A User’s Guide for the PASSION Runtime Library
Version 1.0'

A. Choudhary R. Bordawekar S. More K. Sivaram R. Thakur
Syracuse University, Syracuse, NY 13244
passion@cat.syr.edu

NPAC Technical Report SCCS-702, February 1995

!This work was supported in part by NSF Young Investigator Award CCR-9357840, grants from Intel SSD and
IBM Corp., and in part by USRA CESDIS Contract # 5555-26. This work was performed in part using the Intel
Touchstone Delta and Paragon Systems operated by Caltech on behalf of the Concurrent Supercomputing Consortium.
Access to this facility was provided by CRPC.

Contents

1 Imntroduction
Features of Version 1.0 e

1.1

2 Data Access Models
Local Placement Model (LPM)
2.2 Global Placement Model (GPM)

2.1

2.3

Terminology

3 Using the PASSION Data Structures

Out-of-Core Array Descriptor (OCAD)
Parallel File Pointer (PFILE) o
Prefetch Descriptor (PREFETCH)
Reuse Descriptor (REUSE)o e

3.1
3.2
3.3
3.4
3.5

Access Array

4 Defining an Array
Defining the Array Parameters
4.2 Creating and Initializing the OCAD o o

4.1

5 Accessing the Array

Opening the Array File 0
5.1.1 Opening a File in the Local Placement Model
5.1.2 Opening a File in the Global Placement Model
Closing the Array File 0000 e
Reading the Array File 0 0 00
5.3.1 Reading Array Sections Lo

5.1

5.2
5.3

5.4

5.3.2 Using

Prefetching for Faster Access

5.3.3 DataReuse L
Writing the Array File 0 0 o 0 00
5.4.1 Writing Array Sections

6 Example Programs

PROGRAM 1 : Creating Local Array Files
PROGRAM 2 : Reading Local Array Files
PROGRAM 3 : Reading Array Sections in the Local Placement Model
PROGRAM 4 : Writing Array Sections in the Local Placement Model
PROGRAM 5 : Using Prefetching
PROGRAM 6 : Using Data Reuse
PROGRAM 7 : Reading Array Sections in the Global Placement Model
PROGRAM 8 : Writing Array Sections in the Global Placement Model

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7

8

9

6.9 Sample Makefile

Function Reference

Installing the Software
8.1 How to download the software

8.2 How to unpack the software
8.3 How to compile the software L

Where to look for help

9.1 Comments and Feedback
9.2 Related Publications

i

List of Figures

2.1 Data Organization in the Local and Global Placement Models 3
3.1 Specifying Array Sections 5
4.1 Creating the OCAD o e 9
4.2 Specifying Overlap Information 10
5.1 Global Read Operation 14
5.2 Using Prefetching to Overlap Computation and Communication with I/O 16
5.3 Data Reuse e 17

11

Chapter 1

Introduction

The PASSION Runtime Library provides software support for high-performance parallel I/O on distributed
memory parallel computers. PASSION runtime routines can be used to efficiently perform the 1/0 required
in out-of-core programs. PASSION assumes a loosely synchronous Single Program Multiple Data (SPMD)
model of parallel computation. It provides the user with a simple high-level interface, which is a level higher
than any of the existing parallel file system interfaces or even the proposed MPI-10 interface [CFHT94]. For
example, the user only needs to specify what section of the array needs to be read in terms of its lower-
bound, upper-bound and stride in each dimension, and the PASSION Runtime Library will fetch it in an
efficient manner. A number of optimizations, such as Data Sieving, Data Prefetching, Data Reuse, and the
Extended Two-Phase Method, have been incorporated in the library for improved performance [TBCT94b,
TBC94a, TC95]. The library can either be used directly by application programmers, or a compiler could
translate out-of-core programs written in a high-level data-parallel language like HPF to node programs with
calls to the runtime library for 1/O. Further details about the PASSION project can be found in [CBH194,
TBCT94b, TBC94a, TC95, BC94, BARC93, dRHC94, SC94, dRBC93].

1.1 Features of Version 1.0

Version 1.0 of the PASSION Runtime Library provides a number of routines for parallel access to data in
files. Tt supports two models for storing and accessing data, called the Local Placement Model (LPM) and
the Global Placement Model (GPM) [TBC94a, CBH94], which are explained in Chapter 2. Version 1.0
of PASSION can be used on the Intel Paragon, Touchstone Delta and iPSC/860 systems. The PASSION
routines can currently be called only from C programs. This version supports only two-dimensional arrays
stored in the file in row major order. In future versions, we plan to provide support for Fortran programs,
allow any dimensional arrays stored in the file in any order, and port the Runtime Library to the IBM SP-2.

Chapter 2

Data Access Models

The PASSION Runtime Library supports two models for storing and accessing data, called the Local Place-
ment Model (LPM) and the Global Placement Model (GPM) [TBC94a, CBHT94]. In all cases, the files are

unformatted binary files.

2.1 Local Placement Model (LPM)

In the Local Placement Model (Figure 2.1), the local array of each processor is stored in a separate file.
Thus, for each array, there are as many files as the number of processors. A processor cannot directly access
data from the local array files of other processors.

2.2 Global Placement Model (GPM)

In the Global Placement Model (GPM) (Figure 2.1), the entire array is stored in a single file. Each processor
can directly access any portion of the file.

2.3 Terminology
The definitions of some key terms used throughout this document are given below:-

1. Local Array File (LAF): In the Local Placement Model, the files in which the local arrays of pro-
cessors are stored are called Local Array Files (LAFs).

2. Global Array File (GAF): In the Global Placement Model, the file in which the global array is
stored 1s called Global File.

3. Out-of-Core Local Array (OCLA): The portion of the array stored in the LAF is called Out of
Core Local Array.

4. In-core Local Array (ICLA): The portion of the OCLA which is present in the main memory of a
processor and is used for computations is called In Core Local Array.

5. Overlap Area: It is used to store the off-processor data that is needed by each processor. The
processor should treat it as read-only since 1t does not logically belong to the processor.

Compute Node|
0

Compute Node|
1

Compute Node|
2

Compute Node
3

L[] L[] [[] L] e

<— OCLA

J88g -

L ocal Placement M odel

Compute Node|
0

Compute Node|
1

Compute Node|
2

Compute Node
3

L] []]] e

12| 13| 14| 15

<— Global File

Global Placement M odel

Figure 2.1: Data Organization in the Local and Global Placement Models

Chapter 3

Using the PASSION Data Structures

The various data structures used in the PASSION library are described below.

3.1 Out-of-Core Array Descriptor (OCAD)

Fach out-of-core array has a descriptor associated with it called the Out-of-Core Array Descriptor (OCAD).
The OCAD contains the following information about the array

e Number of dimensions

e Size of the global array

e Size of each element of the array in bytes

e Number of processors in each dimension

e Distribution of the array in each dimension
e Size of the ICLA

e Size of the overlap area

e Size of the OCLA

This structure should be allocated and deallocated using the library routines PASSION_malloc_.OCAD and
PASSION free_OCAD respectively. The user is responsible for allocating and deallocating the OCAD and
also for providing the information to be stored in the OCAD. The routine PASSION_fill_ OCAD should be
used to fill in the OCAD.

3.2 Parallel File Pointer (PFILE)

This structure contains the following information about the parallel file :
e System file descriptor
e Header size

This structure is allocated and initialized by the PASSION_open routine, and deallocated by the PAS-
SION_close routine. It acts as a file pointer for the parallel file and should be passed as an argument to all
PASSION routines which access the file.

Starting Index
Ending Index
/ /7 Stride

Dimension 0 (row) Structure of the Access Array
Dimension 1 (column)

Dimension n-1 l:\:\:‘

1| 2| 0 11 2| 0
11 21 0 0| 3| 2
0l 3]0 0
21 2|0 0

Figure 3.1: Specifying Array Sections

3.3 Prefetch Descriptor (PREFETCH)

This data structure is used to store information regarding pending prefetch read operation(s). Tt stores
the ids returned by PASSION_read_prefetch. 1t is allocated by the PASSION _read_prefetch routine and is
deallocated by the PASSION_prefetch_wait routine.

3.4 Reuse Descriptor (REUSE)

This data structure is used to implement the data reuse operation. It is allocated by the PASSION _reuse_init
routine and is deallocated by the PASSION_read_reuse routine.

3.5 Access Array

This data structure is used to specify which section of the array needs to be read or written. It is a two
dimensional array of size No. of dimensions of the out-of-core array x3. Row ¢ contains access information
about dimension ¢ of the out-of-core array, in the form of its lower bound, upper bound and stride. (See
Figure 3.1). The user has to provide this array to the PASSION read/write routines.

Chapter 4

Defining an Array

4.1 Defining the Array Parameters

To define an array, the user first needs to define :

Number of dimensions of the array

Currently only two dimensional arrays are supported. One way to specify the number of dimensions in
the program is :

#define DIMENSIONS ((int)2)
Storage type

This specifies how the array is stored in the file, i.e. row-major or column-major. Currently only row-major
storage is supported.

Size of the array

The size of the array is specified using a one dimensional array of integers. It contains as many elements
as the number of dimensions in the out-of-core array. For example, the size of a 1024 x 1024 array can
be specified as follows:-

#define DIMENSIONS ((int)2)
int Size[DIMENSIONS]={1024, 1024};

Number of processors in each dimension

The number of processors over which each dimension of the array is distributed is specified using a one
dimensional array. For example, a two dimensional out-of-core array with rows distributed among 4
processors and the columns collapsed can be specified as follows:-

#tdefine DIMENSIONS ((int)2)
int Procs[DIMENSIONS]={4, 1};

Array Distribution

The distribution of the array is specified using a two dimensional array of integers. The size of this array

1s no. of dimenstons of the out_of_core array x2. Each row of this array specifies the distribution in that
dimension.

Distribution
NO_DISTRIBUTION

Comments
No. of processors in this dimension
must be one
Each processor gets a block of
elements in that dimension
Each processor gets every p'”
element where p is the number of
processors in that dimension

BLOCK_DISTRIBUTION

CYCLIC_DISTRIBUTION

Table 4.1: Array Distributions

The first element in the row specifies the kind of distribution and the second element in the row specifies

the block size if the distribution is eyclic. A column block distribution of a two dimensional array can be
specified as follows :

#include "passion.h"

#define DIMENSIONS ((int)2)
int Distribution[DIMENSIONS][2]={{NO_DISTRIBUTION, O},

{BLOCK_DISTRIBUTION, 0}
};

Size of the OCLA

The size of the OCLA is defined using a one dimensional array of integers. It contains as many elements
as the number of dimensions in the out-of-core array. For example, the OCLA size for a 1024 x 1024 size
array distributed in a row block fashion over four processors can be specified as follows.

#define DIMENSIONS ((int)2)

int OCLA_size[DIMENSIONS]={256, 1024};

Size of the ICLA

The size of ICLA is specified using a one dimensional array of integers. It contains as many elements as
the number of dimensions in the out-of-core array. The ICLA size depends on the amount of main memory
available and 1s usually less than the size of the OCLA. For example, if the OCLA size is 256 x 1024, but
only 4 x 1024 can be stored in-core, the ICLA can be specified as :

#define DIMENSIONS ((int)2)

int ICLA_size[DIMENSIONS]={4, 1024};

Overlap information

The size of the overlap area is specified using a two dimensional array of size equal to the no. of dimensions
of the out-of-core array x2. Each row contains the overlap information in that dimension. The first
element gives the lower overlap area and the second element gives the upper overlap area. If the overlap
area 1s one row in either direction, it can be specified as :

#define DIMENSIONS ((int)2)
int overlap_size[DIMENSIONS] [2]={{1, 1}, {0, 0}};

Size of each element in the array

The size of each element is an integer giving the size in bytes. For example, the element size for an array
of doubles can be specified as :

int ElementSize = sizeof(double);

All this information needs to be passed to the routine PASSION_fill_ OCAD, which initializes the OCAD.

4.2 Creating and Initializing the OCAD

All PASSION routines require a pointer to the OCAD. The array information is stored inside the OCAD.
The OCAD can be created and initialized as follows :

Define the array parameters

This can be done as explained in Section 4.1.
Allocate the OCAD

The PASSION_malloc_.OCAD routine needs to be used to allocate the OCAD.
Fill in the OCAD

The PASSION_fill_OCAD function is used to fill the OCAD. It accepts the pointer to the newly allocated
OCAD and other array parameters (explained in Section 4.1).

Access the array
The parallel file(s) can now be accessed (explained in Chapter 5).
Deallocate the OCAD

After all the computation on the array is done, the OCAD can be deallocated using PASSION_free_ OCAD.

The entire process is illustrated in Figure 4.1. It is assumed in the figure that there is no overlap area. Refer
to Figure 4.2 to see how to define an array with overlap area.

Processor O D . Processor 1
Processor 2 D . Processor 3

ICLA for Processor 0

ICLA for Processor 2

B e for Processor

ICLA for Processor 3

| o] 1] 2| 3] 4] 5] ¢] | 61] 62] 63
Global File

| o] 1] 2| 3| 8| 9]10]11] 16| 17] 18] 19| 24] 25| 26| 27|
LAF for Processor O

4] 5] 6] 7]12]15] 1a] 15[20] 21| 22] 23] 28] 29] 50] a1
LAF for Processor 1

| 32| 33| 34| 35] 40| 41] 42| 43] 48] 49| 50| 51 56| 57| 58] 59
LAF for Processor 2

36| 37| 38| 30| 44| 45| 46| 47| 52| 53| 54| 55| 60| 61 62| 63

LAF for Processor 3

#include "passion.h"
#define DIMENSIONS 2
#define NUM_ROWS 8
#define NUM_COLS 8
#define PROCS_DIM_0 2
#define PROCS DIM_1 2

#define OCLA_DIM_0 (NUM_ROWS/PROCS DIM_0)
#define OCLA_DIM_1 (NUM_COLS/PROCS DIM_1)
#define ICLA_DIM_01
#defineICLA_DIM_14
int Size DIMENSIONS]={ NUM_ROWS,
NUM_COLS};

int Procs{DIMENSIONS]=

{PROCS DIM_0, PROCS DIM_1};

int DistributionfDIMENSIONS][2]=

{{BLOCK_DISTRIBUTION, 0},
{BLOCK_DISTRIBUTION, 0} };

int OCCLA_sizel DIMENSIONS|=

{OCLA_DIM_0, OCLA DIM_1};
int ICLA_sizefDIMENSIONS]=

{ICLA_DIM_0, ICLA_DIM_1};
int overlap_info DIMENSIONS][2]=

{{UP_OVERLAP, DOWN_OVERLAP),
{LEFT_OVERLAP, RIGHT_OVERLAP}};

int ElemSize = sizeof (double);
OCAD *OCADp;

OCADp = mallocOCAD(DIMENSIONS, ROW_MAJOR);

PASSION_Arraylnfo(OCADp, Size, Distribution, Procs,
OCLA _size, ICLA_size, overlap_info, ElemSize);

Figure 4.1: Creating the OCAD

Processor 0 D . Processor 1

Processor 2 D . Processor 3

Overlap Information Array Size ICLA OCLA
1] 0 L8l 8] [4] [6]4]
1

H ICLA
Processor 0 Processor 1 Processor 2 Processor 3
| 24| 25] 26| 27] | 28] 29] 30| 31
1 2| 3 32 33| 34 35
8| 9/10/ 11 40| 41 42| 43
OCLA
16| 17| 18| 19 48] 49| 50| 51
24| 25| 26 27 56 57| 58| 59
32| 33|34/ 35| |36|37]38/20| | \
Processor 0 Processor 1 Processor 2 Processor 3

U1 T | T o] 1] 2] 3] 8] o 10 1] 16] 17] 18] 19] 24] 23] 26] 27] 32] 33] 34| 35| AT "or Frocessor0

BN e e e P) R ETE i

[24] 2] 26] 27] 32] 33] 34] 35] 40 41] 4] 43] 48] 0] 50[51 [56] 57[s8[50] | [[| “AFTorProcessor2

P EEEEDEZEEEEEEER | | | | “ATTorProcesors

Figure 4.2: Specifying Overlap Information

10

Chapter 5

Accessing the Array

5.1 Opening the Array File

The PASSION _open routine can be used to open array file(s). Note that in the Global Placement Model, all
processors open the same file, whereas in the Local Placement Model each processor opens a separate file.
PASSION _open accepts as parameters the name of the file and size of the header at the start of the file (if

any).
5.1.1 Opening a File in the Local Placement Model

If there are n processors and FILE is the generic file name, the individual files can be named FILE(O, FILET,
... FILEn.

#include "passion.h"

#define GENERIC_NAME "FILE"
#define HEADER_SIZE ((int)1024)

PFILE *PFilePtr;
char FilelName[10];

sprintf(FileName, "%s%d'", GENERIC_NAME, mynode());

PFilePtr = PASSION_open(FileName, HEADER_SIZE);
if (PFilePtr == (PFILE *)0)

{
printf ("Error opening the parallel file.");

/* exit */

}

5.1.2 Opening a File in the Global Placement Model
Let the name of the global file be FILE.

#include "passion.h"

#define FILE_NAME "FILE"
#define HEADER_SIZE ((int)1024)

11

PFILE *PFilePtr;

PFilePtr = PASSION_open(FILE_NAME, HEADER_SIZE);
if (PFilePtr == (PFILE *)0)
{

printf ("Error opening the parallel file.");

/* exit */

}

5.2 Closing the Array File

The PASSION _close routine can be used to close the array file(s). It accepts a pointer to the PFILE structure
as a parameter. The pointer should be the one returned by an earlier PASSION _open routine.

#include "passion.h"
PFILE *PFilePtr;
/* Code to open the file and do something with the data */

PASSION_close(PFilePtr);

5.3 Reading the Array File

A variety of PASSION routines are provided to read data from the files efficiently. The simplest routine to
read data 18 PASSION _read. 1t reads the entire OCLA into the ICLA. Note that the ICLA size should be
equal to the OCLA size to use this routine. This routine should be used in the Local Placement Model only.

#include "passion.h"
/* define OCLA size */

#define ICLA_DIM1 OCLA_DIM1
#define ICLA_DIM2 OCLA_DIM2

PFILE *PFilePtr;
0CAD *0CADp;
double Array[ICLA_DIM1][ICLA_DINM2];

/* Fill up the OCAD */
/* Open the file */

if (PASSION_read(PFilePtr, OCADp, (char #*)Array) != 0)
{
printf ("Error reading the parallel file");

¥
/* Use the data */
/* Close the file */

12

5.3.1 Reading Array Sections

PASSION provides routines to read sections of the array with strides in each dimension. Separate routines
are provided for reading array sections in the Local and Global Placement Models.

Local Placement Model

The routine PASSION_read_section 1s used to read array sections in the Local Placement Model. The
Data Sieving Method described in [TBCt94b, CBHT94] is used for better performance. The array section is
specified using the access array (See Section 3.5 for details about how to specify array sections). This routine
reads the array section from the OCLA to the specified position. The shape of the section is retained. Also,
the section is stored without stride in the ICLA, even if there was a stride in the OCLA. This is done in
order to save memory.

#include "passion.h"
/* define ICLA size */

PFILE *PFilePtr;

0CAD *0CADp;

double Array[ICLA_DIM1][ICLA_DINM2];
int AccessArray[DIMENSIONS][3], i, j;

/* Fill up the OCAD */
/* Open the file */

/* £ill up the access array and set i & j to the location in the
ICLA where the section is to be read */

if (PASSION_read_section(PFilePtr, OCADp, (char *)Array, i, j,
AccessArray) '= 0)
{
printf ("Error reading the parallel file");

¥
/* Use the data */

/* Close the file */

Global Placement Model

The routine PASSION _global_read is used to read array sections in the Global Placement Model. Since this
is a global file, note that all processors should specify the same file. Each processor can access any arbitrary
section of the array. The sections requested by the processors could be distinct, overlapping or even identical.
This routine reads the sections in an efficient manner using the Extended Two-Phase Method, which was
proposed in [TC95]. The array section is specified using the access array (See Section 3.5 for details about
how to specify array sections). The routine reads the array section from the global array file into the specified
location in main memory. The shape of the section is retained. Also, the section is stored without stride in
main memory, even if there was a stride specified in the out-of-core global array. This routine uses collective
1/0, so all processors must call the routine. Even if a processor does not want to read any data, it must call
the routine and specify an empty section. (See Figure 5.1).

13

Global Array asstored in file

4

5

6| 7| 8| 9|10

V|

18| 19| 20| 21| 22

30(31| 32| 33|34

11

23

35

D Data accessed by processor 0 only

. Data accessed by processor 1 only

. Data accessed by both

Processor 0 Processor 1
AccessArray 2
0| 5| 2 0
Size of buffer 65X 6 6X 6
Buffer Location , j) 2.3) (1.0)
Input to PASSION_global read
Status of buffer 12| 13| 14| 15| 16| 17
6| 8|10 24| 25| 26| 27| 28| 29
12| 14| 16

Output of PASSION_global read

14

Figure 5.1: Global Read Operation

#include "passion.h"
/* define the buffer size */

PFILE *PFilePtr;

0CAD *0CADp;

double Array[GLOBAL_ROWS] [GLOBAL_COLS];
int AccessArray[DIMENSIONS][3], i, j;
int nprocs = NPROCS;

/* Fill up the OCAD */
/* Open the file */

/* £ill up the access array and set i & j to the location in
the in-core array where the section is to be read */

if (PASSION_global_read(PFilePtr, OCADp, (char #*)Array, i, j,
AccessArray,nprocs) != 0)
{
printf ("Error reading the parallel file");

¥
/* Use the data */

/* Close the file */

5.3.2 Using Prefetching for Faster Access

Routines are provided for prefetching data before it is needed, in order to reduce 1/0 time.! Data prefetching
can be used to overlap computation and communication with I/O and is described in [TBCt94b]. Prefetching
can be used in the following manner :

read the first section of data from the
OCLA to the ICLA (PASSION_read_section)
while there is more data to read
issue a prefetch read for the next section (PASSION read_prefetch)
process the section currently in memory
wait for the prefetch read to get over (PASSION_prefetch_wait)
endwhile

The process is illustrated in Figure 5.2. Note that currently prefetching can only be used for sections with
stride in a column, but not stride in a row.

5.3.3 Data Reuse

Very often, some of the data from the current section in main memory is also needed for the computation
on the next section. Data reuse is an optimization which reuses data already present in main memory,
instead of reading it again from disk, and is described in [TBC*t94b]. PASSION provides two routines
PASSION _reuse_init and PASSION_read_reuse for reusing data. Data reuse is currently supported only in

1 Currently available only for the Local Placement Model.

15

Operation

Read

Read Prefetch

Process

Wait for

Read Prefetch

Process

Wait for

Read Prefetch

Process

Wait for

Process

ICLA contents

OCLA

Operation Routine Used
Read PASSION_read_section

Read Prefetch PASSION_read prefetch

Wait for PASSION_read_prefetch
PASSION_prefetch_wait

Figure 5.2: Using Prefetching to Overlap Computation and Communication with /0

16

OCLA

Call PASSION_reuse init

Data Used Data Read
Lower Overlap
First call to PASSION_read_reuse
Upper Overlap _
Lower Overlap
Second call to PASSION_read_reuse
Upper Overlap
Lower Overlap
Third call to PASSION_read_reuse
Upper Overlap
Lower Overlap
Fourth call to PASSION_read_reuse
Upper Overlap

Fifth call to PASSION_read_reusereturns-1

Figure 5.3: Data Reuse

the Local Placement Model, when each section read is a slab of rows with overlap area at the top and bottom.
The reuse routines can be used as follows :

initialize the reuse operation (PASSION_reuse_init)

while there is more data (PASSION_read_reuse)
process the data

endwhile

PASSION _reuse_init initializes the REUSE data structure (See Section 3.4) and returns a pointer to this
structure. PASSION_read_reuse is used to actually read the data. This routine determines the size of the
overlap area from the OCAD. Suppose the overlap area is « rows at the top and bottom. Then for the first
read, PASSION _read_reuse reads the entire section from the file. For subsequent reads, it moves z rows from
the lower overlap area to the beginning of the ICLA and z rows from the end of the ICLA to the upper
overlap area, and only the remaining rows are read from the file. Figure 5.3 illustrates how data reuse is
performed. An example program is given in Section 6.6.

17

5.4 Writing the Array File

A variety of PASSION routines are provided to write data to files efficiently. The simplest routine to write
data is PASSION_write. It writes the entire ICLA to the OCLA. Note that the ICLA size should be equal
to the OCLA size to use this routine. This routine should be used in the Local Placement Model only.

#include "passion.h"
/* define OCLA size */

#define ICLA_DIM1 OCLA_DIM1
#define ICLA_DIM2 OCLA_DIM2

PFILE *PFilePtr;
0CAD *0CADp;
double Array[ICLA_DIM1][ICLA_DINM2];

/* Fill up the OCAD */
/* Open the file */

if (PASSION_write(PFilePtr, OCADp, (char *)Array) != 0)
{
printf ("Error writing the parallel file");

}

/* Close the file */

5.4.1 Writing Array Sections

PASSION provides routines to write sections of the array to the file, with strides in each dimension. Separate
routines are provided for writing array sections in the Local and Global Placement Models

Local Placement Model

The routine PASSION_write_section is used to write array sections in the Local Placement Model. The
Data Sieving Method described in [TBCT94b, CBHT94] is used for better performance. The array section
is specified using the access array (See Section 3.5 for details about how to specify array sections). This
routine writes the array section from the specified location in the ICLA to the OCLA. The shape of the
section is retained. Also, the section is assumed to be stored without stride in the ICLA, but 1s written with

the specified stride in the OCLA.

#include "passion.h"

/* define ICLA size */

PFILE *PFilePtr;

0CAD *0CADp;

double Array[ICLA_DIM1][ICLA_DINM2];
int AccessArray[DIMENSIONS][3], i, j;

/* Fill up the OCAD */

18

/* Open the file */

/* £ill up the access array and set i & j to the location in
ICLA from where the section is to be taken */

if (PASSION_write_section(PFilePtr, OCADp, (char *)Array, i, j,
AccessArray) '= 0)
{
printf ("Error writing the parallel file");
}

/* Use the data */

/* Close the file */

Global Placement Model

The routine PASSION_global_write is used to write array sections in the Global Placement Model. Since
data is to be written to a global file, all processors should specify the same file name. It is assumed that
each processor writes a distinct section of the file. The Extended Two-Phase Method [TC95] is used to write
sections efficiently. The array section is specified using the access array (See Section 3.5 for details about
how to specify array sections). This routine writes the array section to the global file from the specified
location in main memory. The shape of the section is retained. Also, the section is assumed to be stored
without stride in main memory, but is written with the specified stride in the global array file. This routine
uses collective I/0, so all processors must call the routine. Even if a processor does not want to write data,
1t must call the routine and specify an empty section.

#include "passion.h"
/* define the global array size */
PFILE *PFilePtr;
0CAD *0CADp;
double Array[GLOBAL_ROWS] [GLOBAL_COLS];
int AccessArray[DIMENSIONS][3], i, j;
int nprocs = NPROCS;
/* Fill up the OCAD */
/* Open the file */
/* £ill up the access array and set i & j to the location in
the in-core array from where the section is to be taken */
if (PASSION_global_write(PFilePtr, OCADp, (char *)Array, i, j,
AccessArray,nprocs) != 0)
{
printf ("Error writing the parallel file");
}
/* Use the data */
/* Close the file */

19

Chapter 6

Example Programs

Some simple programs which use the PASSION runtime routines for I/O are given in this chapter. Programs
in Sections 6.1, 6.2, 6.3, 6.4, 6.5 and 6.6 are for the Local Placement Model. Programs in Sections 6.7 and
6.8 are for the Global Placement Model. A sample makefile is given in Section 6.9.

6.1 PROGRAM 1 : Creating Local Array Files

/* This program creates local array files using PASSION_write */

#include <string.h>
#include <fcntl.h>

#include "passion.h"
#define HEADER_STRING "PASSION File Header" /* some header */
#define DIMENSIONS (unsigned int)2

void main(int argc, char *xargv)

{

PFILE *PFilePtr;

int global_size[DIMENSIONS] = {16, 16};

int nprocs[DIMENSIONS] = {2, 1};

int distribution[DIMENSIONS][2] = {{BLOCK_DISTRIBUTION, -1},
{NO_DISTRIBUTION, -1}
};

int overlap[DIMENSIONS][2] = {{0, 0}, {0, 0}};

int icla_size[DIMENSIONS]I[2] = {{0, 7}, {0, 15}};

int ocla_size[DIMENSIONS] = {8,16};

0CAD *0OCADp;

double Array[8][16];

char FileName[20];

int IclaSize;

int i, j, MyNode=mynode();

sprintf(FileName, "FILEYd", MylNode);

20

close(open(FileName,0_CREAT|O_RDWR|O_TRUNC,0600));
/* create and £ill up OCAD with the above defined information */

OCADp = PASSION_malloc_OCAD(DIMENSIONS, ROW_MAJOR);
if (OCADp == (OCAD *)0)
{
printf ("Error in OCAD.\n");
exit(0);
}

if (PASSION_fill_OCAD(OCADp, global_size, distribution, nprocs, ocla_size,
icla_size, overlap, sizeof(double)) != 0)
{
printf("Error in filling OCAD.\n");
exit(0);
¥

if ((PFilePtr = PASSION_open(FileName, strlen(HEADER_STRING)+1)) == (PFILE *)0)
{

printf("Error in opening the file.\n");

exit(0);
}

if (PASSION_write_header(PFilePtr, HEADER_STRING) !'= 0)
{

printf("Cannot write header.\n");

exit(0);
}

for (i = 0; i < OCADp->ocla_size[0]; i++)
for (j = 0; j < OCADp->ocla_size[1]; j++)
Array[i]l[j] = (double) ((i * OCADp->ocla_size[1]) + j);

if (PASSION_write(PFilePtr, OCADp, (char *)Array) != 0)
{

printf ("Error in PASSION_write.\n");

exit(0);
}

if (PASSION_close(PFilePtr) == -1)
{

printf("Error in closing the file.\n");
exit(0);
}

PASSION_free_0OCAD(OCADp);

21

6.2 PROGRAM 2 : Reading Local Array Files

/* This program reads and displays an entire local array file using
PASSION_read */

#include <string.h>
#include "passion.h"

#define DIMENSIONS (unsigned int)2
#define HEADER_STRING "PASSION File Header"

void main(int argc, char *xargv)

{

PFILE *PFilePtr;

int global_size[DIMENSIONS] = {16, 16};

int nprocs[DIMENSIONS] = {2, 1};

int distribution[DIMENSIONS][2] = {{BLOCK_DISTRIBUTION, -1},
{NO_DISTRIBUTION, -1}
};

int overlap[DIMENSIONS][2] = {{0, 0}, {0, 0}};

int icla_size[DIMENSIONS]I[2] = {{0, 7}, {0, 15}};

int ocla_size[DIMENSIONS] = {8, 16};

0CAD *0OCADp;

double Array[8]1[16];

char FileName[20], header[50];

int IclaSize;

int i, j, k, MyNode=mynode();

sprintf(FileName, "FILEYd", mynode());

OCADp = PASSION_malloc_OCAD(DIMENSIONS,ROW_MAJOR);
if (OCADp == (OCAD *)0)
{
printf ("Error in OCAD.\n");
exit(0);
¥
if (PASSION_fill_OCAD(OCADp, global_size, distribution, nprocs, ocla_size,
icla_size, overlap, sizeof(double)) !'= 0)
{
printf("Error in filling OCAD.\n");
exit(0);
¥

if ((PFilePtr = PASSION_open(FileName, strlen(HEADER_STRING)+1)) == (PFILE *)0)
{

printf("Error in opening the file.\n");
exit(0);
}

if (PASSION_read_header(PFilePtr, (char *) header) != 0)

22

{

printf("Cannot read header.\n");
exit(0);
}

printf("Header => Y%s \n", header);

if (PASSION_read(PFilePtr, OCADp, (char #*)Array) != 0)

printf ("Error in PASSION_read.\n");
exit(0);

if (PASSION_close(PFilePtr) == -1)

{
printf("Error in closing the file.\n");
exit(0);

}

for (k=0; k<numnodes(); k++)
{
if (k == mynode()) {
for (i = 0; i < OCADp->ocla_size[0]; i++)
{
printf("[%d]l", MyNode);
for (j = 0; j < OCADp->ocla_size[1]; j++)
printf("%.0f\t", (float)(Array[il[jl));
printf("\n");
}
gsync();
}
}

PASSION_free_0OCAD(OCADp);

6.3 PROGRAM 3 : Reading Array Sections in the Local Place-
ment Model

/* This program reads a section of the OCLA using PASSION_read_section */
#include "passion.h"

#define DIMENSIONS (unsigned int)2
#define HEADER_STRING "PASSION File Header"

void main(int argc, char *xargv)

{

23

PFILE *PFilePtr;

int global_size[DIMENSIONS] = {16, 16};

int nprocs[DIMENSIONS] = {2, 1};

int distribution[DIMENSIONS][2] = {{BLOCK_DISTRIBUTION, -1},
{NO_DISTRIBUTION, -1}

};
int AccessArray[DIMENSIONS][3];

int overlap[DIMENSIONS][2] = {{0, 0}, {0, 0}};
int icla_size[DIMENSIONS]I[2] = {{0, 7}, {0, 15}};
int ocla_size[DIMENSIONS] = {8,16};

OCAD *0CADp;

double *Array;

char FileName[20];

int IclaSize;

int i, j, MyNode=mynode();

sprintf(FileName, "FILEYd", mynode());

OCADp = PASSION_malloc_OCAD(DIMENSIONS, ROW_MAJOR);
if (OCADp == (OCAD *)0)
{
printf ("Error in OCAD.\n");
exit(0);
¥
if (PASSION_fill_OCAD(OCADp, global_size, distribution, nprocs, ocla_size,
icla_size, overlap, sizeof(double)) !'= 0)
{
printf("Error in filling OCAD.\n");
exit(0);
¥

if ((PFilePtr = PASSION_open(FileName, strlen(HEADER_STRING)+1)) == (PFILE *)0)
{

printf("Error in opening the file.\n");

return;

}

IclaSize = (icla_size[0][1] - icla_size[0][0] + 1) *
(icla_sizel[11[1] - icla_size[1][0] + 1);
Array = (double *)malloc(IclaSize * sizeof (double));

/* specify the access pattern */

AccessArray[0][0] = 0;
AccessArray[0]1[1] = icla_size[0][1] - icla_size[0][0];
AccessArray[0][2] = 2;
AccessArray[1]1[0] = 0;
AccessArray[1]1[1] = icla_size[1]1[1] - icla_size[1][0];
AccessArray[1][2] = 2;

if (PASSION_read_section(PFilePtr, OCADp, (char *)Array, O, O,

24

AccessArray) != 0)

printf ("Error in PASSION_read_section.\n");
exit(0);
}

for (j=0; j<numnodes(); j++)

{
if (MyNode == j)

{
printf("[%d]", MylNode);
for (i = 0; i < IclaSize; i++)
{
printf("%.2f\t", (float)*(Array + 1i));
}
printf("\n");
}
gsync();
}
if (PASSION_close(PFilePtr) == -1)
{
printf("Error in closing the file.\n");
exit(0);
}

PASSION_free_0OCAD(OCADp);

6.4 PROGRAM 4 : Writing Array Sections in the Local Place-
ment Model

/* This program writes a section from the ICLA to the local array file
using PASSION_write_section */

#include "passion.h"

#define DIMENSIONS (unsigned int)2
#define HEADER_STRING "PASSION File Header"

void main(int argc, char *xargv)

{

PFILE *PFilePtr;

int global_size[DIMENSIONS] = {16, 16};

int nprocs[DIMENSIONS] = {2, 1};

int distribution[DIMENSIONS][2] = {{BLOCK_DISTRIBUTION, -1},
{NO_DISTRIBUTION, -1}

s
int AccessArray[DIMENSIONS][3];

25

int overlap[DIMENSIONS][2] = {{0, 0}, {0, 0}};
int icla_size[DIMENSIONS]I[2] = {{0, 7}, {0, 15}};
int ocla_size[DIMENSIONS] = {8,16};

OCAD *0CADp;

double *Array, count;

char FileName[20];

int IclaSize;

int i, j, MyNode=mynode();

sprintf(FileName, "FILEYd", mynode());

OCADp = PASSION_malloc_OCAD(DIMENSIONS, ROW_MAJOR);
if (OCADp == (OCAD *)0)

{
printf ("Error in OCAD.\n");
exit(0);
¥
if (PASSION_fill_OCAD(OCADp, global_size, distribution, nprocs, ocla_size,
icla_size,overlap, sizeof(double)) != 0)
{
printf("Error in filling OCAD.\n");
exit(0);
¥

if ((PFilePtr = PASSION_open(FileName, strlen(HEADER_STRING)+1)) == (PFILE *)0)
{

printf("Error in opening the file.\n");

exit(0);
}

IclaSize = (icla_size[0][1] - icla_size[0][0] + 1) *
(icla_sizel[11[1] - icla_sizel[1][0] + 1);
Array = (double *)malloc(IclaSize * sizeof (double));

/* where does the section lie in the OCLA */

AccessArray[0][0] = 0;
AccessArray[0]1[1] = icla_size[0][1] - icla_size[0][0];
AccessArray[0][2] = 2;
AccessArray[1]1[0] = 0;
AccessArray[1][1] = icla_size[1][1] - icla_size[1][0];
AccessArray[1][2] = 2;

count = 100.0;
for (i=0; i<IclaSize; i++)
Array[i] = count++;

if (PASSION_write_section(PFilePtr, OCADp, (char *)Array, 0, O,

AccessArray) '= 0)

{

26

printf("Error in PASSION write_section.\n");
exit(0);
}

/* display.c can be used to view the file */

if (PASSION_close(PFilePtr) == -1)

{
printf("Error in closing the file.\n");
exit(0);

}

PASSION_free_0OCAD(OCADp);
}

6.5 PROGRAM 5 : Using Prefetching

/* This is an example of prefetching using PASSION_read_prefetch */
#include "passion.h"

#define DIMENSIONS (unsigned int)2
#define HEADER_STRING "PASSION File Header"

void main(int argc, char *xargv)

{

PFILE *PFilePtr;

int global_size[DIMENSIONS] = {16, 16};

int nprocs[DIMENSIONS] = {2, 1};

int distribution[DIMENSIONS][2] = {{BLOCK_DISTRIBUTION, -1},
{NO_DISTRIBUTION, -1}

3
int AccessArray[DIMENSIONS][3];

int overlap[DIMENSIONS][2] = {{0, 0}, {0, 0}};
int icla_size[DIMENSIONS][2] = {{0, 7}, {0, 153}};
int ocla_size[DIMENSIONS] = {8,16};

0CAD *0OCADp;

double *Array;

char FileName[20];

int IclaSize;

int i, j, MyNode=mynode();

PREFETCH *PREFETCHp;

sprintf(FileName, "FILEYd", mynode());

OCADp = PASSION_malloc_OCAD(DIMENSIONS, ROW_MAJOR);
if (OCADp == (OCAD *)0)
{

printf ("Error in OCAD.\n");

exit(0);

27

}

if (PASSION_fill_OCAD(OCADp, global_size, distribution, nprocs, ocla_size,

icla_size, overlap, sizeof(double)) != 0)
{
printf("Error in filling OCAD.\n");
exit(0);
¥

if ((PFilePtr = PASSION_open(FileName,strlen(HEADER_STRING)+1)) == (PFILE *)0)
{

printf("Error in opening the file.\n");

exit(0);
}

IclaSize = (icla_size[0][1] - icla_size[0][0] + 1) *
(icla_sizel[11[1] - icla_size[1][0] + 1);
Array = (double *)malloc(IclaSize * sizeof (double));

AccessArray[0][0] = 0;
AccessArray[0][1] = icla_size[0][1] - icla_size[0][0];
AccessArray[0][2] = 1;
AccessArray[1]1[0] = 0;
AccessArray[1][1] = icla_size[1][1] - icla_size[1]1[0];
AccessArray[1][2] = 1;

if ((PREFETCHp = PASSION_read_prefetch(PFilePtr, OCADp, (char #*)Array,
0, 0, AccessArray)) == 0)
{
printf("Error in PASSION_read_prefetch.\n");
exit(0);
}

PASSION_prefetch_wait (PREFETCHp) ;
for (j=0; j<numnodes(); j++)
{
if (MyNode == j)

printf("[%d]", MylNode);
for (i = 0; i < IclaSize; i++)

{
printf("%.2f\t", (float)*(Array + 1i));
}
printf("\n");
}
gsync();
}
if (PASSION_close(PFilePtr) == -1)
{

28

printf("Error in closing the file.\n");
exit(0);
}

PASSION_free_0OCAD(OCADp);
}

6.6 PROGRAM 6 : Using Data Reuse

/* This program illustrates read with reuse using PASSION_read_reuse */

#include <string.h>
#include "passion.h"

#define DIMENSIONS (unsigned int)2
#define HEADER_STRING "PASSION File Header"

void main(int argc, char *xargv)

{

PFILE *PFilePtr;

int global_size[DIMENSIONS] = {16, 16};

int nprocs[DIMENSIONS] = {1, 1};

int distribution[DIMENSIONS][2] = {{NO_DISTRIBUTION, -1},
{NO_DISTRIBUTION, -1}
};

int overlap[DIMENSIONSI[2] = {{1, 1}, {0, 0}};

int icla_size[DIMENSIONS]I[2] = {{0, 1}, {0, 15}};

int ocla_size[DIMENSIONS] = {10,16};

0CAD *0OCADp;

REUSE *REUSEp;

double Array[4]1[16];

char FileName[20];

int IclaSize;

int i, j, MyNode=mynode(), retval;

sprintf(FileName, "FILEYd", mynode());

OCADp = PASSION_malloc_OCAD(DIMENSIONS, ROW_MAJOR);
if (OCADp == (OCAD *)0)
{
printf ("Error in OCAD.\n");
exit(0);
¥
if (PASSION_fill_OCAD(OCADp, global_size, distribution, nprocs, ocla_size,
icla_size, overlap, sizeof(double)) != 0)
{
printf("Error in filling OCAD.\n");
exit(0);
¥

29

if ((PFilePtr = PASSION_open(FileName, strlen(HEADER_STRING)+1)) == (PFILE *)0)
{

printf("Error in opening the file.\n");

return;

}

IclaSize = (icla_size[0][1] - icla_size[0J[0] + 1) *
(icla_size[1][1] - icla_size[1][0] + 1) + (overlap[0][0] +
overlap[0] [1])*(icla_size[1][1] - icla_size[1][0] + 1);

REUSEp = PASSION_reuse_init(PFilePtr, OCADp, 0);
if (REUSEp == (REUSE *)0)
{
printf("Error in reuse init.\n");
exit(0);
}

while(!(retval = PASSION_read_reuse(REUSEp, (char #)Array)))
{

printf("[%d]l", MyNode);

for (i = 0; i <4; i++)

{
for (j = 0; j < 16; j++)

printf("%.2f\t", (float)Array[il[jl);
printf("\n");

}
}

if (retval == -1) printf("Error in PASSION_read_reuse.\n");
if (PASSION_close(PFilePtr) == -1)
{

printf("Error closing the file.\n");

exit(0);
}

PASSION_free_0OCAD(OCADp);

6.7 PROGRAM 7: Reading Array Sections in the Global Place-
ment Model

/* This program reads a section from the global array file using
PASSION_global_read */

#include<stdio.h>
#include <fcntl.h>
#include <nx.h>

#include <math.h>

30

#include "passion.h"

#define DIMENSIONS (unsigned int)2
#define HEADER_STRING "PASSION File Header"

void main()

{

PFILE *fp;

int global_size[DIMENSIONS] = {8, 16};

int nprocs[DIMENSIONS] = {2, 1};

int distribution[DIMENSIONS][2] = {{BLOCK_DISTRIBUTION, -1},
{NO_DISTRIBUTION, -1}

};
int AccessArray[DIMENSIONS][3];
int overlap[DIMENSIONS][2] = {{0, 0}, {0, 0}};
int icla_size[DIMENSIONSI[2] = {{0, 7}, {0, 15}};
int ocla_size[DIMENSIONS] = {8,16};

double *Array;

int mynod,file_block=4;

int 1i,j,k;

int 11,12,ul,u2;

int row,col;

int NO_ROWS = 8, NO_COLS = 16;

OCAD *0CADp;

OCADp = PASSION_malloc_OCAD(DIMENSIONS, ROW_MAJOR);
if (OCADp == (OCAD *)0)
{
printf ("Error in OCAD.\n");
exit(0);
¥
if (PASSION_fill_OCAD(OCADp, global_size, distribution, nprocs, ocla_size,
icla_size, overlap, sizeof(double)) !'= 0)
{
printf("Error in filling OCAD.\n");
exit(0);
¥

if ((fp = PASSION_open("FILEQO", strlen(HEADER_STRING)+1)) == (PFILE *)0)
{

printf("Error in opening the file.\n");

return;

}
Array = (double *)malloc(NO_ROWS*NO_COLS*sizeof (double));

mynod = mynode() ;

/* section in global coordinates */

31

AccessArray[0] [0] = mynod*file_block;
AccessArray[0][1] = mynod*file_block + 3;
AccessArray[0][2] = 1;

AccessArray[1][0] = 0;

AccessArray[1][1] = 15;

AccessArray[1][2] = 1;

if (PASSION_global_read(fp, OCADp, (char *)Array, O, O, AccessArray,

numnodes()) !'= 0)
{
printf ("Error in PASSION_global_read.\n");
exit(0);
}
11 = AccessArray[0][0];

ul = AccessArray[0][1];
12 AccessArray[1] [0];
u2 AccessArray[1][1];

for (k=0; k<numnodes(); k++) {
if (mynode() == k) {
for(i = O,row = 0; i <= (ul-11); i++ ,row++)
{
printf ("MYNODE %d ROW %d ", mynod, row);
for(j=0,col = 0; j <= (u2-12); j ++,col++)
{
printf ("%f\t ",*(Array + row*NO_COLS + col));
¥
printf("\n");
¥
¥
gsync();
¥

if (PASSION_close(fp) == -1)
{

printf("Error in closing the file.\n");
exit(0);
}

PASSION_free_0OCAD(OCADp);

32

6.8 PROGRAM 8 : Writing Array Sections in the Global Place-
ment Model

/* This program writes a section to the global array file using
PASSION_global_write */

#include<stdio.h>
#include <fcntl.h>
#include <nx.h>
#include <math.h>
#include<malloc.h>
#include "passion.h"

#define DIMENSIONS (unsigned int)2
#define HEADER_STRING "PASSION File Header"

void main()
{

PFILE *fp;

int global_size[DIMENSIONS] = {8, 16};

int nprocs[DIMENSIONS] = {2, 1};

int distribution[DIMENSIONS][2] = {{BLOCK_DISTRIBUTION, -1},
{NO_DISTRIBUTION, -1}
};
int AccessArray[DIMENSIONS][3];
int overlap[DIMENSIONS][2] = {{0, 0}, {0, 0}};
int icla_size[DIMENSIONSI[2] = {{0, 7}, {0, 15}};
int ocla_size[DIMENSIONS] = {8,16};
double *Array, count=100.0;
int mynod,file_block=4;
int 1i,j,k;
int 11,12,ul,u2;
int row,col;
int NO_ROWS = 8, NO_COLS = 16;
OCAD *0CADp;

OCADp = PASSION_malloc_OCAD(DIMENSIONS, ROW_MAJOR);
if (OCADp == (OCAD *)0)
{
printf ("Error in OCAD.\n");
exit(0);
¥
if (PASSION_fill_OCAD(OCADp, global_size, distribution, nprocs, ocla_size,
icla_size, overlap, sizeof(double)) !'= 0)
{
printf("Error in filling OCAD.\n");
exit(0);
¥

if ((fp = PASSION_open("FILEO", strlen(HEADER_STRING)+1)) == (PFILE #)0) {
printf("Error in opening the file.\n");

33

List the name of the directory where

return;

}

Array = (double *)malloc(NO_ROWS*NO_COLS*sizeof (double));

mynod = mynode() ;

AccessArray[0] [0] = mynod*file_block;
AccessArray[0][1] = mynod*file_block + 3;
AccessArray[0][2] = 1;

AccessArray[1]1[0] = 0;

AccessArray[1][1] = 15;

AccessArray[1][2] = 1;

for(i=0; i<NO_ROWS; i++)

{
for(j=0; j<NO_COLS; j++)
{
*(Array + i*NO_COLS + j) = (count++) + mynod*200;
}
}
if (PASSION_global_write(fp, OCADp, (char *)Array, O, O,
numnodes()) != 0)
{
printf("Error in PASSION_global_write.\n");
exit(0);
}
if (PASSION_close(fp) == -1)
{
printf("Error in closing the file.\n");
exit(0);
}

PASSION_free_0OCAD(OCADp);

6.9 Sample Makefile

Sample Makefile for PASSION Applications

is stored.
LIBDIR=

34

AccessArray,

List the name of the directory where the PASSION include files
is stored.
INCDIR=

the PASSION runtime library

Add the names of supporting libraries needed, e.g. Add -nx to
when compiling on Intel PARAGON
LIBS= -lpassion —1lm

create : create.o
$(CC) -0 create $(CCFLAGS) -L $(LIBDIR) create.o $(LIBS)

create.o . create.c
$(CC) —c -D$(PASSION_ARCH) $(CCFLAGS) -I $(INCDIR) create.c

35

Chapter 7

Function Reference

C

Synopsis
int PASSION close(PFilePtr);
Description

This routine is used to close the parallel file.

Parameter Declarations
PFILE *PFilePtr; PFilePiris a file pointer returned by a previous PASSION open.
Return Value

The function returns 0 if successful, else it returns —1°.

F

Synopsis

int PASSION {ill OCAD(OCADp, size, distribution, nprocs, ocla_size, icla_size, overlap,
elemsize);

Description

This routine fills the OCAD for the array. Only this routine should be used to fill the OCAD.

Parameter Declarations

1 All functions that return an integer use —1 as the return value to indicate error.

36

OCAD *OCADp; OCADp points to a previously allocated OCAD using PASSION_malloc_OCAD.
Please note that the sizes of the parameters to follow depend on the dimenston specified in the
OCAD. It 1s the user’s responsibility to ensure that the dimension parameter used to create the
OCAD structure is consistent with parameters given to the PASSION_filL OCAD call to follow.

int *size; size is a single dimensional array of integers. It contains the global size of the array in each
dimension.

int distribution[][2]; distribution is a two dimensional array of integers. Row ¢ of the array gives the
distribution information about the array in dimension ¢. The first element in the row specifies the
type of distribution. Valid values are :
NO_DISTRIBUTION
BLOCK_DISTRIBUTION
CYCLIC_DISTRIBUTION
The second element in the row gives the block size for the distribution. It is relevant only when the

distribution 1s CYCLIC_DISTRIBUTION.

int *nprocs; nprocs is a one dimensional array of integers. It gives the number of processors over which
the array is distributed in each dimension.

int *ocla_size; ocla_size is a one dimensional array of integers. It contains the size of the OCLA in
each dimension.

int *icla_size[][2]; icla_size is a two dimensional array of integers. It contains the size of the ICLA
in each dimension. The first element in the row specifies the lowest index of the ICLA in that
dimension and the second element specifies the highest index of the ICLA in that dimension.

int overlap[][2]; overlap is a two dimensional array of integers. Row i of the array gives the overlap
information about the array in dimension i. The first element in the row gives the size of lower
overlap area in that dimension. The second element gives the size of upper overlap area in that
dimension.

int elemsize; elemsize specifies the size of each array element in bytes.
Return Value

This function returns zero, if successful, else it returns —1.

Synopsis
void PASSION free OCAD(OCADp);
Description

This routine is used to deallocate the OCAD. Only this routine should be used to deallocate the OCAD.

Parameter Declarations

OCAD *OCADp; OCADp points to a previously allocated OCAD structure using PASSION _malloc_.OCAD.

37

G

Synopsis
int PASSION global read(PFilePtr, OCADp, Array, 1, j, AccessArray, nprocs);

Description

This is a collective I/O call which uses the Extended Two Phase Method to read an array section from
a global file into main memory. The same file should be specified for all processors. The section to be
read is specified in AccessArray. Data is written into Array starting from location (i,j). Data is stored
without stride in the Array, even if there 1s a stride specified in the out-of-core global array. This routine
is for the Global Placement Model only.

Parameter Declarations

PFILE *PFilePtr; PFilePtris the file pointer of the file to be read.

OCAD *OCADp; OCADp is a pointer to the OCAD of the out-of-core array.

char * Array; Array is the pointer to the start of the buffer into which data is to be read.

int 1, j; These parameters specify the location in Array from where the section is to be stored.

int AccessArray[]|[3]; AccessArrayspecifies the section to be read in global coordinates. See Section 3.5
for details about how to specify a section.

int nprocs; This gives the number of processors reading the data. nprocs should always be equal to
the number of processors on which the program is being executed.

Return Value

This function returns 0 if successful, else it returns —1.

Synopsis
int PASSION global write(PFilePtr, OCADp, Array, 1, j, AccessArray, nprocs);

Description

This is a collective I/O call which uses the Extended Two Phase Method to write an array section to a
global file. The same file should be specified for all processors. The section to be written is specified in
AccessArray. Data is written starting from location (i,j) in Array. Data is assumed to be stored without
stride in Array, but 1s written with the specified stride in the global array file. This routine is for the
Global Placement Model only.

Parameter Declarations

PFILE *PFilePtr; PFilePtris the file pointer of the file into which data is to be written.
OCAD *OCADp; OCADp is the pointer to the OCAD of the out-of-core array.

38

char * Array; Array is the pointer to the start of the buffer from which data is to be written.
int 1, j; These parameters specify the location in Array from where data is to be written to the file.

int AccessArray[][3]; AccessArray specifies the section to be written in global coordinates. See Sec-
tion 3.5 for details about how to specify a section.

int nprocs; This gives the number of processors writing data. nprocs should always be equal to the
number of processors on which the program is being executed.

Return Value

This function returns 0 if successful, else it returns —1.

M

Synopsis
OCAD *PASSION _malloc_OCAD(dimensions, storage);
Description

This routine is used to allocate the OCAD. Only this routine should be used to allocate the OCAD.

Parameter Declarations

int dimensions; dimensions is the number of dimensions of the array.

int storage; storage specifies the way the array is stored in the file. It can be either ROW_MAJOR or
COLUMN_MAJOR. Currently only ROW_MAJOR storage is supported.

Return Value

The function returns a pointer to the OCAD structure (see Section 3.1) if successful, else it returns a

NULL pointer ((OCAD *)0).

O

Synopsis
PFILE *PASSION open(filename, headersize);
Description

This routine is used to open the parallel file. Only this routine should be used to open the file.

Parameter Declarations

char *filename; filename points to a character string containing the name of the file to be opened.

39

int headersize; headersize specifies the size of the header at the start of the file, in bytes.
Return Value

The function returns a file pointer (see Section 3.2) if successful, else it returns NULL pointer((PFILE *)0).

P

Synopsis
int PASSION prefetch wait(PREFETCHp);
Description

This routine is used to wait for a previous prefetch read to complete. (See Section 5.3.2 for more details
about prefetching.) This routine is for the Local Placement Model only.

Parameter Declarations
Parameters :

PREFETCH *PREFETCHp; PREFETCHpis a pointer to the corresponding PREFETCH structure
returned by a previous PASSION_read_preftech.

Return Value

The routine returns 0 if successful and —1 otherwise.

R

Synopsis
int PASSION read(PFilePtr, OCADp, Array);
Description

This routine is used to read the entire OCLA into Array. Hence the size of Array should at least be equal
to that of the OCLA. This routine is for the Local Placement Model only.

Parameter Declarations

PFILE *PFilePtr; PFilePtris the file pointer of the file to be read.
OCAD *OCADp; OCADp is a pointer to the OCAD of the out-of-core array.
char *Array; Array is a pointer to the start of the ICLA.

Return Value

40

The function returns 0 if successful, else it returns —1.

Synopsis
int PASSION read_header(PFILE *PFilePtr, char *HBuf);
Description

This routine is used to read the header at the start of the array file into a buffer.

Parameter Declarations

PFILE *PFilePtr; PFilePtris the file pointer of the file to be read.
char *Hbuf; Hbuf is a pointer to the start of the buffer.

Return Value

The function returns 0 if successful, else it returns —1.

Synopsis
PREFETCH *PASSION read_prefetch(PFilePtr, OCADp, Array, 1, J, AccessArray);
Description

This routine is used for prefetching an array section. (See Section 5.3.2 for more details about prefetch-
ing). Tt initiates one or more read operations and returns control back to the user program. This routine
is for the Local Placement Model only.

Parameter Declarations

PFILE *PFilePtr; PFilePtris the file pointer of the file to be read.

OCAD *OCADp; OCADp is a pointer to the OCAD of the array.

char *Array; Array is a pointer to the start of the ICLA.

int 1, j; These parameters indicate the location in Array from where the section is to be stored.

int AccessArray[][3]; AccessArray specifies the section to be read in local coordinates. See Section 3.5
for details about how to specify an array section.

Return Value

The routine returns a pointer to the PREFETCH structure if successful, else it returns (PREFETCH *)0.
The PREFETCH structure pointer (See Section 3.3) should be used as parameter to the function PAS-
SION _prefetch_wait to wait for the read to finish.

41

Synopsis
int PASSION read_section(PFilePtr, OCADp, Array, i, j, AccessArray);
Description

This routine is used to read array sections from the local array file using Data Sieving. The section is
stored without stride in Array, even if there is a stride in the OCLA. The shape of the section is retained
in the ICLA. This routine is for the Local Placement Model only.

Parameter Declarations

PFILE *PFilePtr; PFilePtris the file pointer of the file to be read.

OCAD *OCADp; OCADp is the pointer to the OCAD of the array.

char *Array; Array is a pointer to the beginning of the ICLA.

int 1, j; These parameters indicate the location in Array from where the section is to be read.

int AccessArray[][3]; AccessArray specifies the section to be read in local coordinates. See Section 3.5
for details about how to specify an array section.

Return Value

The function returns 0 if successful, else it returns —1.

Synopsis
REUSE *PASSION reuse_init(PFilePtr, OCADp, StartRow);
Description

This routine initiates a read with reuse operation. (See Section 5.3.3 for more details about data reuse.)
This routine has to be called before calling the PASSION _read_reuse routine. This routine is for the Local
Placement Model only.

Parameter Declarations

PFILE *PFilePtr; PFilePtris the file pointer of the file to be read.
OCAD *OCADp; OCADp is the pointer to the OCAD of the array.

int StartRow; StartRow is the starting row from where the reuse operation will start.
Return Value

The routine returns a pointer to the REUSE structure (see Section 3.4) if successful. Else it returns

(REUSE *)0.

42

Synopsis
int PASSION read reuse(REUSEp, Array);
Description

This routine reads the next block of data from the array with reuse. (See Section 5.3.3 for more details
about data reuse.) This routine is for the Local Placement Model only.

Parameter Declarations

REUSE *REUSEp; REUSEp is a pointer to the REUSE structure (see Section 3.4) returned by an
earlier PASSION _reuse_init call.

char *Array; Arrayis a pointer to the ICLA in which the data is to be read.
Return Value

The routine returns 0 if successful. It returns 1 if it has reached the end of the array. It returns —1 if
any error occurs.

W

Synopsis
int PASSION _write(PFilePtr, OCADp, Array);
Description

This routine 1s used to write the entire ICLA to the OCLA. Hence the size of Array should at least be
equal to that of the OCLA. This routine is for the Local Placement Model only.

Parameter Declarations

PFILE *PFilePtr; PFilePtris the file pointer of the file to be written.
OCAD *OCADp; OCADp is the pointer to the OCAD of the array.
char *Array; Array is a pointer to the beginning of the ICLA.

Return Value

The function returns 0 if successful, else it returns —1.

Synopsis
int PASSION _write_header(PFILE *PFilePtr, char *HBuf);

Description

43

This routine is used to write the header from Hbuf to the start of the array file.

Parameter Declarations

PFILE *PFilePtr; PFilePtris the file pointer of the file to be read.
char *Hbuf, Hbuf is a pointer to the start of the buffer containing the header.

Return Value

The function returns 0 if successful, else it returns —1.

Synopsis
int PASSION _write_section(PFilePtr, OCADp, Array, 1, J, AccessArray);
Description

This routine is used to write array sections to the file using Data Sieving. The section is assumed to be
without stride in Array, and is written with the specified stride to the OCLA. This routine is for the
Local Placement Model only.

Parameter Declarations

PFILE *PFilePtr; PFilePtris the file pointer of the file to be written.
OCAD *OCADp; OCADp is the pointer to the OCAD of the array.
char *Array; Array is a pointer to the beginning of the ICLA.

int i, j; These parameters indicate the location in Array from where the section is to be written to the

file.

int AccessArray[|[3]; AccessArray specifies the section to be written in local coordinates. See Sec-
tion 3.5 for details about how to specify an array section.

Return Value

The function returns 0 if successful, else it returns —1.

44

Chapter 8

Installing the Software

8.1 How to download the software

The PASSION Runtime Library is available from the anonymous FTP sites :
e erc.cat.syr.edu: ece/choudhary/PASSION/version-1.0,
e ftp.npac.syr.edu: users/choudhar/PASSION/version-1.0.

The software 1s stored as a compressed tar file passion.tar.Z. The PASSION Runtime Library is also
available on the World Wide Web at
http://www.cat.syr.edu/passion.html

8.2 How to unpack the software

1. Uncompress the downloaded file as follows :
Y%uncompress passion.tar.Z

2. Untar the file passion.tar as follows :
%tar xf passion.tar

3. This will create a passion-1.0 subdirectory in the current directory.

8.3 How to compile the software

There 18 a makefile provided in the PASSION directory. Edit the makefile and provide the necessary infor-
mation. Then use the command:

% make

45

Chapter 9

Where to look for help

9.1

Comments and Feedback

For any questions, comments and bug reports regarding the PASSION Runtime Library, please contact the
PASSION group by sending email to passion@cat.syr.edu.

9.2 Related Publications

Additional information about PASSION is available on the World Wide Web at
http://www.cat.syr.edu/passion.html.
PASSION related papers can also be obtained from the anonymous ftp sites

erc.cat.syr.edu: ece/choudhary/PASSION,

ftp.npac.syr.edu: users/choudhar/PASSION.

The following is the list of papers related to the PASSION project and their corresponding file names:-

passion_report.ps.Z: “PASSION: Parallel and Scalable Software for Input-Output”, Alok Choud-
hary, Rajesh Bordawekar, Michael Harry, Rakesh Krishnaiyer, Ravi Ponnusamy, Tarvinder Singh and
Rajeev Thakur, NPAC Technical Report SCCS-636, Sept. 1994.

extended-two-phase.ps.Z: “Accessing Sections of Out-of-Core Arrays Using an Extended Two-Phase
Method”, Rajeev Thakur and Alok Choudhary, NPAC Technical Report SCCS-685, Jan. 1995.

ics94-out-of-core-hpf.ps.Z: “Compiler and Runtime Support for Out-of-Core HPF Programs”,
Rajeev Thakur, Rajesh Bordawekar and Alok Choudhary, Proc. of Int. Conf. on Supercomputing (ICS
94), July 1994, pp. 382-391.

splc94 passion runtime.ps.Z: “PASSION Runtime Library for Parallel I/0”, Rajeev Thakur, Ra-
jesh Bordawekar, Alok Choudhary, Ravi Ponnusamy and Tarvinder Singh, Proc. of the Scalable Parallel
Libraries Conference, Oct. 1994

access.reorg.ps.Z: “Data Access Reorganizations in Compiling Out-of-core Data Parallel Programs
on Distributed Memory Machines 7, Rajesh Bordawekar, Alok Choudhary and Rajeev Thakur, NPAC
Technical Report SCCS5-622, Sept. 1994.

vipfs.ps.Z: “The Design of VIP-FS: A Virtual Parallel File System for High Performance Parallel
and Distributed Computing”, Juan Miguel del Rosario, Michael Harry and Alok Choudhary, NPAC
Technical Report SCCS-628, May 1994.

46

e adopt.ps.Z: “ADOPT: A Dynamic Scheme for Optimal Prefetching in Parallel File Systems”, Tarvin-
der Singh and Alok Choudhary, NPAC Technical Report SCCS-627, 1994.

e task data.ps.Z: “Integrating Task and Data Parallelism Using Parallel I/O Techniques”, Bhaven
Avalani, Alok Choudhary, Ian Foster and Rakesh Krishnaiyer, Proc. of the Int. Workshop on Parallel
Processing, Bangalore, India, Dec. 1994.

47

Bibliography

[BCY4]

[BARC93]

[CBH*94]

[CFH*94]

[dRBC93)]

[dRHCY4]

[SC94]

[TBCY4a]

[TBC+94b]

[TC95]

R. Bordawekar and A. Choudhary. Language and Compiler Support for Parallel I/O. In Pro-
ceedings of IFIP Working Conference on Programming Environments for Massively Parallel
Distributed Systems, April 1994.

R. Bordawekar, J. del Rosario, and A. Choudhary. Design and Evaluation of Primitives for
Parallel I/O. In Proceedings of Supercompuling 93, pages 452-461, November 1993.

A. Choudhary, R. Bordawekar, M. Harry, R. Krishnaiyer, R. Ponnusamy, T. Singh, and
R. Thakur. PASSION: Parallel and Scalable Software for Input-Output. Technical Report
SCCS-636, NPAC, Syracuse University, September 1994. Also available as CRPC Technical
Report CRPC-TR94483-S.

P. Corbett, D. Feitelson, Y. Hsu, J. Prost, M. Snir, S. Fineberg, B. Nitzberg, B. Traversat,
and P. Wong. MPI-IO: A Parallel 1/O Interface for MPI, Version 0.2. Technical Report IBM
Research Report RC 19841(87784), IBM T. J. Watson Research Center, November 1994.

J. del Rosario, R. Bordawekar, and A. Choudhary. Improved Parallel I/O via a Two-Phase
Runtime Access Strategy. In Proceedings of the Workshop on I/O in Parallel Computer Systems
at IPPS ’93, April 1993.

J. del Rosario, M. Harry, and A. Choudhary. The Design of VIP-FS: A Virtual Parallel File
System for High Performance Parallel and Distributed Computing. Technical Report SCCS-628,
NPAC, Syracuse University, May 1994.

T. Singh and A. Choudhary. ADOPT: A Dynamic Scheme for Optimal Prefetching in Parallel
File Systems. Technical Report SCCS-627, NPAC, Syracuse University, 1994.

R. Thakur, R. Bordawekar, and A. Choudhary. Compiler and Runtime Support for Out-of-Core
HPF Programs. In Proceedings of the 8" ACM International Conference on Supercomputing,
pages 382-391, July 1994.

R. Thakur, R. Bordawekar, A. Choudhary, R. Ponnusamy, and T. Singh. PASSION Runtime
Library for Parallel I/O. In Proceedings of the Scalable Parallel Libraries Conference, October
1994.

R. Thakur and A. Choudhary. Accessing Sections of Out-of-Core Arrays Using an Extended
Two-Phase Method. Technical Report SCCS—685, NPAC, Syracuse University, January 1995.
Also available as CRPC Technical Report CRPC-TR95508-S.

48

Index

Array Access Examples
Closing the Array File, 12 Creating Local Array Files; 20
Data Reuse, 15 Data Reuse, 29
Opening the Array File, 11 Prefetching, 27
Opening the Array File Reading Array Sections
in GPM, 11 in GPM, 30
in LPM, 11 in LPM, 23
Prefetching, 15 Reading Local Array Files , 21
Reading Array Sections Sample Makefile, 34
in GPM, 13 Writing Array Sections
in LPM, 13 in GPM, 32
Reading the Array File in LPM, 25
reading in LPM, 12
Writing the Array File Function Reference, 36
in LPM, 18 .
Writing the Array Sections Global Array File (GAF), 2
E Slzf’)li\/[/[,’ 115 In-core Local Array (ICLA), 2

Creating OCAD Local Array File (LAF), 2

Parameters, 8 Out-of-core Local Array (OCLA), 2
Data Access Models, 2 Overlap Area, 2

Global Placement Model (GPM), 2 PASSION _close. 12. 36
Local Placement Model (LPM), 2 PASSION_ﬁH_O’CAb, 8, 36
Data Structures PASSION _free_ OCAD, 8, 37
Out-of-core Array Descriptor (OCAD), 4 PASSION _global read, 13, 38
Parallel File Pointer (PFILE), 4 PASSION_glObal_Write’, 15;, 38
Prefetch Descriptor (PREFETCH), 5 PASSTON malloc. OCAD. 8. 39
Reuse Descriptor (REUSE), 5 PASSION _open, 11, 39 o
Access Array (AASpec), 5 PASSION _prefetch_wait, 15, 40
Defining an Array PASSION _read, 12, 40
Par@meteljs PASSION _read_header, 41
D}me.nsm.ns, 6 PASSION _read_prefetch, 15, 41
DlStl‘lbUtlQﬂ Type, 7 PASSION _read_reuse, 15, 43
Element. Size, 8 PASSION _read_section, 13, 42
ICLA Slz.e, 7 PASSION _reuse_init, 15, 42
OCLA Size, 7 PASSION _write, 18, 43
Overlap Information, 8 PASSION _write_header, 43
g.rocesgors, 6 PASSION _write_section, 18, 44
ize |

Storage Type, 6

49

