sequentialize data-parallel constructs (e.g. FORALL statements) and generate node code.

� Generate runtime calls for communication and I/O.

� Perform automatic program transformations to improve the I/O performance.

The PASSION compiler compiles an out-of-core HPF program in two phases. The �rst phase performs
preprocessing in the source HPF program in the global name space. In the second phase, optimizations on
the corresponding node program are carried out. While the �rst phase is independent of the underlying data
placement model, optimizations in the second phase di�er according to the data placement model.
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� Phase I: Global Program Preprocessing

In this phase, the source HPF program is analyzed in global name space to obtain 
ow and dependence
information about the scalars and array variables. The main aim of the data
ow analysis is to examine
the access and dependence patterns of the program variables. Using these data, the compiler can check
whether the array statements could be reorganized so that the statements that access the common
program variables are closer in the program space. The global program preprocessing also provides
dependence information about the FORALL and array assignment statements. This information is used
to detect and eliminate redundant computations.

� Phase II: Local Program Optimizations

In the second phase, the PASSION compiler operates in the local name space. The second phase
involves three steps, namely (1) Work Distribution, (2) Communication and I/O Placement and (3)
Inter and Intra-�le reorganization. A detailed description of these steps is given in [CBH+94].

In this paper, we focus on the global program reorganization and illustrate how the information obtained
from the global program analysis can be used for local program optimizations.

2.2 An HPF Example

Figure 1 presents a fragment of an HPF program. Let us assume that x, y and z are square arrays of size
(1000,1000). Each array is distributed over p processors in a certain distribution using the HPF distribution
directives. Assume that the available memory is too small to hold the local arrays.

x(1,1:1000)=y(1:1000,1)

z(1:1000:2,2:1000:4)=2

y(1:1000,1)=4

x(1:1000,1)=z(1,1:1000)

Figure 1: Motivating Example

Consider the �rst statement from Figure 1. It requires �rst row of array x and �rst column of array y.
Assume that the data is stored in a column-major order (natural order for fortran), fetching a row of an
array requires several separate I/O requests. Also, since the entire local array cannot �t in the memory,
reading/writing of the arrays has be carried out several times. In the second statement array z is used. In
order to make space for array z, arrays x and y need to be stored back to disks. In the third statement
array y is accessed again and needs to be fetched back. Similar situation exists for arrays z and x, which

are used again in statement 4. Consider statements 1 and 3. The same section of array y is used both these
statements. If we can reorder the program so that statements 1 and 3 next to each other then data of array

y can be reused, thus saving extra I/O accesses. Another advantage of such reorganization is knowing that
a certain array section is to be accessed next, one can prefetch this array section. Such code reorganization
requires knowledge about the dependence and data
ow relations in the program.

3 A Framework for Representing Data
ow and Locality Proper-

ties of HPF Programs

In this section we present a framework for representing an HPF program using a Program Locality Graph
(PLG). Initially the source HPF program is analyzed and an Intermediate Program Locality Graph (IPLG)
is generated. Using the data
ow and dependence information, IPLG is simpli�ed to obtain the Program
Locality Graph (PLG).
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3.1 Intermediate Program Locality Graph

The Intermediate Program Locality Graph is a variation of a Program Flow Graph. A Program Flow Graph
for a program segment P is a directed graph (V;E; v0), where vi 2 V is a weighted node which represents
a basic block of P , E denotes the edges between the nodes and v0 is the node representing the �rst basic
block of the program.
We focus our attention on HPF [Hig93] programs. An HPF program provides a global view to the pro-
grammer. In other words, programmer can assume a single thread of execution when programming in HPF.
Hence, we can represent an HPF program using a single program 
ow graph.
We restrict our analysis to the programs which use data-parallel constructs like FORALL and array assign-
ment statements. Since array assignment can also be represented as a FORALL statement, we focus on FORALL

statements in the rest of the paper1. By de�nition, a FORALL statement does not guarantee a �xed order of
execution [Hig93]. Moreover, FORALL statements exhibit copy-in-copy-out semantics. Following the interval
analysis of array sections presented in [GS90], it can be observed that each FORALL statement can be repre-
sented as an extended basic block (EBB) [AC76]. Each EBB represents a sequence of program instructions
corresponding to the iterations of the FORALL statement.
A node vi of the program 
ow graph represents an EBB. Considering a single thread of execution, we can
assume a sequential order of execution. Therefor, each node can be numbered according to the position of
the represented statement in the source program (num(vi)). Each node is associated with a weight function.
The weight function is a set of k two-element tuples < aei; si >, where k is the number of arrays used in
the FORALL statement, aei is the number of active2 elements of the array i and si is the access stride of the
array i.
There is an edge eji from node vi to node vj i� there is at least one array which is used in the corresponding
FORALL statements. In general, two nodes vi and vj can have m edges, where m is the total number of out-

of-core arrays used in the program. Each edge eji represents the data
ow characteristics of the associated
array between the corresponding FORALL statements. Node vi is said to be a predecessor of node vj i�
num(vi) < num(vj) and there is an edge between nodes vi and vj. Similarly, vi is said to be a successor of
node vj i� num(vi) > num(vj) and there is an edge between nodes vi and vj.
Since the program 
ow graph describes locality of the arrays in the source program, it will be called the
Intermediate Program Locality Graph or IPLG3.

3.2 De�nitions

In order to introduce various operations on the IPLG, several de�nitions will be now de�ned. These de�ni-
tions will be used throughout the rest of the paper.

3.2.1 Array Section Representation

During the scalar data
ow analysis, only the names of the variables are propagated. But for array data
ow
analysis, in addition to the array name, array section information should also be transferred between the
EBBs. Since we are focusing on out-of-core problems, listing every element of the array section will be
cumbersome. We need a compact representation of array section which will simplify implementation of
union and intersection of the data
ow de�nitions.
We represent the array section using an array section descriptor (ASD). Similar structures have been proposed
by other researchers [Bal90, HK91, GSS94, GS93]. ASD represents the array section using the triplet notation
(l : u : s), where l is the lower bound, u is the upper bound and s is the stride. For example, a two dimensional
array section is represented using two triplets < (l1 : u1 : s1); (l2 : u2 : s2) >. When the stride is 1, then
the array section can be represented as a rectangular region (also described in [GS90]). All other types of
accesses can be easily represented using the triplet notation. We can de�ne the following operations on the

ASD.

1For simplicity reasons, we will use examples having assignments statements.
2Active elements denote the elements of the array used in the current statement.
3Note IPLG is di�erent than PLG de�ned by [FOW87]
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� Intersection: An intersection of two ASDs, ASD(i) and ASD(j) is an ASD representing the common
elements of these ASDs.

� Union: An union of two ASDs, ASD(i) and ASD(j) is an ASD which represents elements of both the
ASDs.

3.2.2 Data
ow De�nitions

Traditional data
ow approaches deal with analyzing data
ow properties of scalar variables. In such cases
data
ow de�nitions need to know only the node (or the basic block in an interval) where a particular scalar
is de�ned or killed. For array data
ow analysis, di�erent sections exhibit di�erent data 
ow properties. It is,
therefore, necessary to study data
ow properties of individual array sections rather than that of the entire
array. We use the subscript i for arrays, j for the array sections, k and l for PLG nodes. We de�ne the
following terms:

Node De�nitions: Return node values

� FIRACS(i) returns the index of the node where the array i is �rst accessed (de�ned or referred).

� LASACS(i) returns the index of the node where the array i is last accessed.

Array Section De�nitions: Return boolean values

� GEN

j
i (k): An array section j of array i is said to be generated at node vk if it is de�ned for �rst time

in that node.

� TRPS

j
i (k): An array section j of array i is said to be transparent at node vk if it is not used in that

node.

� KILL

j
i (k): An array section j of array i is said to be killed at node vk if there exists at least one

element of the section which is killed by de�nition in node vk.

� COMP

j
i (k): An array section j of array i is said to be locally available at node vk if there is at least

one computation of the section in the node and the section is not killed at this node.

3.2.3 Data Dependence Relations

Using data
ow analysis we can obtain a clear picture of the access patterns of the data variables. However,
as Maydan et.al have noted ( [MAL93]), traditional data
ow analysis is not su�cient to analyze array
computations. Maydan et.al point out two important de�ciencies of data
ow analysis; (1) Data
ow analysis
models accesses to array elements as accesses to the entire array; and (2) Data
ow analysis fails to distinguish
between di�erent instances of array accesses. These two de�ciencies can be overcome by performing exact
dependence analysis of array variables4.
As described earlier, FORALL statements by de�nition, do not have dependence across iterations. However,
dependence may exist between two FORALL statements. Speci�cally, if we describe the dependence problem
as memory disambiguation, data dependence between two FORALL statements checks if any iterations of the
two FORALL statements refer to the same location. In our case, we are concerned with a larger problem; i.e.,
(1) to �nd if there is a dependence between two FORALL statements, (2) if such dependence exists (between
two array sections of the FORALL statements), to �nd the active sizes5 of the array sections, and (3) compute
the common active elements between the arrays sections in two FORALL statements. To represent these
characteristics, we use Dependence Access Relations, Rd

a(i) : vj ! vk.
A Dependence Access Relation (DAR),Rd

a(i) : vj ! vk, captures the dependence as well as access information
of the sections of array i between nodes vj and vk. The superscript d denotes the dependence pattern, i.e.
true (R/W), anti (W/R), output (W/W) and access (R/R). The subscript a denotes the access information,
i.e. whether two array sections share any elements and which array section has larger active elements. The
parameter a can take the following values

4However only data dependence analysis is also not enough to capture the access information of the program. See [MAL93].
5Total number of active elements of an array section
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� <: The array sections share common elements but the array section accessed in node vj has more
active elements.

� >: The array sections share common elements but the array section accessed in node vk has more
active elements.

� =: The same array section is used in nodes vj and vk.

� �: The array section accessed in node vj is a subset of the array section accessed in node vk.

� �: The array section accessed in node vk is a subset of the array section accessed in the node vj .

� �: The array sections accessed in nodes vj and vk are distinct. In addition symbols <;>;= are used
to compare the number of active elements.

The dependence access relation is assigned boolean values depending on whether the dependency allows the
motion of node vj wrt node vk

6. Table 1 presents the boolean values of di�erent DARs. A DAR has value
1 i� it allows code motion else it has value 0. Note that output dependency allows code motion i� the
corresponding array sections are distinct. The DAR also satis�es the following properties

� Associative Property : DAR is associative between any pair of nodes of IPLG. We can replace a set
of DARs between a pair of nodes by a resultant DAR obtained using the product of individual DARs.

� Transitive Property : DAR is not transitive over the nodes of IPLG.

To illustrate these properties, let us consider a simple example from Figure 2. The example shows three
statements in which arrays a, b and c are used. Consider statements 1 and 2. In the IPLG, the corresponding

nodes will be connected using two edges. The DAR for array a, R
W=R
> (a), has the boolean value 0. Similarly

the DAR for array b, R
R=R
< (b), has the boolean value 1. Using the associative property of the DARs, we can

replace these DARs with a new DAR R

2
1 : v1 ! v2 such that R2

1 = R

W=R
> (a) �R

R=R
< (b), where � denotes a

boolean product. Therefore, R2
1 will be 0. Similarly DAR between statements 2 and 3, R3

2, has the value 0
and DAR between statements 1 and 3, R3

1, has the value 1. It is easy to observe that R3
1 6= R

2
1 �R

3
2.

a(1:10)=b(1:10)

c(1:20)=a(1:20)+b(8)

b(20:30)=c(10:20)+a(23)

Figure 2: Properties of the DAR

It should be noted that according to the DAR R
3
1, statements 1 and 3 can be legally exchanged. However,

this is not the case because statement 3 cannot be placed before statement 2 (since R3
2 is 0). This example

brings forward one serious problem associated with dependence information: Data dependency describes
relationship between any two pair of statements, however, it but clearly fails to predict relationship between
more than two statements. In order to \view" the overall picture, we need global information (as provided
by data
ow analysis).

3.3 Program Locality Graph

The Program Locality Graph (PLG) is obtained from the Intermediate Program Locality Graph (IPLG).
The Program Locality Graph is an undirected complete graph (V;E; v0), where vi 2 V is a weighted node
which represents a basic block of P , E denotes the weighted edges representing the data
ow and dependence
relations between the basic blocks and v0 is the node representing the �rst basic block of the program.
In order to understand the properties of PLG, let us examine a sample HPF program fragment from Fig-
ure 3(a). It consists of four array assignment statements which use three arrays a, b and c. Figure 3(b)

6This code motion refers to motion that would modify the predecessor-successor relationship between the nodes.
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Table 1: Boolean values of Access Relations
Dependency Pattern Access Pattern Boolean Value

R/R <;>;=;�;�; � 1
R/W <;>;=;�;� 0
R/W � 1
W/R <;>;=;�;� 0
W/R � 1
W/W <;>;=;�;� 0
W/W � 1

represents the corresponding IPLG. The statements are represented using four nodes which are ordered ac-
cording to the statement ordering in the source. Each node is given a weight representing the number of
active elements of each array used that statement. Each node is connected with another node if the corre-
sponding statements access the same array. For example, statements 1 and 3 use the array a. Hence these
nodes are connected using one edges. Statements 1 and 2 do not use any common array, and thus, these
two nodes are not connected. The dependence between the nodes can be obtained considering the DAR
relations. Using Table 1 and the transitive property of DARs, we can compute the resultant DAR between
two statements and it's corresponding boolean value. Table 2 presents the DARs for the given program
fragment. The second column presents the DARs for each pair of nodes. The third column represents the
boolean value of the resultant DAR obtained using the transitive property of the DAR. Since nodes 3 and
4 do not share any array, there is no edge between v3 and v4. Hence, the boolean value of DAR between
nodes v3 and v4 is 1.

Table 2: Access Relations for the sample HPF program
Statements DAR Boolean Value

v1 ! v2 - 1

v1 ! v3 R(a)
W=R
> 0

v1 ! v4 R(a)
W=R
< 0

v2 ! v3 R(c)
W=R
> 0

v2 ! v4 R(b)
W=W
> 0

v3 ! v4 R(a)
R=R
< 1

Using the resultant DARs, we simplify the IPLG considerably. We represent multiple edges between the
nodes using the a single edge which represents the boolean value of the resultant DAR. If any two nodes were
not connected in IPLG (i.e. the corresponding statements did not have any common array) then these nodes
are connected using an edge representing a DAR of value 1. Therefore, in the Program Locality Graph each
node is connected with the remaining ones. Hence the Program Locality Graph becomes a complete graph.
We can now introduce the concept of edge weight, EW k

j . We de�ne a new variable EDGEk
j which represents

the boolean value of the resultant DAR between the nodes vj and vk. Let Sj(i) denote set of active
elements of an array i in statement j (given by the node weights of the corresponding PLG). Then S

k
j (i) =

Sj(i)\Sk(i) computes the set of active elements of array i which are used in statements j and k. Let Smaxkj =

maxi(S
k
j (i)) denote the maximumnumber of active elements shared by an array between statements j and k.

We can compute the edge weight EW k
j as a two-element tuple (EDGEk

j ,Smax
k
j ). For example, statements 2

and 3 share 8 elements of array c and there is a R/W dependence between statements 2 and 3. Therefore, the
edge e32 has the weight EW 3

2 as (0,8). Figure 3(c) represents the resultant PLG. The edges of the PLG are
associated with weights which represent dependence and access relations of the arrays between statements
while the nodes of the PLG represent the access pattern of the arrays within a statement. Hence, we can
represent the PLG as an undirected graph.
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b(2:16:2)=c(1:8)

a(1:10:2)=-2

(1,0)

(0,8)

(0,5)

(1,1)
(0,8)

(1,1)

1

2

3

4 (16,1),(1,1),(16,1)

(16,1),(16,1),(16,1)

(8,2),(8,1)

(5,2)

(a)  Sample  HPF Program

(Undirected)

(c)  Program Dependence Graph

2

3

4

(5,2)

(16,1),(16,1),(16,1)

1

(16,1),(1,1),(16,1)

(8,2),(8,1)

(b)  Intermediate  Program Dependence Graph

(Directed)

b(16:1:-1)=a(3)+b(1:16)

c(1:16)= a(1:16)+a(16:1:-1)

Figure 3: The Program Representation
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3.4 Computing Array Access Variables

Using the PLG, data
ow equations and DARs we analyze the access pattern of the array variables. We
compute the following variables:

� Distance: di(j; k) is the distance between any two nodes vj and vk which are connected using an edge
which represents the DAR R

d
a(i). di(j; k) can be computed as jnum(vj) � num(vk)j. Distance array

can be stored as an upper triangular matrix with 0s on it's diagonal.

� Range: ri of an array i is the maximum distance di(j; k). Range can also be computed using the
data
ow variables FIRACS and LASACS as

ri = LASACS(i) � FIRACS(i)

For example in Figure 3, ra = 3, rb = 2 and rc = 1.

� Cost: Ci of an array i is the sum of the distances over all statements in which the array i is accessed.
Ci can be computed as

Ci =
P

j

P
k>j di(j; k)

Cost Ci thus represents (1) how many times an array i is accessed in a program and, (2) the range ri
of an array i. For the example in Figure 3, C(a) = 6, C(b) = 2 and C(c) = 1.

� Overall Range Cost: � is the sum of the costs of all arrays accessed in the program.

� =
P

iCi

For our example, the ORC is 9.

4 Range Reduction

We want to perform code motion in order to minimize the overall I/O cost of an out-of-core HPF program.
The overall I/O cost depends on the following parameters: (1) Number of I/O calls, (2) Cost of each I/O
call. Number of I/O calls are decided by the data access pattern in the program and the cost of an I/O call
depends on the type of the I/O call and the amount of data accessed in each I/O call. The overall I/O cost
can be reduced by reducing both parameters.
To reduce the number of I/O calls, we want to keep array data in memory as much as possible. To achieve this,
we would like to bring statements accessing same array data closer to each other. Signi�cant performance
improvement can be achieved if the statement accessing the most used array are brought together. Cost of
the I/O calls is reduced by aggregating I/O calls7. Speci�cally, we coalesce the I/O calls of the arrays having
large I/O costs.
These speci�cations lead us to de�ning two cost functions, (1) Global Cost Function and (2) Local Cost
Function.

� Global Cost Function: Global cost function tries to bring together the statements accessing same arrays
by reducing the Overall Range Cost �. In order to minimize �, cost Ci (and in turn range ri) of each
array i has to be minimized. Hence this procedure is called the Range Reduction.

� Local Cost Function: Local cost function tries to optimize the I/O cost associated with each statement.
Local cost function chooses the array from a statement j, with respect to which, the statement(s) should
be moved. This array is called the Dominant array.

7Similar techniques have been used in optimizing interprocessor communication [Pon94].
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4.1 Dominant Array Computation

The dominant array is chosen using the combination of following criteria

1. Number of common elements with the other statements: Each array is compared using the number
of common elements it has with an another statement j, (Sjk(i)). The array having the largest
number common elements is chosen.

2. Amount of stride in access: The I/O cost, in addition to the total number of active elements,
also depends on how these elements are accessed. Since each I/O call fetches consecutive block
of data, accesses requiring strides require multiple I/O calls to complete the I/O operation. An
array having strided accesses is chosen as a candidate. If there are several arrays with strided
accesses, the array having the largest stride is chosen as a candidate. The information about the
strides can be computed using the node weights of the PLG.

3. Size of the active set: The cost of an I/O call is directly proportional to the amount of data being
read or written during the call. Hence an array having the maximum number of active elements
is selected as a candidate.

Choice of the dominant array depends on all the three factors. We use a simple heuristic to choose the
dominant array. An array which is selected in more than one category is chosen as the dominant array.
However, if di�erent array is chosen in each category then the array i having the maximum S

k
j (i) is chosen

as the dominant array (i.e. condition 1 is given the highest priority). These conditions guarantee that in
most cases, the dominant array will have the maximum S

k
j (i) and either the maximum number of active

elements or access stride. In only one case, the dominant array will not have maximum S

k
j (i). But in this

case, the dominant array will have both the largest number of active elements and the largest access stride
which will result in the largest I/O cost. Note that since the condition (1) chooses a dominant array of a
statement i with respect to a statement j, the dominant array is chosen for a pair of statements i and j.
Therefore, two pairs of statements may have di�erent dominant arrays. For simplicity, we denote a dominant
array between statements i and j as DAj

i . Recall that edge weight between two nodes represents the largest
number of elements shared between two statements (Smaxkj ). In other terms, weight of edge ekj represents

the weight of the corresponding dominant array (i.e. DAk
j ).

Using the criteria 2 and 3, we can compute the local I/O weight of each array in a statement. Let LW k
j (i)

denote the local I/O weight of a section k of array j in statement i. LW k
j (i) can be easily computed using

the node weights of the PLG.

a(1:100:2)=b(1:50)+c(4)

c(10:30)=a(1:20)

b(1:100)=c(1:100)

Figure 4: Computing Dominating Array

Figure 4 presents an HPF program fragment consisting of three arrays a, b and c. Consider statements 1
and 2. In the �rst statement, arrays a and b both have 50 elements. However array a uses a stride of 2 and
S
2
1(a) = 10. Hence, array a is the dominating array of statement 1 with respect to statement 2 (DA2

1). Now
consider statements 1 and 3. These two statements use arrays b and c. Since S31(b) = 50, array b is chosen
as a dominant array for statement 1 with respect to statement 3 (DA3

1). Consider statements 2 and 3. In
statement 2, arrays c and a both have 20 elements but S32(c) = 20 which is greater than S

3
2(b) (which is 0).

Hence, array c is chosen as the dominant array DA3
2.

The local I/O cost of a given node is said to be optimized if the node connected to it by the edge having
the maximum weight is assigned either as a successor or predecessor of the given node (In other words, if
a statement accessing the dominant array is made a successor or predecessor of a given statement). By
optimizing the local I/O cost of a statement, we improve the program locality of the dominant array of that
statement.
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Range Reduction Heuristic 14

We can now frame the Range Reduction Problem as following
To reorganize the code so that the Overall Range Cost (ORC) is reduced. Each statement should be moved
so that the local I/O cost is optimized and the dependence constraints are not violated.
Note that the problem does not aim to minimize the ORC. This is because there may be dependencies in
the program which will prevent the program ordering corresponding to the minimum ORC. The problem
will try to reduce the ORC as much as possible without violating the dependence constraints.

5 Range Reduction Heuristic

5.1 Description of the Range Reduction Heuristic

Figure 5 represents the range reduction heuristic. This heuristic takes the PLG as an input and returns
a modi�ed PLG. The HPF program is then modi�ed according to the new PLG. This heuristic uses three
costs for program reordering, (1) Global Access Cost C(i), (2) Cost of the DominantArray in a statement
DA

k
j (i) and (3) Local I/O weight of the arrays in a statement LW k

j (i).
The heuristic uses initialize routine to read the PLG and initialize various data structures. An array Element
is used to store names of the arrays used in the HPF program and each array is initially marked MOVABLE.

Cost array C is initialized to store costs C(i) of the arrays. Variable NumArray is assigned the value of total
number of arrays used in the program. update ORC takes array C as an input and returns the initial value
of ORC. The sort routine sorts array C in a decreasing order of the cost. The Element array is also updated.
The heuristic iterates over each array in the HPF program. In every iteration of the loop, the MOVABLE array
having the largest access cost is chosen from Element and initialized to CurrentArray. NumStat is assigned
the value of total number of statements (nodes in PLG) in which CurrentArray is accessed (active nodes).
Stat is initialized with the list of active nodes and then sorted according the corresponding local I/O weights
of the CurrentArray8.
The innermost loop iterates over the active nodes of the CurrentArray. First the node accessing the
CurrentArray having the largest local I/O weight is chosen and assigned to CurrentStatement. The
CurrentStatement is passed to �nd new position routine. �nd new position routine returns the node to
which the CurrentStatement could be moved so that the ORC is reduced. �nd new position routine takes
as input the CurrentStatement and the PLG. The routine �rst analyzes the edges of the CurrentStatement
and chooses the node connected by the edge having the maximumweight. Then the routine �nd new position
computes the DominantArray using the heuristic presented in the previous section. If the DominantArray is
marked FIXED then the CurrentStatement is updated to the statement having the next highest weight. If
the DominantArray is MOVABLE then the the CurrentStatement can be moved along the edge (also termed as
CurrentEdge) to reduce the local I/O cost of the DominantArray. The code motion is allowed i� data
ow
and dependence constraints are not violated. Note that if two nodes are connected with an edge having
EDGE parameter 0, then only the code motion that modi�es the existing predecessor-successor relationship

is not allowed. The code motion that maintains the existing predecessor-successor relationship is permitted.
Formally, we can classify the code motion into (1) Code Hoisting and (2) Code Pushing.

� Code Pushing

A code is said to be pushed i� the corresponding node k in the PLG is moved to a position n such that
n > num(node(k)). A code statement can be pushed from a position k to a position n i� following
conditions are satis�ed (Figure 7).

Condition (a) stipulates that if a node k is to be moved before or after node n then EDGE
l
k = 1; k <

l < n. According to condition (b), in order to have the code motion legal, each section j of the every
array i used in node k may be read or not used in the nodes between k and n but may not be killed
or generated in any of these nodes 9.

Figure 6 illustrates two code pushing strategies. Consider the program dependence graph from Fig-
ure 6(b). Assume that node 2 is the CurrentStatement and edge e

8
2 is the CurrentEdge. Since

8The local I/O weights are compared using the (1) Access Strides and (2) Number of Active Elements
9In Figure 7, for simplicity, array and section notations are neglected. This condition is also termed as availability (AV AIL)

[MR79]
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/* Sorting the cost array C */

update_ORC

initialize

range_reduction

(C)

begin{

sort (C)

sort

Stat = Statements in which CurrentArray is accessed. /* Initialize Stat */

NumStat =  Number of Statements in which CurrentArray is accessed

j=0

CurrentStatement=Stat(j)

CurrentArray= Element(i)

while  (j < NumStat) do {

do {(i < NumArray)while 

Node=

move

update_ORC

endif

j=j+1

(Node)

(C)

} end

i=i+1

status

if (Node !=

CurrentStatment=Stat(j)

CurrentStatement) then

(Element(i))=FIXED
} endwhile

} endwhile

sort(Stat) /* Sorting the statements according to local I/O weights */

(Element)

(PLG)

(PLG)

find_new_position (Stat(j),PLG)

return PLG

Figure 5: The Range Reduction Heuristic
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1

2

2

8

9

7
6

7

8

9
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8

9

Code Pushing  Strategies

(a)  Option 1 (b) PDG (c) Option 2

7

2

8

9

7

8

2

9

Option 2

Option 11

0

Figure 6: Code Pushing Strategies

(a)
Q

k<m�nEDGE
m
k = 1 (Dependence Condition)

(b)
Q

k<m<n(KILL(m) �GEN (m) � (TRPS(m) + COMP (m))) = 1 (Data
ow Condition)

Figure 7: Conditions for code pushing
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EDGE

8
2 = 1, if the data
ow and dependence conditions are satis�ed, node 2 can be moved either

above (point 1) or below (point 2) node 8. These options are shown in Figures 6(a) and (c) respec-
tively. Choice between option (a) and (b) can be found by using the Smax value of the corresponding
edge. Speci�cally, node k will be moved before node n (i.e. after node n�1) i� Smax

n�1
k > Smax

n+1
k

(Option 1) otherwise node k will be moved before node n+1 (Option 2). In Figures 6(a) and (b), orig-
inal node numbers are shown outside each node. Figure 6 illustrates another important characteristics
of code motion. Notice that EDGE value of E9

2 is 0 but the motion of node 2 with respect to node 9
is allowed since the existing predecessor-successor relationship is not modi�ed.

� Code Hoisting

(a)  Option 1 (b) PDG

2

3

4

8

0

1

Option 2

Option 1

(c) Option 2

2

3

4

5

3

8

4

2 2

3

8

4

2

3

4

5

Code Hoisting  Strategies

Figure 8: Code Hoisting Strategies

A code is said to be hoisted i� the corresponding node k in the PLG is moved to a position n such that
n < num(node(k)). A code statement can be pushed from a position k to a position n i� following
conditions are satis�ed

(a)
Q

k>m�nEDGE
m
k = 1 (Dependence Condition)

(b)
Q

k>m>n(KILL(m) �GEN (m) � (TRPS(m) + COMP (m))) = 1 (Data
ow Condition)

Figure 9: Conditions for code hoisting

Condition (a) stipulates that if a node k is to be moved before or after node n then for each l (k < l < n),
EDGE

l
k should be 1. According to condition (b), each section j of every array i may be read or not

used in the nodes between k and n but may not be killed or generated in any of these nodes 10.

Figure 8 illustrates two code hoisting strategies. Consider the program dependence graph from Fig-
ure 8(b). Assume that node 8 is the CurrentStatement and edge e

4
8 is the CurrentEdge. Since

10For simplicity, array and section notations are neglected. This condition is also termed anticipatibility ANTILOC [MR79].
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EDGE

4
8 = 1, if the data
ow and dependence conditions are satis�ed, node 2 can be moved either

above (point 1) or below (point 2) node 8. Choice between option (a) and (b) can be made by the
same procedure as followed for code pushing. Figures 8(a) and (c) illustrate the two options.

If the dependence and data
ow constraints are not violated then new node is marked as a POSSIBLE position.
The ORC is then updated according to the POSSIBLE position. If the new ORC is less than the original ORC
then new position returned as the new position. This condition ensures that if a statement is moved then
both the global access cost of the CurrentArray and the local I/O cost of the DominantArray are reduced
simultaneosly.
If no POSSIBLE position is obtained then the routine returns the value of the CurrentStatement. If the
suggested node is a new statement then the CurrentStatement is moved to the required position and the
ORC is updated. The CurrentStatment is then assigned the value of the next node in the Stat array.
The process is repeated until all the statements using the CurrentArray are analyzed. Then the status of
the CurrentArray is marked FIXED and the CurrentArray is assigned the next array from Element. This
process is repeated until all the arrays are analyzed.

5.2 Analysis of the Range Reduction heuristic

Let us �rst verify if the heuristic presented in Figure 5 gives the correct possible result. Note that by de�nition,
the range reduction problem tries to reduce the ORC as much as possible (not minimize the ORC). This
condition is necessary because due to the dependence constraints inherent in a program, an heuristic may
not be able to reorder the code to obtain the least ORC. Therefore, any range reduction heuristic tries to
reorder the code so that the ORC is reduced and the dependence constraints are not violated.
The heuristic presented in Figure 5 can be viewed as an optimization heuristic which tries to minimize two
independent costs. The global I/O cost measures the frequency and the range of access of each array in
the entire program. On the other hand, the local I/O cost measures the I/O cost connected with each
individual statement. Each step of our heuristic tries to optimize the local I/O cost of a statement such
that the global I/O is also reduced. Our heuristic partitions the problem into n subproblems, where n is the
number of arrays used in the program. The ith subproblem tries to reduce the access cost of the ith array by
bringing together the statements that access the array. Since an assignment statement can have more than
one participating array, statement reordering performed to reduce the access cost of an array, may increase
the access cost of another array. To prevent this, two di�erent arrays are used as targets for the two cost
functions. The global I/O cost is minimized for the CurrentArray and the local I/O cost is minimized for a
DominantArray of a program statement. In addition, two array status 
ags are de�ned; FIXED and MOVABLE.
Any statement motion is said to be legal if it satis�es the following condition: any statement can be moved
i� it's DominantArray is MOVABLE. This condition prevents extra computation. The proof is as follows: By

de�nition, DominantArray is de�ned as an array having the largest I/O cost for a pair of statements. If

the chosen DominantArray is FIXED then the particular array was previously both the CurrentArray and
DominantArray. This means that a previous iteration has reordered the statement(s) accessing the chosen
array and existing statement ordering is the best possible ordering for it. Hence, any new statement motion
is not possible.
Due to the statement ordering condition, the time complexity of the heuristic will depend on the order in
which the subproblems are solved. Ideally we would like to solve the subproblems with large number of
statements �rst. As a result, when a CurrentArray of the ith subproblem becomes FIXED, the statements
in which this array was the DominantArray will be also FIXED. As a result, computations in the succeeding
subproblems will be reduced. Therefore, the subproblems are ordered according to the access costs of the
corresponding arrays. The �rst subproblem reorders the statements so as to reduce the access cost of the
array having the largest cost. The second problem targets the array with the second largest cost and so on.
At the end of the last subproblem, the access cost of each array will be reduced as much as possible. Each
statement may be reordered in more than one subproblem. After a few iterations, the heuristic will reach a
global minima under dependence constraints and the further statement reordering will not be possible.
Let us now analyze the time complexity of the heuristic. Let n denote the total number of arrays in the
program and m denote the number of statements in the program. The heuristic consists of two main phases,
an Initialization phase and an Iteration phase. In the initialization phase, the arrays Element and C are
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sorted according to the access costs of the corresponding arrays. The sorting requires O(nlgn) time. The
iteration phase consists of two main loops, the outer loop iterates over the arrays and the inner loop iterates
over the statements. Each iteration of the outer loop selects the CurrentArray and computes the number of
statements in which this array is used. The inner loop of the heuristic sweeps over the statements which access
the CurrentArray. These statements are ordered according to the local I/O weight of the CurrentArray.
In general, this sorting can be performed in O(mlgm) time, where m is the number of statements used in
the program.
Each iteration of the inner loop operates on the CurrentStatement and tries to reduce the local I/O cost of
its DominantArray. The computations to �nd DominantArray take constant time. But the execution time
of �nd new position is bounded by m

2
n. The routine needs to check the ORC for each statement. Using

the algorithm presented in Appendix A, an ORC can be computed in O(mn) time. Since each array may
be used in m statements, �nd new position can be performed in m

2
n time. If a statement is moved to the

POSSIBLE node, the ORC is updated. The updating can be performed in O(mn) time. Hence the time
required for one iteration of the inner loop is C + m

2
n + mn. This is a very loose bound because, as the

heuristic progresses, the dependence constraints and the statement ordering condition increases the number
of FIXED arrays and statements. Hence most of the expensive computations (like updating ORC) are not
performed. Using the above result, the overall complexity of the heuristic can now be computed. Each outer
iteration will require O(mlogm+m(m2

n+mn)) time. The number of outer iterations are n. Therefore, the
worst case complexity of the Range Reduction heuristic is O(nlgn + n(mlgm + m

3
n + m

2
n)). Usually m

is much larger than n. Hence, as compared to m3
n, we can neglect nlgn;mlgm and m

2
n to give the worst

case complexity of the Range Reduction heuristic as O(m3
n
2).

The best case complexity of the heuristic is obtained when the inner loop is executed only once. This happens
when the array having the largest access cost is the DominantArray in all the statements. Therefore, when
this iteration is over, all the statements in the program are FIXED. The best case complexity of the heuristic
is O(m2

n

2). In practice, most programs have su�ciently large number of dependencies. For such problems,
the running time of the heuristic approaches it's best case value.
However, the running time of the heuristic becomes extremely large when there are no dependence con-
straints. This situation happens when there are no dependencies within the program statements or there are
only R/R dependencies. Appendix B analyzes two such cases, namely, Code Motion with No Dependence
(CMND) and Code Motion with Read Dependence (CMRD).

5.3 An Example of Program Reordering using Range Reduction

Consider the HPF program fragment illustrated in Figure 10 (a). The program uses three arrays a, b and
c. In this program ra = 5, rb = 4 and rc = 6. The costs of the arrays can be computed as

C(a)=(1+2+4+5)+(1+3+4)+(2+3)+1=26

C(b)=(1+2+4+6)+(1+3+5)+(2+4)+2=30
C(c)=(1+3+6)+(2+5)+3=20

Though the range of array C is the largest, array b has the largest cost. The initial value of ORC is
(26+30+20)=76. Table 5.3 presents the edge weights in the corresponding PLG. Note that edge weight
shows the dependence and the local I/O weight of the DominantArray between a given pair of statements.
Let us analyze how this code is reorganized to obtain minimumORC. In the �rst phase the arrays are sorted
out according to their costs and the array having the largest cost, i.e. b, is chosen. Then the statements in
which b is accessed are computed and the corresponding node numbers are stored in the array Stat. Stat is
then sorted according to the local I/O cost of array b. From Figure 10, it can be observed that b is accessed
in statements 1,2,3,5 and 7. Array b has the largest local I/O weight in statement 3, followed by statements
1,7,5 and 2. Therefore, Stat is sorted as 3,1,7,5 and 2.
First statement 3 is selected for motion. In statement 3, array b is the DominantArray (wrt to the statements
1, 2, 5 and 7). From the weight tableau, it is easy to observe that the edge e

7
3 has the largest weight.

However, since EDGE

7
3 is 0 statement 7 can be hoisted to a point after statement 3. Since, EDGE7

4 is
0 and EDGE

7
5 = EDGE

7
6 = 1, hence statement 7 can be brought up between statements 4 and 5. The

�nd new position chooses node 5 as a POSSIBLE position. Then cost of arrays are updated and the new ORC
isf found. The new access costs are
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a(1:10:2)=b(1:10:2)+c(4)

b(2:16:2)=b(5)+a(16:2:-2)

c(10:16)=-2

a(1:8)=-4

c(1:16)=b(1:16)

a(8:16)=a(1:8)+b(8:16)

(a)

c(5:10)=a(11:16)+b(1)

b(2:16:2)=b(5)+a(16:2:-2)

c(10:16)=-2

a(1:8)=-4

a(8:16)=a(1:8)+b(8:16)

c(1:16)=b(1:16)

a(1:10:2)=b(1:10:2)+c(4)

(c)

a(1:10:2)=b(1:10:2)+c(4)

b(2:16:2)=b(5)+a(16:2:-2)

c(10:16)=-2

a(1:8)=-4

a(8:16)=a(1:8)+b(8:16)

c(1:16)=b(1:16)

(b)

c(10:16)=-2

a(1:8)=-4

a(8:16)=a(1:8)+b(8:16)

c(1:16)=b(1:16)

b(2:16:2)=b(5)+a(16:2:-2)

(d)

c(5:10)=a(11:16)+b(1)

c(5:10)=a(11:16)+b(1) a(1:10:2)=b(1:10:2)+c(4)

c(5:10)=a(11:16)+b(1)

Figure 10: An Example Program
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C(a)=(1+2+5+6)+(1+4+5)+(3+4)+1=32
C(b)=(1+2+4+5)+(1+3+4)+(2+3)+1=26

C(c)=(1+3+4)+(2+3)+1=14

Now C(b)=26, C(a)=32 and C(c)=14. Hence the ORC is 72. Since the ORC is reduced, the statement 7 is
moved to statement 5 and the PLG is updated. Figure 10(b) shows the reordered program.
After this statement movement, statements 1, 5 and 2 are examined for statement motion. Consider state-
ment 1. The array b is the DominantArray of this statement. From the weight tablue, it can be observed
that the edge e31 has the largest weight. Since EDGE2

1 is 1, statement 1 can be placed after statement 2.
Hence the �nd new position routine chooses node 2 as a POSSIBLE position. The access cost of arrays are

C(a)=(1+2+5+6)+(1+4+5)+(3+4)+1=32
C(b)=(1+2+4+5)+(1+3+4)+(2+3)+1=26

C(c)=(1+3+4)+(2+3)+1=14

The ORC is still 72. Though the ORC is not reduced, the local I/O cost of array b in statement 1 is
decreased. Hence the statement 1 is moved to position 2 and the PLG is updated. Figure 10(c) shows the
updated program. The remaining statements in the Stat array are checked, but they are found not suitable
for motion. When all the statements in the Stat array are analyzed, array b is made FIXED.

The array a is chosen as the next CurrentArray. Statements 1, 2, 3, 5 and 6 are assigned to Stat (Fig-
ure 10(c)) and then Stat is reordered according to the local I/O weights of array a. The statements are
ordered as 3,2,5,6 and 1. After repeating the earlier procedure, it is observed that the present statement
orderings are optimal for array a and therefore, array a is made FIXED.
The array c is chosen as the next CurrentArray. Statements 1, 4 and 5 are assigned to Stat. Since c has
the maximum I/O cost in statement 5, it is chosen to be moved �rst. Array c is the DominantArray wrt
statements 1 and 4. Since statement 4 is the next statement in the program, statement 1 is checked for
possible motion. From the dependence information, one can observe that statement 1 can be moved to any
position before statement 5. Considering the locality of arrays b and a, the �nd new position routine chooses
position 3 as the POSSIBLE position. The access cost of arrays is

C(a)=(1+2+5+6)+(1+4+5)+(3+4)+1=32
C(b)=(1+2+4+5)+(1+3+4)+(2+3)+1=26

C(c)=(2+3+4)+(1+2)+1=13

The ORC is 71. Hence the statement 1 is moved to position 3 and the PLG is updated. Figure 10(d) shows
the �nal program. Note that in the reordered program, any two consecutive statements access a common
array.

Table 3: Tableau of the edge weights for the program in Figure 10
1 2 3 4 5 6 7

1 (1,1) (1,1) (1,0) (0,5) (0,4) (1,0)

2 (1,3) (0,1) (0,5) (1,0) (0,6)

3 (1,0) (0,8) (0,4) (0,9)

4 (1,0) (1,0) (0,7)

5 (0,9) (1,9)

6 (1,0)

7

This example also illustrates that in presence of su�cient dependencies, the range reduction heuristic requires
very few iterations.

Northeast Parallel Architectures Center at Syracuse University,

Science and Technology Center � 111 College Place � Syracuse, NY 13244

SCCS 698



Applications 22

6 Applications

Using the framework presented in Section 3, the compiler can obtain data
ow and dependence information
about the program. Using this information and the Range Reduction Algorithm, the program will be
reordered to improve the array locality. The compiler can take advantage of the improved array locality and
use the knowledge about array access patterns to perform further optimizations. Some of these optimizations
are brie
y described below.

6.1 Providing Prefching Hints to �le systems

In a reordered program, two adjacent statements can share at least one array. This information can be used
by the compiler to prefetch the array data. In out-of-core problems, in-processor memory is at premium.
Therefore, prefeched data can not be stored in an user bu�er. To solve this problem, the compiler can
provide hints to the �lesystem so that necessary data can be prefeched into the system bu�er.
In an out-of-core program, the compiler can give two types of hints, i.e. Inter-statement and Intra-statement
hints. Intra-statement hints provide information about the access pattern of the arrays which are being
used in the current statement (active arrays) and inter-statement hints provide access information about the

arrays which are also used in the other statements. To illustrate these hints, let us consider the following
node program fragment (Figure 11).

DO i=100, 200

DO i=1, 10

DO j=1, 10

ENDDO

ENDDO

DO i=1, 10

DO j=1, 10

ENDDO

ENDDO

a((i-1)*10+j)=b((i-1)*10+j)DO i=1, 100

a(i)=b(i)

ENDDO

c(i)=b(i)

ENDDO

c((i-1)*100+j)=b((i-1)*100+j)

A

B
Source Program

Stripmined Program

Figure 11: Compiler Directed Prefetching Hints

Figure 11 illustrates two DO loops. In the both the loops array b is used. In the �rst loop, �rst 100 elements
of b are used while in the second loop next 100 elements are used. Figure 11(b) presents the corresponding
stripmined code (The available memory is assumed to be 10). Regions A and B describe the code regions
from where prefetching information could be obtained. Consider region A. In this region, consecutive slabs
of array B are referred. Since compiler performs this stripmining, it can ask the �le system to prefetch the
next slab into the system bu�er. This hint is called the Intra-statement hint since the data to be prefetched
is required during the execution of the same statement. Consider the region B. In this region, next 100
elements of array b are referred. Using the framework described in the previous section, the compiler can
�nd out what elements of array b are also read in the next DO loop. Using this information, the compiler can
advice the �lesystem to fetch the next 100 elements in it's system bu�er. Knowing that both statements read
two consecutive sections of an array, the compiler can further suggest to the �le system to read the data in
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one chunk and store it in the system bu�er. This hint is called the Inter-statement hint. The compiler (or
the runtime system) then can read the data from the system bu�er, thus avoiding extra disk accesses.

6.2 Data Retaining Policies

As described earlier, out-of-core computation involve computations on in-core array slabs. Each out-of-core
computation is performed in several phases, each phase reads data into memory, performs computations and
writes the data back to disks (if necessary). Therefore, performance of an out-of-core program depends on
how many times an array is read or written back onto the disk. In order to reduce this I/O cost, e�cient
memorymanagement strategies are required. Speci�cally, a memorymanagement strategy would (1) allocate
memory to a array section depending on it's access pattern in a statement or in the entire program and (2)
decide if a particular array section should be replaced from the memory and written to the disks. These
problems can be collectively called Data Retaining Problems.
The Data Retaining Problem is a magni�ed (by several orders of magnitude!) version of the Register
Allocation Problem. The available memory can be considered as a large set of registers which needs to be
allocated to more than one array sections. When the computation is over either the entire or part of the
array section can be replaced from the memory. Thus during the course of the program, number of registers

allocated to an array change dynamically. Thus, the Data Retaining Problem can be viewed as the Dynamic
Register Allocation Problem. Indeed this problem is a di�cult one and we will describe it in detail separately.
For purposes of this paper, we will describe how the information provided by our framework can be used for
solving this problem.
Our framework provides the following information:

� Program Information

{ Number of arrays are used in the program.

{ Global access and dependence information about the arrays.

� Array Information

{ Access cost and range of the arrays.

{ Number of statements accessing the arrays and local cost of each statement (as a function of the

cost of participating arrays).

Any memory management strategy will allocate memory according to the access cost of the arrays. The
choice of an array can be made using either its global access cost or the local I/O cost (node weights of the

PLG)11. The global access cost of an array i can be obtained using the access cost variable C(i). Similarly,
in a statement, the array with the largest local cost can be easily obtained. Another important parameter is
the access pattern of the array. The distance matrix provides a very compact way of representing the access
pattern of an array. The data replacement policies can use this metric very e�ectively. For example, the
replacing policy may want to replace the array which is not used in near future; however, at the same time
retain the array which has highest local cost. The array which is used the furthest can be found by checking
the distance matrix and the array with the largest local cost can be found using the local I/O weights.

6.3 Dead Code Elimination

A computation (speci�cally a de�nition) of an array section is said be dead (redudant) i� the array section
is killed before being referred again. Formally, let the variable REDUN j

i (k; l) denote the redundancy of

a section j of array i between nodes k and l. Then REDUN

j
i (k; l) = TRUE if the following equation is

TRUE

If an array de�nition is redundant, then it can be replaced by the de�nition has killed it. This replacement
involves statement movement. Suppose de�nition at node l kills the de�nition at node k. If node l is not

11Notice the similarity to Global and Local Register Allocation Policies
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GEN

j
i (k) � (

Q
k<m<lKILL

j

i (m)) � (
Q

k<m<l TRPS
j
i (m)) �KILL

j
i (l)

Figure 12: Data
ow Conditions for Dead Code Elimination

a predecessor or successor of node k then the node l can either be hoisted or pushed down. The statement
movement has to be carried according to the conditions in Figures 9 and 7. Figure 10(d) illustrates redundant
computation elimination. Consider statements 4 and 5. Statement 4 de�nes a section of array c which is
immediately killed by statement 5. Since the array section de�ned in section 4 is not used in statement 5,
the de�nition of the section in statement 4 can be considered redundant and can be eliminated.

6.4 Local File Reordering

Our out-of-core HPF compiler uses the local placement model as an underlying execution model. As described
earlier, in this model, each processor stores it's out-of-core local array (OCLA) in a separate logical �le called
the local array �le (LAF). Each local array �le is stored on a logical disk associated with each processor.
The local array �les are normally required during computation, therefore, they are generated as scratch
�les. Since data belonging to a processor is stored together in a separate �le, locality in processor space is
translated into locality in �le space12. If each local array �le is stored on a separate disk, the locality in �le
space gets translated into locality in disk space.
The range reduction algorithm improves the locality of the arrays in an HPF program. Local �le reordering
tries to reorder the data in a local array �le so that it matches the access pattern of the corresponding array
in the source program. Local array reordering distributes the array elements into three di�erent data-sets,
(1) elements which are accessed only once, (2) elements which are accessed more than once and (3) elements
which are not accessed at all. These groups are stored separately (and consecutively) in the local array �le.
Moreover, the elements which are accessed only once, are stored in the order in which they are accessed. As
a result, the locality in the program space gets translated into locality in �le space.
The information required by the �le reordering algorithm (access patterns, array data
ow information) can
be easily computed from the our framework. The compiler can use the local �le reordering to translate the
locality in program space to the locality in �le space. The reorder local �le improves the I/O performance
by allowing contiguous data transfers and data prefetching [BC95].

7 Conclusion

We have presented a framework to describe the data
ow and dependence information of an HPF program.
Our framework represents an HPF program as an undirected weighted Program Locality Graph (PLG),
where an edge represents the dependence between two statements sharing an array section and a node
weight represents the access pattern of the arrays used in a statement. We have de�ned a new boolen
descriptor, called Dependence Access Relation, to provide a concise representation of the dependence and
access pattern of the array sections.
The information provided by the PLG is used by the compiler to reorder the program so that any pair
of statements using a common array is brought close to each other. We approach the program reordering
problem as an optimization problem which tries to reduce two independent costs simultaneosly. To solve
this problem, we have presented a polynomial time algorithm, called the Range Reduction Algorithm. The
best case complexity of the algorithm is O(m2

n
2), where m is the number of statements and n is the number

of arrays used in the program. In presence of su�cient dependence constraints, the running time of range
reduction algorithm approaches the best case performance. The worst case running time of this algorithm
is O(m3

n
2).

The framework is being implemented in the PASSION compiler to compile out-of-core data parallel programs.
Taking advantage of the restructured program and the information provided by the PLG, the PASSION

12Elements belonging to one processor are said to have locality in processor space. Similarly elements lying in one �le are
said to have locality in �le space.

Northeast Parallel Architectures Center at Syracuse University,

Science and Technology Center � 111 College Place � Syracuse, NY 13244

SCCS 698



REFERENCES 25

compiler performs further optimizations like (1) providing cache hints to the �le system, (2) choosing a good
data management strategy, (3) eliminating dead code and (4) reorganizing local array �les.
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A An O(m2n) Algorithm for computing the ORC

The Overall Range Cost (ORC) is sum of the access costs of all arrays in a program (Section 4). The access
cost of an array can be computed as a sum of the elements of the strictly upper triangular distance matrix.
This computation requires O(m2) operations. Since there are n arrays, the ORC can be computed in O(m2

n)
time.
In this section, we describe a O(m) algorithm to compute the access cost of an array. Let us consider
an array i which is used in statements 1, 3, 7, 9 and 16. Let us de�ne an index array which stores the
index of the statements. Figure 13(A) illustrates the corresponding distance matrix. The access cost C(i)
can be computed as a sum of the elements of the distance matrix. Figure 13(B) illustrates the access cost
computation. The access cost of the array i is 72. Figure 13(B:2) presents a per-statement way of computing
the access cost. It can be observed that the access cost of array i can be computed using only four values;
2, 4, 2 and 7; which are nothing but the o�sets between the consecutive statements (Figure 13(C)). We
can de�ne an o�set array and initialize it as offset(i) = index(i) � index(i � 1). Therefor, o�set(0)=0,
o�set(1)=2, o�set(2)=4, o�set(3)=2 and o�set(4)=7.

2+6+8+15=31

4+6+13=23

7=7

2+9=11

72

(B)  Access Cost Computations

1

3

7

9

16

2

4

2

7

(C) Computing Offsets

(A)  Distance  Matrix

(D)  Offset Matrix

7=7

72

2

2

7
2
2

4

4

4

2

2

(E)  Computations using the offsets

(4*3)+(11)=23

(2*4)+(23)=31

(2*2)+(7)=11

(2)+(2+4)+(2+4+2)+(2+4+2+7)=31

(4)+(4+2)+(4+2+7)=23

(2)+(2+7)=11

(7)=7

72

2 6 8 15

4 6 13

2 9

7

Figure 13: Computing Array Access Costs

Let us consider the o�set matrix Figure 13(D). The o�set matrix is a square triangular matrix of size
(m � 1;m � 1), where m is the number of statements. For our example, o�set matrix is a (4,4) matrix.
The o�set matrix is initialized as follows: m � 1 + j rows of the jth the column are assigned the value of
offset(j + 1), 0 � j < m � 1. This condition allows us to represent the entire upper triangular matrix as a
(0 : m � 2) vector whose kth elements should be used (m � 1� k) times (0 � k � m� 2).
Using the o�set vector (computed using the index vector), we can compute the access cost of an array in
O(m) time. Figure 14 shows the O(m) algorithm. Each step of the algorithm computes an intermediate
value of the ORC (sum) using the current o�set and the value of the accumalated o�set from the previous
iteration. Figure 13(E) shows the computations according to the new algorithm. In the �rst step, current
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sum=0

do i=0, m-2

enddo

temp=0

sum=sum+(temp+(i+1)*offset(m-1-i))

temp=temp+offset(m-1-i)*(i+1)

Figure 14: The Array Access Cost Algorithm

o�set is 7 and accumalated o�set is 0. After the execution of the �rst step, sum is 7 and the accumalated
o�set (denoted by temp) is also 7. In the second step, using the current o�set is 2 and the accumalated o�set
7, sum is computed to be 11 and so on. The overall computation can be performed in O(m) time. Since
there are n arrays, the ORC can be computed in O(mn) time.

B Analysis of the Restricted Code Motion Problem

This section analyzes the complexity of the Range Reduction Algorithm for two types of codes, (1) Code
with no dependencies (CMND) and (2) Code with read dependencies (CMRD).
Figure 15(A) presents an HPF program fragment with no data dependencies. As a result, our framework
would present this program as a PLG with edges having edge weights (0,0). Since this code has no dependence
constraints, one can place statements in any order. In order to �nd the statement ordering which corresponds
to the minimum ORC, one has to perform an exhaustive search of the problem space.
Suppose the number of statements in a program segment are m and the number of arrays are n. Therefor,
the number of elements in the problem space is m!. For each case, the algorithm needs to check the value of
ORC, which requires O(mn) time. Hence, the overall complexity of the Range Reduction Algorithm will be
O(m!mn), which is loosely bounded by O(2m). Thus for the code having no data dependencies, the Range
Reduction Algorithm runs in exponential time.
One can view this problem as an cluster ordering problem. We can organize m statements into i distinct
clusters. The ith cluster consists of all the statements accessing the ith array. Thus, two distinct clusters
may share statements. In this case, the statement ordering will depend on how the clusters are ordered and
how the statements within a cluster is ordered. If m0 denotes the number of statements in the biggest cluster,
then the complexity of the Range Reduction Algorithm will be loosely bounded by O(n!m0!mn), which is
also exponential.

a(2:12:1)=b(1:11:1)

c(10:20:2)=b(1:6)+b(40:45)

a(1:12:1)=b(12:1:-1)

c(

c(10:20:2)=a(20:30:2)+b(40:45)

30:60:3)=a(40:60)

b(50)=b(64)

c(30:60:3)=a(30:41)+b(42)

b(50)=2

(B) Code with Read Dependencies(A)  Code with No Dependencies

Figure 15: Restricted Code Motion Problem

Consider the program fragment from Figure 15(B). This program is an example of a code with read-read
dependencies (CMRD). This code will be represented as a PLG with non-zero edge weights. Since the
read-read dependence does not prevent statement motion, one still needs to perform an exhaustive search of
the problem space. This problem is therefor, a variant of the CMND problem described before. Hence, the
complexity of the Range Reduction algorithm will be exponential.
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This problem can be viewed as a cluster growing problem. Initially a pair of statements having the largest
edge weight (i.e. sharing the largest number of elements) is chosen as a seed for the cluster. Then the cluster
is grown by choosing a connected statement having the largest edge weight. This process is continued until
all the statements are used and the ORC is computed. The process is repeated for di�erent arrangements
of statements for the given seed. In order to do an exhaustive search, one needs to use each statement as a
seed. The complexity of this problem is also exponential, as a result, the Range Reduction Algorithm runs
in exponential time.
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