
SCCS 700

Performance of the Acoustic Wave Propagation Problem in High
Performance Fortran

by

Kevin P. Roe and Tomasz Haupt

12 July 1995

Northeast Parallel Architectures Center

at Syracuse University

Science and Technology Center
111 College Place

Syracuse, NY 13244-4100

Contents

1 The Acoustic Equations 2

1.1 Derivation of the Acoustic Equations : 2

2 Numerical Techniques 3

3 Development of Fortran Code 4

3.1 Sequential FORTRAN 77 : 4
3.2 Sequential FORTRAN 90 : 4
3.3 High Performance FORTRAN : 5

4 Performance Timings of FORTRAN Code 5

4.1 Timing Sequential FORTRAN 77 Code : 5
4.2 Timing Sequential FORTRAN 90 Code : 5
4.3 Timing High Performance FORTRAN Code : 6

5 Results 6

5.1 DEC Alpha Farm : 6
5.2 IBM SP-2 : 7
5.3 Intel Paragon : 10
5.4 Optimization of Communication : 12

6 Conclusions 12

1

SCCS 700

Performance of the Acoustic Wave Propagation Problem in High

Performance Fortran

Kevin P. Roe and Tomasz Haupt

12 July 1995

Northeast Parallel Architectures Center

at Syracuse University

Science and Technology Center
111 College Place

Syracuse, NY 13244-4100

email: kproe@npac.syr.edu

http://www.npac.syr.edu/users/kproe/homepage/index.html

Abstract

The physical problem of wave propagation is examined as well as the numerical methods used in

its solution. The wave propagation problem was implemented in sequential FORTRAN 77, sequential

FORTRAN 90, and High Performance Fortran (HPF). Performance of each implementation was examined
and compared. The results of four HPF compilers (Digital, Applied Parallel Research, IBM, and the

Portland Group Inc.) are compared to show how each compiler handles this type of code.

1 The Acoustic Equations

1.1 Derivation of the Acoustic Equations

The acoustic wave propagation problem is the simplest example of a
uid mechanics problem which involves
the solution of a system of �rst-order linear partial di�erential equations.
The governing equations for
uid
ow are the laws of conservation of mass, momentum, and energy. If
inviscid, unsteady, one dimensional
ow is considered then the basic laws can be expressed as:

Mass :
@�

@t

+ �

@u

@x

+ u

@�

@x

= 0; (1)

Momentum : �
@u

@t

+ �u

@u

@x

+
@p

@x

= 0; (2)

and

Energy :
@p

@t

+ u

@p

@x

� a

2

�
@�

@t

+ u

@�

@x

�
= 0; (3)

2

Numerical Techniques 3

where � is the density, u is the
uid velocity, p is the static pressure, and a is the speed of sound. Since
acoustic problems examine the motion of small amplitude disturbances in a
uid medium, small perturbations
in density, velocity, and pressure are considered

� = �0 + �

0
; (4)

p = p0 + p

0
; (5)

u = u0 + u

0 = u

0
; (6)

where (�0, p0, u0) are the undisturbed properties of the
uid and (�0, p0, u0) are small perturbations. The
condition u0 = 0 is used for a stagnant
uid. The speed of sound is determined from

a =

r

p

�

(7)

Substituting the above relations into the governing equations for
uid
ow and neglecting second-order terms,
the linearized equations governing acoustics are

@u
0

@t

+

�
1

�0

�
@p

0

@x

= 0 (8)

and

@p
0

@t

+
�
�0a

2

0

� @u0

@x

= 0: (9)

The case of an in�nitely long one-dimensional duct is examined so that the b.c.'s do not enter into the
solution. The initial conditions consist of stagnant
uid and a pressure perturbation. The propagation
speed, c, is �xed and the perturbation is allowed to propagate up and down the tube for a �xed number of
time steps.

2 Numerical Techniques

The acoustic equations are an example of a system of two coupled �rst-order hyperbolic equations [1] of the
general form:

ft + cgx = 0 (10)

gt + cfx = 0 (11)

where

f � u

0
g �

�
1

�0a0

�
p

0
c � a0 (12)

The above system of partial di�erential equations is solved using the Lax method. This method is an explicit,
�rst-order accurate, central di�erence scheme. This method was chosen because it is the simplest method
used to solve this system of equations and will be a baseline test case for the performance of HPF. If more
complex algorithms are used then the performance of a parallel program should also increase. Lax's method

uses a central di�erence scheme which requires information from one grid point to the right and one to the
left (see below stencil).

Northeast Parallel Architectures Center at Syracuse University,

Science and Technology Center � 111 College Place � Syracuse, NY 13244

SCCS 700

Development of Fortran Code 4

ii-1 i+1

Figure 1: Nearest Neighbor Communication is Required for the 3 Point Stencil

3 Development of Fortran Code

The program was initially written in sequential FORTRAN 77 and then converted into sequential FORTRAN
90. The code was then parallelized using High Performance FORTRAN.

3.1 Sequential FORTRAN 77

The code was compiled with the DEC, the Intel, and the IBM SP-2 FORTRAN 77 compiler. The program
was written with and without subroutines to show that there was no signi�cant di�erence in performance
timings. The main reason for writing the code without subroutines was because the available version of
Digital's compiler did not support the descriptive ALIGN command [2, 3], which will later be needed for
HPF.

3.2 Sequential FORTRAN 90

The code was compiled with the DEC FORTRAN 90/HPF and the IBM SP-2 FORTRAN 90 compiler. Three
versions were written, however both were written with no subroutines. The �rst version uses do-loops in
exactly the same way FORTRAN 77 uses them. The second version uses array sections in place of do-loops.
The third version is the same as the �rst, but the do-loops have been replaced by forall statements and
the HPF directives have been added. This version could only be done with the DEC FORTRAN 90/HPF
compiler because the IBM SP-2 compiler does not accept FORALL statements. There should be no problem
with the addition of HPF directives since they will just be seen as comments. The use of FORALL statements
produce problems [2] and will be discussed in more detail in the following sections.

do i=1,mx-1

do l=1,lmax

d(l,i)=0.5*(dx/dt)*(u(l,i+1)-u(l,i))

end do

end do

+ + +

d(1:lmax,1:mx-1)=0.5*(dx/dt)*(u(1:lmax,2:mx)-u(1:lmax,1:mx-1))

+ + +

forall(i=1:mx-1,l=1:lmax)

@ d(l,i)=0.5*(dx/dt)*(u(l,i+1)-u(l,i))

Figure 2: Conversion of DO-Loops to Array Sections and FORALL Statements

Northeast Parallel Architectures Center at Syracuse University,

Science and Technology Center � 111 College Place � Syracuse, NY 13244

SCCS 700

Performance Timings of FORTRAN Code 5

3.3 High Performance FORTRAN

The code was compiled with Digital's FORTRAN 90/HPF compiler, PGI HPF compiler, and IBM's HPF
compiler. Using Digital's FORTRAN 90/HPF compiler, the second version of the FORTRAN 90 code was
used (array sections). The HPF code used in the above three compilers is exactly the same as the third
version of the FORTRAN 90 code. When the same code is compiled with the HPF options, the HPF
directives are now understood by the compiler. The directive PROCESSORS [2, 3] was used to set the
number of processors at compile time. The DISTRIBUTE [2, 3] directive is used to distribute one array
over the processors. The ALIGN [2, 3] directive is used to align the other arrays with the array that is
already distributed; this is done to reduce interprocessor communication.

real x(imax),u(lmax,imax)

real res(lmax,imax),e(lmax,imax),d(lmax,imax)

..........

!HPF$ distribute (block) onto pp :: x

...........

!HPF$ align (*,:) with x(:) :: u,res,e,d

...........

Figure 3: Code Fragment for HPF Data Mapping

The conversion to HPF with APR's (Applied Parallel Research) compiler was done in a di�erent way. The
HPF code was sent through APR's precompiler xHPF and the ouputted source code was then compiled with
FORTRAN 77 using APR's libraries.

4 Performance Timings of FORTRAN Code

All timings on the DEC alpha farm were done at the Northeast Parallel Architecture Center (NPAC) at
Syracuse University with reserved time (exclusive use of machines). The DEC alpha farm used consists of
8 workstations. These workstations are connected together via a FDDI network which connects to a DEC
gigaswitch. Timings for the PGI compiler were done on the 56 node Paragon at JPL (Joint Propulsion
Laboratories), the 15 node Paragon at PGI, the 64 node Paragon at NASA Ames, and the 72 node Paragon
at NASA Langley. Timings for the APR compiler were done on the Paragon at NASA Langley. Timings
for the IBM, PGI, and APR compilers were done on the IBM SP-2 at NASA Langley and NASA Ames.
All timings are an average of �ve to ten runs and the timing for each run is from the node with the highest

execution time.

4.1 Timing Sequential FORTRAN 77 Code

Timings were done in two ways: the �rst with the time statement to get the CPU time from the outputted
user plus system time [4], the second was through the use of the functions (etime, timef, and dclock()) [5].
The code was optimized with the default optimization (-O). On the DEC Alpha cluster, optimization was
automatically done by the compiler. On the IBM SP-2, the optimization had to be speci�ed at compile time.
On the Paragon the code was compiled with the (-O) option as well as the (-Knoieee) option.

4.2 Timing Sequential FORTRAN 90 Code

Timings were done in three ways: the �rst with the time statement to get the CPU time from the outputted
user plus system time [4], the second was through the use of the function etime [5] for the IBM SP-2, the
third was done with the FORTRAN 90 function \secnds" on the DEC Alpha Farm. In this case, all methods
returned approximately the same CPU time. This means that the methods used for FORTRAN 77 timings
are comparable to those of FORTRAN 90.

Northeast Parallel Architectures Center at Syracuse University,

Science and Technology Center � 111 College Place � Syracuse, NY 13244

SCCS 700

Results 6

4.3 Timing High Performance FORTRAN Code

On the DEC Alpha Farm, timings were done with the FORTRAN 90 \secnds" which was distributed onto
each processor. This is comparable to the timings taken in FORTRAN 90 with the same function \secnds".
Since the timing results for all methods in FORTRAN 90 yielded approximately the same results, the other
timing methods can be considered to be comparable. This then extends the compatibility of the timing
method for HPF to the timing methods of FORTRAN 77 on the DEC Alpha Farm. Timing on the Paragon
was done with the function dclock(). Timing on the IBM SP-2 was done with the function timef.

5 Results

5.1 DEC Alpha Farm

Digital's HPF run on the Alpha Farm did not produce as good a results as expected. Speedup times relative
to FORTRAN 77 show very poor results for HPF and a small improvement for FORTRAN 90. The FORALL
statement is accepted by Digital's FORTRAN 90 compiler but not well optimized as can be seen from the
results [2].

Compiler CPU Time (sec) Speedup Relative Speedup Relative
to FORTRAN 77 to HPF with

2 Processors

F77 14.067 1.000
F90 (with FORALL) 157.875 0.089

F90 (without FORALL) 13.682 1.028
HPF with FORALL

1 Processor 23.535 0.598
2 Processors 94.707 0.149 1.0
3 Processors 73.886 0.190 1.282
4 Processors 56.970 0.247 1.662
5 Processors 43.990 0.320 2.153
6 Processors 41.761 0.337 2.268
7 Processors 40.501 0.347 2.338
8 Processors 37.572 0.375 2.521

HPF with Array Sections

1 Processor 14.300 0.984
2 Processors 39.531 0.356 1.0
3 Processors 34.262 0.411 1.153
4 Processors 28.675 0.491 1.378
5 Processors 25.432 0.553 1.554
6 Processors 23.977 0.587 1.648
7 Processors 22.953 0.613 1.722
8 Processors 21.481 0.655 1.840

Table 1: Application with 5001 grid points on DEC Alpha Farm

HPF using FORALL statements with 1 processor shows a drop in speedup most likely due to the extra
work involved in data distribution and mapping. HPF with two processors shows a dramatic decrease in
speedup due to the communication now existing between processors. The performance slowly increases with
the number of processors, but even with eight processors the performance never reaches a speedup of one
compared to the sequential FORTRAN 77. Although there is an increase in performance as the mesh size

Northeast Parallel Architectures Center at Syracuse University,

Science and Technology Center � 111 College Place � Syracuse, NY 13244

SCCS 700

Results 7

is doubled, the eight processor case still only reaches a speedup of approximately half that of FORTRAN
77. HPF using array sections follows similar trends as in the use of FORALL statements, but with quicker
execution times. HPF with array sections shows better speedup relative to FORTRAN 77.
If speedup relative to HPF with 2 processors is examined, the results are much more promising. The speedup
curves appear to be relatively linear initially and then deviating as the number of processors is increased.
The �gure also shows how as the mesh size is increased, the speedup becomes more linear for higher number
of processors. This is because more work is being done by each processor while communication remains the
same.
There are many possible reasons for HPF's poor performance. However, the most likely reason is due to the
compiler's infancy. The communication between processors may not be well optimized. Another reason for
the poor performance may be due to the hardware. The DEC Alpha chip is very fast and communication is
most likely quite expensive compared to computation.

Compiler CPU Time (sec) Speedup Relative Speedup Relative
to FORTRAN 77 to HPF with

2 Processors

F77 59.075 1.000

F90 (with FORALL) 677.555 0.087
F90 (without FORALL) 54.054 1.093

1 Processor 96.555 0.612
2 Processors 363.833 0.163 1.0
3 Processors 255.571 0.231 1.418
4 Processors 202.129 0.292 1.793
5 Processors 167.180 0.353 2.168
6 Processors 126.011 0.469 2.577
7 Processors 120.681 0.490 3.015
8 Processors 116.960 0.505 3.099

HPF with Array Sections

1 Processor 56.984 1.037
2 Processors 157.971 0.374 1.0
3 Processors 107.866 0.547 1.465
4 Processors 89.022 0.664 1.775
5 Processors 77.753 0.760 2.031
6 Processors 69.718 0.847 2.266
7 Processors 63.132 0.936 2.502
8 Processors 60.422 0.978 2.614

Table 2: Application with 10001 grid points on DEC Alpha Farm

5.2 IBM SP-2

IBM's FORTRAN 90 performed slightly worse than FORTRAN 77. IBM's HPF run on the IBM SP-2 also
did not show very promising results. The HPF code ran slower than the sequential FORTRAN 77 and
FORTRAN 90 codes as expected due to the increase in work from data distribution and mapping. As the
number of processors was increased from 1 to 2 the execution time greatly increased; this again is most likely
due to the present communication. However, there was little change in time when the number of processors
was increased.

Northeast Parallel Architectures Center at Syracuse University,

Science and Technology Center � 111 College Place � Syracuse, NY 13244

SCCS 700

Results 8

Compiler CPU Time (sec) Speedup Relative Speedup Relative
to FORTRAN 77 to HPF with

2 Processors

F77 20.340 1.000
F90 24.640 0.825

HPF with FORALL

1 Processor 29.595 0.687
2 Processors 74.764 0.272 1.000
4 Processors 73.571 0.276 1.016
8 Processors 70.670 0.288 1.058

Table 3: Application with 5001 grid points on IBM SP-2

Compiler CPU Time (sec) Speedup Relative Speedup Relative
to FORTRAN 77 to HPF with

2 Processors

F77 83.210 1.000

F90 92.830 0.896
HPF with FORALL

1 Processor 118.409 0.703
2 Processors 300.430 0.277 1.000
4 Processors 299.560 0.278 1.003
8 Processors 295.789 0.281 1.016

Table 4: Application with 10001 grid points on IBM SP-2 using IBM's HPF compiler

APR's xHPF compiler performed very well with a few processors, but results tended to taper o� quickly
as the more than 4 processors were used. As can be seen from the table below, the code precompiled with
xHPF and compiled with mpxlf produced slightly better results for 1 processor than the sequential code
using xlf.

Compiler CPU Time (sec) Speedup Relative Speedup Relative
to FORTRAN 77 to HPF with

1 Processor

F77 66.25 1.00
HPF with FORALL

1 Processor 65.98 1.00 1.00
2 Processors 37.81 1.75 1.75
4 Processors 25.94 2.54 2.55
8 Processors 21.25 3.10 3.12
16 Processors 21.79 3.03 3.04
32 Processors 28.42 2.32 2.33

Table 5: Application with 10001 grid points on IBM SP-2 using APR's xHPF compiler

Northeast Parallel Architectures Center at Syracuse University,

Science and Technology Center � 111 College Place � Syracuse, NY 13244

SCCS 700

Results 9

Compiler CPU Time (sec) Speedup Relative Speedup Relative
to FORTRAN 77 to HPF with

1 Processor

F77 274.89 1.00
HPF with FORALL

1 Processor 260.03 1.06 1.00
2 Processors 140.17 1.96 1.86
4 Processors 87.17 3.15 2.98
8 Processors 63.13 4.35 4.12
16 Processors 54.80 5.02 4.75
32 Processors 62.74 4.38 4.14

Table 6: Application with 20001 grid points on IBM SP-2 using APR's xHPF compiler

PGI's HPF compiler produced better results than APR's xHPF compiler at higher processor numbers as
can be seen on the tables below.

Compiler CPU Time (sec) Speedup Relative Speedup Relative
to FORTRAN 77 to HPF with

1 Processor

F77 66.25 1.00
HPF with FORALL

1 Processor 70.70 0.94 1.00
2 Processors 38.17 1.74 1.85
4 Processors 22.61 2.93 3.13
8 Processors 17.35 3.82 4.07
16 Processors 12.93 5.12 5.46
32 Processors 17.71 3.74 3.99

Table 7: Application with 10001 grid points on IBM SP-2 using PGI's HPF compiler

Northeast Parallel Architectures Center at Syracuse University,

Science and Technology Center � 111 College Place � Syracuse, NY 13244

SCCS 700

Results 10

Compiler CPU Time (sec) Speedup Relative Speedup Relative
to FORTRAN 77 to HPF with

1 Processor

F77 274.89 1.00
HPF with FORALL

1 Processor 288.24 0.95 1.00
2 Processors 149.68 1.84 1.93
4 Processors 86.85 3.17 3.32
8 Processors 55.49 4.95 5.19
16 Processors 37.43 7.34 7.70
32 Processors 38.77 7.09 7.43

Table 8: Application with 20001 grid points on IBM SP-2 using PGI's HPF compiler

5.3 Intel Paragon

Two HPF compilers were used on the Intel Paragon. The �rst that will be discussed is the Applied Parallel
Research (APR) HPF compiler. The timing results from this compiler showed a reasonable speedup up until
large number of processors were used. When the number of processors were increased above 8, communication
began to dominate and speedup went down. This is mainly because the outputted source code shows
communication before each operation; unnecessary communication occurs because of the compiler. Note
that since the Paragon runs much slower than the DEC Alpha Farm and the IBM SP-2 the code was only
run for 1/6 the number of iterations. When the code is run for the same number of iterations as on the DEC
Alpha Farm, the timings are six times as large with little variation and the speedup does not change.

Compiler CPU Time (sec) Speedup Relative Speedup Relative
to FORTRAN 77 to HPF with

1 Processor

F77 50.11 1.00
HPF with FORALL

1 Processor 54.99 0.91 1.00
2 Processors 31.17 1.61 1.76
4 Processors 20.05 2.50 2.74
8 Processors 15.27 3.28 3.60
16 Processors 15.75 3.18 3.49
32 Processors 21.36 2.35 2.57

Table 9: Application with 10001 grid points on Intel Paragon Using APR's HPF Compiler

The second HPF compiler used was from Portland Group Inc. (PGI), in which two version were used (v1.01
and v1.3). The timing results showed reasonably good speedups. The outputted source code does show
similar unnecessary communication as from APR's compiler for version 1.1. However, communication is
much better optimized (unnecessary communication has been removed) in the latest version of the compiler
(v1.3).

Northeast Parallel Architectures Center at Syracuse University,

Science and Technology Center � 111 College Place � Syracuse, NY 13244

SCCS 700

Results 11

Compiler CPU Time (sec) Speedup Relative Speedup Relative
to FORTRAN 77 to HPF with

1 Processor

F77 12.51 1.00
HPF version 1.01

1 Processor 30.29 0.41 1.00
2 Processors 16.03 0.78 1.89
4 Processors 8.68 1.44 3.49
8 Processors 5.01 2.50 6.05
16 Processors 3.37 3.71 8.99
32 Processors 3.04 4.12 9.96

Table 10: Application with 5001 grid points on Intel Paragon Using PGI's HPF Compiler

Compiler CPU Time (sec) Speedup Relative Speedup Relative
to FORTRAN 77 to HPF with

1 Processor

F77 50.10
HPF version 1.01

1 Processor 120.86 0.41 1.00
2 Processors 62.47 0.80 1.93
4 Processors 32.83 1.53 3.68

8 Processors 17.87 2.80 6.76
16 Processors 10.71 4.68 11.28
32 Processors 7.83 6.40 15.44

HPF version 1.3

1 Processor 49.13 1.02 1.00
2 Processors 25.49 1.97 1.93
4 Processors 13.35 3.75 3.68
8 Processors 7.29 6.87 6.74
16 Processors 5.53 9.06 8.88
32 Processors 3.12 16.05 15.75

Table 11: Application with 10001 grid points on Intel Paragon Using PGI's HPF Compiler

Northeast Parallel Architectures Center at Syracuse University,

Science and Technology Center � 111 College Place � Syracuse, NY 13244

SCCS 700

Conclusions 12

Note that there is change in speedup for the 10001 grid point application from 8 to 16 processors. This is
because the Paragon at PGI only has 15 processors available for use. The code was compiled for 16 and 32
processors there and transfered to the Paragon at NASA Ames. This transfer may explain the change in the
speedup trend.

5.4 Optimization of Communication

It was di�cult to determine how communication was being handled with Digital's and IBM's compilers
because neither could output a source code to be examined. Although the code could be pro�led, it was still
di�cult to determine how communication was being handled. APR's pre-compiler, xHPF, allowed the user
to see where communication occurs in the outputted source code and gain a little more insight from pro�ling
the code. APR's pre-compiler also allowed the user to change the outputted source code before compiling
with mpxlf. PGI's compiler can output a source code that shows where and what is being communicated
but does not allow for modi�cation of the source code before compilation.
In both APR's and PGI's outputted source code, communication occurs in unnecessary places. The array U
is used in the
ux and dissipation routines and is only set after these routines are completed. Communication
of U for nearest neighbor processors should occur before it is used in the
ux routine. For both compilers

communication occurs once for each FORALL statement that uses the array U. However, the new version
of the PGI compiler (v1.3) does handle this problem, communicating the array U once before it is used and
not again until after it has been reset.

6 Conclusions

The physical problem of wave propagation as well as the numerical used in its solution have been examined.
The development of the sequential FORTRAN 77 and FORTRAN 90 codes have been discussed as well as the
parallel HPF version. The method of timings has been examined and discussed. The results of the timings for
Digital's and IBM's HPF show poor performance relative to the sequential FORTRAN 77 and FORTRAN 90
version. Possible explanations for HPF's poor performance have been suggested. HPF's performance relative
to the case of HPF with 2 processors does show a semi-linear speedup, which is promising. Unfortunately,
it appears that the use of Digital's and IBM's HPF for this type of application does not show an advantage
over the sequential code with the present version of the compiler. It is most likely that DEC's poor results
can be attributed to the higher cost of communication between workstations. IBM's poor results is most
likely do to the fact that this is the �rst version of the HPF compiler. Since neither compiler allowed for
an examination of the outputted source code it was di�cult to determine how the compiler was handling
communication. APR's and PGI's HPF compilers resulted in a more e�cient code. Although there are
still better way to optimize communication in APR's compiler, PGI's latest compiler seems to optimize the
communication quite well. From the above discussion it appears that the optimization of communication is
one of the major issues facing the use of HPF compilers.
Although the use of FORALL statements as a data parallel operation is �ne for this particular CFD appli-
cation, it would not be for more complex problems. The solution of the Euler and Navier Stokes equations
involves the use of many 'scratch' values that are scalar. To convert these codes into HPF, these scalar values
must be converted to arrays (scalar expansion) for the use of the FORALL. This increase in the number of
arrays increases the amount of memory required by the program. If the INDEPENDENT was implemented,
the di�culty involved in converting sequential FORTRAN 77 codes into HPF would be greatly decreased as
well as removing the additional memory required in scalar expansion.

Acknowledgments

This work was done using the DEC Alpha Farm at the Northeast Parallel Architectures Center (NPAC)
at Syracuse University, the Paragons at JPL, NASA Ames, and NASA Langley, and the IBM SP-2 at
NASA Langley and NASA Ames. I would like to thank Dr. Piyush Mehrotra of ICASE (Institute for
Computer Application in Science and Engineering) for helpful suggestions with HPF. I would also like to

Northeast Parallel Architectures Center at Syracuse University,

Science and Technology Center � 111 College Place � Syracuse, NY 13244

SCCS 700

Conclusions 13

thank Dr. Thong Dang of the MAME (Mechanical, Aerospace, and Manufacturing Engineering) department
of Syracuse University for help with the numerical algorithms. Finally, I would like to thank Doug Miles of
PGI (Portland Group Inc.) for running the code with the latest version of the PGI compiler on the Intel
Paragon.
Kevin Roe is supported as a Research Assistant by the NASA Center for Hypersonics at Syracuse University.
Work for this paper was done both at Syracuse University and at ICASE.

Northeast Parallel Architectures Center at Syracuse University,

Science and Technology Center � 111 College Place � Syracuse, NY 13244

SCCS 700

REFERENCES 14

References

[1] LeVeque, R.J., Numerical Methods for Conservative Laws, Birkh~auser-Verlag, Berlin, 1992.

[2] Koelbel, C.H., Loveman, D.B., Schreiber, R.S., Steele, G.L., Zosel, M.E., The High Performance

FORTRAN Handbook, The MIT Press, Cambridge, 1994.

[3] High Performance FORTRAN Forum 1993, High Performance FORTRAN Language Speci�cation Ver-
sion 1.0

[4] Loukides, M., UNIX for FORTRAN Programmers, O'Reilly & Associates, Inc., 1990.

[5] Dowd, Kevin, High Performance Computing, O'Reilly & Associates, Inc., 1993.

Northeast Parallel Architectures Center at Syracuse University,

Science and Technology Center � 111 College Place � Syracuse, NY 13244

SCCS 700

