
Application Development and Execution in a Virtual

Computing Environment

Philip Rousselle, Rajesh Yadav, Salim Hariri�, Dongmin Kim,

Suresh Boddapati, and Paul Tymann

Northeast Parallel Architectures Center

Department of Electrical and Computer Engineering

Syracuse University,

Syracuse, NY 13244-4100

SCCS # 705

�Presenting and corresponding author, Deptartment of Electrical and Computer Engineering , 121 Link Hall,

Syracuse University, Syracuse, NY 13244, hariri@cat.syr.edu, fax 315-443-2583

1

Abstract

As the size and complexity of high performance computing applications continue to increase, their

computing, storage and connectivity requirements become more and more di�cult to accommo-

date on any single computing platform. The Virtual Computing Environment (VCE) combines

heterogeneous computing, storage and network resources into a
exible system for the execution

of large scale applications. Current systems for managing distributed applications employ static

allocation policies which are di�cult to scale to large networks made up of geographically dispersed

resources connected by high speed network technology (e.g. ATM). In this paper we present an

application description framework which is used to develop large scale applications in the VCE.

We also discuss two methods for scheduling tasks in the VCE: one emphasizes redundant task

scheduling while the other emphasizes a more conventional use of load measurement techniques

to select less loaded computers to run application tasks. Several example applications are included

and used to demonstrate the performance of a Virtual Computing Environment which employs an

IBM SP2 supercomputer, a cluster of DEC Alpha workstations, and a cluster of Sun and Silicon

Graphics workstations interconnected by an ATM network.

2

1 Introduction

Grand Challenge applications require multiple computers, or even multiple supercomputers, to

achieve acceptable performance. Some researchers are taking advantage of heterogeneous com-

puting environments to achieve levels of performance that to date have not been possible. A

climate simulation model described in [7] uses both SIMD and MIMD style parallel computers

to achieve superlinear speedup. As applications that require multiple supercomputers and clus-

ters of high performance workstations become more common, the need for systems to ease their

development and automate their execution becomes clear. The Virtual Computing Environment

(VCE) is a research e�ort which is investigating new techniques for developing and managing the

execution of large scale applications which exploit high performance heterogeneous computing

resources dispersed across a wide area network.

Previous attempts to harness the capacity of distributed resources and make them available

to large applications are not suitable for managing the current generation of Grand Challenge

applications. Utopia [10] allows a widely dispersed group of heterogeneous workstations to be

used for remote task execution. However, Utopia is geared towards managing a network of

privately owned Unix workstations. Tasks are placed on lightly loaded machines and remain

there until they have completed. Users whose machines are used to host remote tasks may have

to execute their own tasks remotely on other machines to realize good performance. Condor [6]

also uses idle workstations to host long running applications and provides preemptive process

migration. The process migration facilities in Condor require a high degree of homogeneity

among the participants. Durra [1] provides many facilities which are useful for constructing

large distributed applications. Durra is also oriented to a workstation environment and places

more emphasis on fault tolerance than high performance computing.

New scheduling protocols must be devised to manage task execution in distributed supercom-

puting environments. Recent research has shown that for some tasks a cluster of DEC Alphas

will provide comparable performance to an IBM SP2 [3]. If both these architectures are available

at run time, the least loaded machine is preferable. Load measurement on supercomputers is

more complex than for workstations. Workstations contain a single ready queue which can be

sampled to gauge the system activity level [5]. In a supercomputer the load of each computing

element must be sampled in order to compute an aggregate load. Comparing the loads of geo-

graphically dispersed supercomputers is complicated by communication delays and may be costly.

Further, large tasks may have very long running times, so systems which emphasize precise load

measurements in order to optimize initial task placement have no way to react to load changes

during task execution. Conversely, the cost of migrating running tasks between supercomputers

might be prohibitively expensive. Because load conditions are hard to measure and prone to

3

uctuate, and process migration between high performance machines is problematic, redundant

scheduling of performance critical tasks represents an interesting approach to guaranteeing good

performance over a heterogeneous distributed computing environment. Several approaches to

task scheduling are being investigated in the Virtual Computing Environment. Two that will be

discussed in this paper are redundant task scheduling and selective initial task placement.

The Virtual Computing Environment has two principle components. The �rst is an application

description framework which is used to describe the attributes of computing tasks and how these

tasks can be arranged to construct large applications. The second is an execution environment

which interprets application descriptions and executes them on a set of computers selected at

runtime from machines available across a wide area network.

A prototype VCE has been constructed. It is being used to develop and run applications which

exploit a variety of high performance architectures including an IBM SP2, and DEC Alpha, Sun

and Silicon Graphics workstations connected to FDDI and ATM networks to investigate a variety

of distributed systems issues including development methodologies and scheduling protocols.

The remainder of the paper is organized as follows. Section 2 gives an overview of the VCE

execution environment. Section 3 discusses how applications are constructed from tasks using

the application description framework. Section 4 details the scheduling and execution techniques

used in the VCE. Section 5 describes the hardware con�guration of a VCE prototype system,

the applications running on it, and the performance results observed. Future work is proposed

in Section 6.

2 The VCE Execution Environment

A VCE execution environment is a group of heterogeneous machines connected by a high perfor-

mance network [9] (Figure 1). A portion of the computing resources on each machine is allotted

to execution of VCE applications. Each machine participating in the VCE hosts a VCE dae-

mon to perform scheduling and dispatching of VCE work. A dispatchable unit in the VCE is a

task. Each task corresponds to an executable �le for one or more of the participating machines.

The attributes of each task are de�ned in a task description. An application consists of one or

more tasks. Each task is a step in the computation. Applications are described by �les in an

application description library.

To run an application, a user starts an execution process on their workstation and gives the

name of an application in the application description library. The execution process reads the

application description and any task descriptions it refers to. It then communicates with the

VCE daemons on the machines that could be used to host application tasks to determine which

machines are available. The execution process collaborates with the VCE daemons to arrange

4

leader

group

application

workstation group

SP2

execution

process

library

description

library

description

library

task

executable

file

file retrieval

control information

CM5

Figure 1: The VCE Execution Environment

5

VCE EXECUTION PROCESS

INDICATES DISPATCHING DAEMON

INDICATES GROUP LEADER DAEMON

 ALPHA GROUP

SUN GROUP

VCE HOSTS

CM5 SP2 GROUP

Figure 2: Organization of the VCE

execution of tasks as needed.

Some machines are organized into groups to reduce communication overhead and improve scal-

ability. Speci�cally, whenever two or more machines are architecturally and binary compatible,

they are organized as a group. One machine in each group acts as a group leader and commu-

nicates with the VCE execution process to manage and control the execution of an application.

The group structure of the VCE allows an execution process to exchange scheduling informa-

tion with group leaders only, rather than interfacing with every participating supercomputer

and workstation. Machines within groups exchange load information with their group leaders so

that when an execution process needs a machine to host an instance of a task, the group leader

supplies the address of a lightly loaded machine. The relationship between VCE daemons and

the execution process is illustrated in Figure 2.

Dispatching is accomplished when a VCE daemon on a host machine, under the supervision

of an execution process, fetches an executable �le and begins execution.

3 Application Description Framework

An application description language is presented in [1] which is used to construct fault tolerant

Ada applications on a heterogeneous workstation network. The VCE application description

framework uses a similar syntax to describe applications constructed for the heterogeneous VCE

6

< <replicateable | non-replicateable>
<duration: short | medium | long>>

[] indicates required parameters
< > indicates optional parameters
bold face indicates keywords

hints:

[task:

executables: [

task_name]

<architecture2: path_name2>
architecture: path_name

< ... >]

< ... >>

<

comand_line_parameter <command_line_parameter2> < ... >>

nodes:<

<

<architecture2: number_of_nodes2>
architecture: number_of_nodes

command:

input_file_name
<input_file_name2>
< ... >>

<output_file_name2>
output_file_name

< ... >>

input:<

output:

Figure 3: VCE Task Description Syntax

environment.

The VCE application description framework allows a user to specify the structure of a dis-

tributed application and give the VCE enough information about its characteristics to e�ciently

dispatch it on available hardware.

The two central constructs of the application description framework are tasks and applica-

tions. Task descriptions are the building blocks of VCE applications. Application descriptions

completely specify how a set of tasks can be dispatched in a heterogeneous computing environ-

ment to perform useful work.

The complete syntax for task descriptions are given in Figures 3.

Figure 4 shows task descriptions for some common linear algebra operations. Each task is

implemented on three di�erent platforms. The Nodes speci�cation gives a default value for how

many nodes of each architecture are to be assigned to the task. The number of nodes is chosen

by the task implementor to produce e�cient granularity in common applications.

Figure 5 shows how the tasks of Figure 4 can be used to construct a linear equation solver

application.

The default nodes speci�cation given in the task description can be overridden in the applica-

tion description. The application designer may have more information about the problem size

and can tailor the number of nodes to achieve better granularity. The input and output keywords

specify the data objects produced and consumed by each task. The command keyword is used

to pass command line arguments to the task. The hints keyword is used to alert the execution

process to attributes of the task which should be considered for scheduling purposes.

7

executables:

nodes:
ALPHA: LU_decompisition.alpha
SP2: LU_decompisition.sp2

ALPHA: 4
SP2: 4

task: LU_decompisition
SUN: LU_decompisition.sun

SUN: 4

executables:

nodes:

ALPHA: 4
SP2: 4

task: inverse_matrix

SP2: inverse_matrix.sp2
ALPHA: inverse_matrix.alpha

SUN: inverse_matrix.sun

SUN: 4

executables:

nodes:

ALPHA: 4
SP2: 4

task: matrix_multiply

SP2: matrix_multiply.sp2
ALPHA: matrix_multiply.alpha

SUN: matrix_multiply.sun

SUN: 4

Task Descriptions

Figure 4: Task Descriptions of Linear Algebra Operations

An application description consists of a number of subtask speci�cations. Each subtask refers

to a task description which implements the desired function. The nodes, command, input, output

and hints keywords in the subtask speci�cation override the values given in the task description.

The task implementor can place common default values in the task description which can be

altered as needed in particular application descriptions.

The synchronization directive of an application subtask provides a mechanism for describing

a variety of control sequences. For instance, tasks can be initiated after other speci�ed tasks

have begun or after other tasks have completed. Specifying that one task is to start only after

others has started allows for server tasks to be initiated before their clients proceed.

The application description framework allows application structure to be expressed in appli-

cation and task description �les rather than in the application source code. Intertwining these

operations with the application's computations and I/O can lead to excessive code complexity

and hamper code reusability.

4 Scheduling Considerations

Scheduling methodologies for the the VCE are an area of active research. Two protocols being

investigated are: 1) Redundant Execution where each task is run on several available computers

(up to a certain maximum) and the result produced by the fastest instance of the task is returned

8

output:
L.matrix

L .matrix-1

inverse_matrix_1
inverse_matrix

subtask:
task:

L.matrix L .matrix-1

after LU_decompse completes
command:
synchronization:

inverse_matrix
inverse_matrix_2subtask:

task:

after LU_decompse completes
U.matrix U .matrixcommand:

synchronization:

input:
output:

U.matrix
U .matrix-1

-1

task
input
output

: A.matrix
: L.matrix , U.matrix

: LU_decompose

task
input
output

-1

: second_matrix_multiply
: U .matrix , temp.vector
: X.vector

task
input
output -1

: inverse_matrix_1
: U.matrix
: U .matrix

task
input
output -1

input:

: inverse_matrix_2

L.matrix , U.matrix

: L.matrix
: L .matrix

task
input
output

-1

: first_matrix_multiply
: L .matrix , B.vector
: temp.vector

A.matrix L.matrix U.matrix

first_matrix_multiply
matrix_multiply

subtask:
task:

command: L.matrix B.vector temp.vector
synchronization:

input:
output:

L .matrix , B.vector-1

temp.vector

after inverse_matrix_1 completes

second_matrix_multiply
matrix_multiplytask:

input:
output:

 U.matrix temp.vector X.vectorcommand:
synchronization:

X.vector
U .matrix , temp.vector-1

after first_matrix_multiply completes

subtask:

after inverse_matrix_2 completes

Application Description Application Graph

LU_decompisition
subtask:
task:

LU_decompose

command:

input:
output:

A.matrix

Figure 5: Application Description of a Linear Equation Solver

9

to the user or made available for subsequent computations; and 2) Selective Initial Placement

where the load on each machine is monitored and one instance of each task is placed on the least

loaded machine.

4.1 Redundant Task Scheduling

Two di�erent approaches to redundancy are used in the VCE: 1) Explicit Redundancy where

the user supplies executable �les for the same task to run on multiple platforms which can be

dispatched simultaneously; and 2) Transparent Redundancy where one of the executable �les

supplied by the user is dispatched on two or more members of a single group.

Transparent redundancy is used when two or more members of a group are lightly loaded.

Under such conditions transparent redundancy further improves the fault tolerance and perfor-

mance of the application and allows better hardware utilization. Transparent redundancy is

also used extensively in workstation groups where each machine is intended primarily for the

use of a single user (ie. its \owner"). Such machines are frequently idle or under utilized for

long periods of time [8]. A VCE task will only dispatched on privately owned machine if the

machine's average ready queue length is below 1.0. This indicates that the workstation has some

idle capacity. The tasks are dispatched with the lowest possible priority so that if the locally

originated load of the machine increases, interference from the VCE task will be negligible. By

redundantly executing a single task on several workstations, the probability that at least one will

deliver good performance is high.

Redundant task scheduling has several bene�ts. Fault tolerance is achieved because the fail-

ure of a single machine does not lead to failure of the entire application. In fact, redundancy

eliminates the need for checkpointing and error recovery schemes which can complicate task im-

plementation and reduce performance. Redundancy also improves performance by allowing the

application to proceed at the rate of the fastest machine participating. These bene�ts are realized

without the overhead of precise load measurement routines or process migration techniques.

4.2 Selective Initial Task Placement

A coarse grain load measurement algorithm has been implemented in the VCE. For supercom-

puters, the run queue length of each computing node is sampled periodically and the average

run queue length is computed. Experiments are performed on each supercomputer to determine

how high this number can get before users begin to notice degradations in performance. This

load level is considered the machine's nuisance threshold. When the average run queue length

is below one, indicating idle computing capacity in the machine, the machine is considered to

be under the adequate utilization threshold. At any instant, a machine's load relative to these

10

Utilization
Threshold

Nuisance
Threshold

Adequate

High

Measurement
 Load

Low

Medium

Figure 6: VCE Load Thresholds

do forever

sleep 1 Sample Interval

compute Load(ti)

if Load(ti) = Smoothed load(ti�1)

then continue

if Load(ti) > Smoothed load(ti�k) for k = 1...N

then Smoothed load(ti) = Load(ti)

if Load(ti) < Smoothed load(ti�k) for k = 1...M

then Smoothed load(ti) = Load(ti)

end

Figure 7: Load Measurement Algorithm

11

thresholds can be used to determine if the load is low, medium or high (Figure 6).

Experience in the VCE has shown that taking a single instantaneous reading of the load

measure when a placement decision is to be made is problematic. Task initiation is delayed while

the nodes of all candidate machines are polled, and transient spikes and dips in load condition

can lead to poor placement decisions. To eleviate both these problems, one process on each

supercomputer or workstation cluster periodically polls the nodes and computes a smoothed

load average. This value can be queried by an execution process when a task placement decision

needs to be made.

Figure 7 shows the algorithm used to calculate a machine's smoothed load measurement. An

instantaneous load measure is computed periodically. If this instantaneous load measure is below

or above the smoothed load measure for several consecutive intervals, the smoothed load measure

is changed accordingly. The sampling interval, and the constants N and M , which determine

how quickly the smoothed load measure reacts to changing load conditions, can be customized

for each machine. Currently, the Unix rstat() function is used to gather load statistics. Because

the rstat() values are updated by Unix every �ve seconds, six second sampling intervals are used.

The constants N andM are set to 2 and 10, respectively. This causes the smoothed load measure

to be increased quickly when load conditions are raised but to decrease slowly as the load falls.

This bias is used to maximize the probability that machines reporting low load conditions are

actually underutilized.

An example of how the algorithm behaves is shown in Figure 8. At time 0 both the instanta-

neous and smoothed load measures indicate the load on the machine is medium. The changes

in the instantaneous load measure that occur between time 12 and time 30 are considered noise

and are not re
ected in the smoothed load measure. The ten consecutive low instantaneous

readings beginning at time 36 cause the smoothed load measure to become high at time 90. The

two consecutive instantaneous readings of medium at time 120 and 126 cause the smoothed load

measure to return to medium.

When a task is eligible to be dispatched, the execution process obtains the current smoothed

load measure of each candidate system. The task is dispatched on the least loaded platform.

The order in which machines are listed in the task description is used to indicate the task

implementors preference of execution platforms. If the lowest load measure is reported by two

or more machines (that is, there is a tie), the precedence expressed in the task description is

observed.

12

6
12
18
24
30
36
42
48
54
60
66
72
78
84
90
96
102
108
114
120
126
132

Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Medium
Low

0

Low

Medium

Low
Low
Low
Low
Medium
Medium

i)

Medium
Medium
High
Medium
Low
Medium
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Low
Medium
Low
Medium
Medium

i)

 Instantaneous Smoothed
 Time Load Measure Load Measure

 t Load(t Smoothed_load(t

Figure 8: Load Measurement Algorithm Example

13

5 Validation

PCs

DEC
WSs Sun

WSs

Front
Ends

FDDI
switch FDDI

concentrator

DECmpps

NYNET
OC3/OC12

FORE
switch

SGI WSs
&

Network
Server

Allnode
switch

DECNIS
Router

SP2

CM-5

nCUBE

FDDI
Ethernet
HiPPI
ATM

Allnode
DS3/ATM

X terminal
server

Xterminals

IBM R/6000
cluster

Alpha
Cluster

File Servers
(50 GB+)

* This diagram doesn't reflect the details of the actual network topology.

Figure 9: Computing Environment at NPAC

Several supercomputers and high performance workstation clusters at the Northeast Parallel

Architectures Center have been included in a VCE prototype system. The NPAC environment

consists of a wide set of state-of-the-art multi-computer systems (see Figure 9). The platforms

used are brie
y described below:

IBM SP-2: The SP-2 consists of a cluster of 16 RISC/6000 370 nodes interconnected by a

crossbar switch (Allnode). Each node runs at a clock rate of 62.5 MHz.

ALPHA/FDDI: The ALPHA/FDDI con�gurations consists of 8 DEC ALPHA workstations

interconnected by a high performance (100 Mbps) backbone composed of dedicated, switched

FDDI segments. The ALPHA nodes have a clock rate of 150 MHz.

ATM LAN: This con�guration consists of 2 SUN SPARCstation IPXs and 3 SGI workstation

communicating over an ATM Local Area Network using ATM FORE ASX-100 switch. SUN IPX

nodes operate on an approximately 40 MHz clock. Host computers are connected to the ATM

14

switch through Fore's 200 series adaptors. Each adaptor has a dedicated Intel i960 processor

(running at 25 MHz) to support segmentation and reassemble functions and to manage data

transfer between the adaptor and the host computer. The 200 series adaptors also have special

hardware for AAL CRC and special-purpose DMA hardware.

5.1 Applications

Three distributed applications have been implemented with the VCE prototype and are being

used to test the runtime support.

5.1.1 Linear Equation Solver

A linear equation solver constructed from a set of general purpose linear algebra tasks (shown

in Figure 5) was discussed in Section 3.

5.1.2 Multi-target Tracking System

The Multi-target tracking system demonstrates the multi target tracking capabilities that is re-

quired by a Battle Management Command Control and Communication System [4]. The multi

target tracker, shown in Figure 10, is designed to provide an estimation of launch vehicle pa-

rameters for individual targets/missiles in multi-target scenarios. The tracker receives input in

terms of launch sites for missiles or targets. The launch sites are speci�ed in terms of latitudes

and longitudes. This information is fed to two focal plane tracking (FPT) modules (2 dimen-

sional tracking) at 5 second intervals. The focal plane tracking modules process this data using

kinematic �ltering algorithms and track pruning and prediction algorithms. The output of this

module is an initial prediction of trajectories of launched missiles. This data is then fed to a three

dimensional tracking system which uses the data from the two focal plane tracking modules to

prune duplicate tracks (if any), extend existing tracks, prune bad tracks and initiate new tracks.

The output of the system is a list of target trajectories.

5.1.3 JPEG Compression/Decompression

JPEG (Joint Photographic Experts Group) is an emerging standard for image compression.

JPEG standard aims to be generic and can support a wide variety of applications for continuous-

tone images. We have used data parallel programming model to implement a distributed JPEG

algorithm on a cluster of workstations. In this implementation half of the computers participate in

compression of an image �le while the second half reconstruct the compressed image. The image

to be compressed is divided into N/2 equal parts (where N denotes the number of processors)

15

2D Mono

Tracking

2D Mono

Tracking

Launch sites information

3D Tracking

Figure 10: Multi-Target Tracker System

by the master process and then shipped to one half of the processors. Each processor performs

the sequential JPEG compression algorithm on its portion of the image. After compression

the processors send the compressed image to another set of N/2 processors which perform the

decompression. Once decompression is done, the results are sent back to the master process

which combines them into one image. Consequently, this algorithm involves �ve stages viz.

distribution of uncompressed image , compression of the image, transmission of compressed

image, decompression of the image, and �nally combining the decompressed images.

5.2 Performance

Of the three VCE applications described in in Section 5.1 the linear equation solver is most repre-

sentitive of the kind of application that will bene�t from development and excution in the VCE.

It is constructed from tasks which could be reused in other applications and for large data sets it

has a long running time. So the developer bene�ts from the application description framework

and the user bene�ts from the automatic runtime scheduling and dispatching capabilities.

A series of performance tests using the linear equation solver application were performed to

determine under what conditions running an application in the VCE with the scheduling protocols

described in Section 4 would be better than running it in a single computer. The IBM SP2 and

the DEC ALPHA workstation cluster have similar performance characteristics [3], so often a user

who has an application that could run on either platform would simply choose one at random.

Observations in [3] suggest that even a moderate di�erence in load conditions at runtime can

e�ect performance enough to impose a considerable penalty for choosing the wrong machine.

Performance experiments done with the VCE support these �ndings and show that both the

scheduling protocols described in Section 4 will reduce turnaround times in many situations.

In order to obtain controlled testing conditions, testing was performed on the DEC ALPHA

cluster and the IBM SP2 when transient load conditions were low. A load generating utility

16

Table 1: Performance of the Linear Equation Solver Application

Execution time

Load in seconds

SP2 Moderate 1153

Low 849

ALPHA Moderate 1440

Low 732

SP2-Moderate

Reduntant ALPHA-Low 741

Scheduling SP2-Low

ALPHA-Moderate 868

SP2-Moderate

Selective ALPHA-Low 744

Scheduling SP2-Low

ALPHA-Moderate 886

was used to slightly elevate the load on one or the other as the tests were performed. The load

generator allows load conditions to be varied between low and moderate. It places two dummy

processes on each node in the con�guration for a randomly determined period to simulate an

interval of high activity. These busy periods are alternated with randomly determined idle periods

where no arti�cial load is placed on the machine. When low load is speci�ed, the busy periods

vary from four to eight minutes while the idle periods are between 20 and 30 minutes. To simulate

moderate load, idle periods are between four and eight minutes and busy periods are from 20 to

30 minutes.

The results of performance tests run using the linear equation solver application to solve a

system of 1024 equations are shown in Table 1. The table shows the degradation which results

when just two other processes per node are competing for computing resources. Neither redun-

dant nor selective scheduling will have a signi�cant impact on performance when the loads on all

the candidate machines are roughly equivalent. That is, if all machines are heavily loaded, or all

machines are lightly loaded, there is little a scheduling system can do to improve performance.

However, when some candidate machines are less active than others, both the scheduling ap-

proaches studied tend to prevent the performance loss that could be encountered with a random

placement.

Redundant scheduling yields slightly better performance than selective scheduling. If there is a

signi�cant load change after a task is placed with selective scheduling performance will degrade.

Redundant scheduling insures that the best possible performance will be obtained because all

17

candidate machines run the tasks and the result produced by the fastest machine is returned

to the user or made available for subsequent computations. Of course, redundant scheduling

incurs higher costs for the application because the computations performed by some machines

are discarded. These costs are somewhat o�set by eliminating the overhead required for gathering

load measurements.

Both of the scheduling protocols insulate the user from the e�ects of poor random placements

without imposing the considerable overheads associated with process migration or checkpointing

techniques.

In production Virtual Computing Environments it is expected that the choice between redun-

dant and selective task scheduling would be based on the nature and frequency of VCE jobs to

be executed. If VCE applications are submitted only occasionally, or tend to be of short dura-

tion then the use of redundant scheduling would be preferred. If many large VCE jobs are to be

executed then selective scheduling would provide lower costs and preserve improved performance.

6 Future Work

The VCE will provide a testbed for investigating many issues relating to the e�cient use of het-

erogeneous distributed supercomputing environments. Facilities to allow several geographically

remote supercomputers connected to an ATM wide area network to participate in the VCE are

already in place. Extensions to the scheduling and dispatching capabilites of the VCE execution

environment to exploit these machines are being implemented.

Further research on scheduling protocols is underway. Methods for e�ectively determining

when lightly loaded remote machines should be used rather than heavily loaded local ones are

being developed. Issues of load measurement and redundant scheduling across a wide area

network are being explored.

Design of an intertask communication system which will facilitate communication among re-

dundantly scheduled components of an application has begun. Current applications use the

P4 system [2] for ommunication. A more robust system, which will allow communication re-

quirements to be speci�ed in task and application descriptions, will ease application design and

implementation.

Other aspects of the application description framework will also undergo further development.

The syntax will be expanded to permit conditional and iterative task execution. A graphical

user interface which will insulate the user from the details of the application description syntax

will be developed.

18

References

[1] Barbacci, M. R., Weinstock, C. B., Doubleday, D. L., Gardner, M. J., and Lichota, R. W.,

Durra: a structure description language for developing distributed applications, Software

Engineering Journal, pp. 83-94, March 1993.

[2] Butler, R., and Lusk, E., User's Guide to the p4 Programming System, Mathematics and

Computer Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Ar-

gonne, IL 60439-4801

[3] Hariri, S., Park, S. -Y., Reddy, R., Subramanyan, M., Yadav, R., Fox, G., Parashar, M.,

Software Tool Evaluation Methodology, to appear in The Proceedings of the Fifteenth Inter-

national Conference on Distributed Computing Systems, May 1995.

[4] Hariri, S., Yadav, R., Thiagarajan, B., Park, S. Y., Subramanyan, M., and Reddy, R., "A

Concurrent Multi Target Tracker: Benchmarking and Portability", International Conference

on Parallel Processing (ICPP), August 1994.

[5] Kunz, T., The In
uence of Di�erent Workload Descriptions on a Heuristic Load Balancing

Scheme, IEEE Transactions on Software Engineering, Vol. 17, No. 7, pp. 725-730, July

1991.

[6] Litzkow, M. and Solomon, M., Supporting checkpointing and process migration outside the

UNIX kernel, Proceedings of the Winter 1992 USENIX Conference, pp. 283-290, 1991.

[7] Mechoso, C. R., Farrara, J. D., Spahr, J. A., Running a Climate Model in a Heteroge-

neous, Distributed Computer Environment, Proceedings of the Third IEEE International

Symposium on High Performance Distributed Computing, pp. 79-84, August 1994.

[8] Mutka, M. W., and Livny, M., The Available Capacity of a Privately Owned Workstation

Environment, Performance Evaluation, pp. 269-284, Vol. 12, No. 4, July 1991.

[9] Rousselle, P., Tymann, P., Hariri, S., and Fox, G., The Virtual Computing Environment,

Proceedings of the Third IEEE International Symposium on High Performance Distributed

Computing, pp. 7-14, August 1994.

[10] Zhou, S., Zheng, X., Wang, J. and Delisle, P., Utopia: a Load Sharing Facility for Large,

Heterogeneous Distributed Computer Systems, Software - Practice and Experience, pp.

1305-1336, Vol. 23, No. 12, December 1993.

19

