
NPAC Technical Report SCCS 709

Fortran 90 and High Performance Fortran for Dense

Matrix-formulated Applications

G.Robinson, K.A.Hawick, G.C.Fox

Northeast Parallel Architectures Center,

111 College Place, Syracuse, NY 13244-4100

May 19, 1995

Abstract

We discuss the use of the Fortran 90 (F90) and High

Performance Fortran (HPF) computer programming

languages for use in e�ectively-dense matrix-formulated

applications. We provide a brief introduction to the

main features of the languages and present a computa-

tional
uid dynamics application which uses the panel

method as an example which can expressed in both F90

and HPF to evaluate the languages.

We consider issues such as computational perfor-

mance and e�ciency on High Performance Computing

and Communications systems as well as other impor-

tant matters such as ease of expression and code main-

tainance and code extension.

Further details regarding HPF standards, tutori-

als and example programs can be found on the World

Wide Web at http://www.npac.syr.edu/hpfa.

Introduction

There is a class of problems in computational science

and engineering which require formulation in full matrix

form and which are generally solved as dense matrices

either because they are dense or because the sparsity

can not be easily exploited. Several problems in compu-

tational electromagnetics (CEM) [5] and computational

uid dynamics (CFD) [15] are what we term \e�ectively

dense" [4]. We focus on the panel method [14] as em-

ployed in CFD as an example of such a problem that

can be used to evaluate the Fortran 90[13] and High

Performance Fortran languages [10].

Panel methods are widely used in the aerospace

and automotive industry and are e�ectively boundary-

element methods for computational
uid dynamics

problems. These methods employ the surface of the

body over which
uid is
owing to be used as the com-

putational domain rather than using the whole region in

which the body is embedded. This is not only computa-

tionallymore e�cient than a �nite di�erence method for

example but also allows more complicated body shapes

to be studied than would be tractable if the body were

embedded in a regular mesh.

Of particular interest in the aerospace industry

is the
ow past a streamlined isolated body such as

an aerofoil and the pressure distribution around such

a body that gives rise to lift forces on the body. For

explanatory purposes we consider the simpler example

of an elliptical body.

The panel method is so named due to the subdi-

vision of the body surface into a number of contiguous

\panels". Each panel has associated with it a source

density, the strengths of which are determined as an

intermediate part of the solution method.

Consider �gure 1 which shows panels around an

ellipse in a uniform incident velocity
ow.

Each k'th panel is centred around a control point

at ~rk and has a source density wk. If the body is embed-

ded in a uniform stream of velocity U0 parallel to the

x-axis, then the distribution of N source panels produce

a potential:

�(~rk) = U0xk +
1

2�

NX
j=1

wj

Z
ln~rk;jdsj (1)

where ~rk = (xk; yk) is the position of each panel's con-

trol point; ~rk;j =
p
(xk � xj)2 + (yk � yj)2 is the dis-

tance between two panels; and wk

R
dsk is the source

strength of the k'th panel.

The source densities must be chosen so that the

1

U

x

y

inf

wk

r jk x

ni
wj

Figure 1: Ellipse in uniform incident
uid
ow

boundary condition of zero (normal)
ow through the

body surface is satis�ed. This can be expressed as:

vn =
@�

@nk
= �U0 sin�k+

1

2�

NX
j=1

wj

Z
@

@nk
(ln~rk;j)dsj � 0

(2)

where �k is the angle between the panel and the x-axis.

This generates a system of linear equations A � ~w = ~b

with each component of A given by:

Ak;j =
�k;j

2
+

1

2�

Z
@

@nk
(ln rk;j)dsj (3)

and the right hand side vector is simply bk = U0 sin�k,

and ~w the vector of unknown source densities.

The velocity �eld ~v(~r) can be obtained from the

solution source vector as follows:

u(x; y) =
1

2�

NX
j=1

wj

Z
x� xj

(x � xj)2 + (y � yj)2
dsj

v(x; y) =
1

2�

NX
j=1

wj

Z
y � yj

(x � xj)2 + (y � yj)2
dsj (4)

The complete velocity �eld solution is ~V = ~U0+~v.

Furthermore, the surface pressure distribution P can be

obtained from the Bernoulli equation [15], thus:

CP =
2(P � P0)

�U2

0

= 1� (
~V

U0
)2 (5)

Matrix Solution Method

Here the dense matrix obtained from the assembly pro-

cess is solved by LU decomposition [6]. One implemen-

tation is illustrated in the F90 code and consists of three

distinct actions:

� converting the matrix into a diagonal form where

the lower part is zero. Here the row used to elimi-

nate lower diagonal parts is chosen to improve nu-

merical stability, a process known as pivoting.

� forward elimination where the transformations and

multiplications performed on the matrix are re-

peated on the RHS vector.

� taking this form and removing the above diagonal

terms by back substitution.

Solution of this diagonal matrix is now straight-

forward. The conversion to the diagonal form requires

order n3 operations and is the most numerically inten-

sive part of the computation, the latter stages of for-

ward elimination and backsubstitution taking order n2

operations.

The preceding operations are dominated by mem-

ory access operations rather than
oating point oper-

ations. The entire operation possesses a considerable

data dependence which equates to a serial dependence,

there is little freedom in the ordering of operations. Of-

ten data is used in groups or blocks to try and minimise

transfers [8, 7, 12] which are particularly important in

modern hierarchical architectures or distributed mem-

ory architectures. Also the above formulation of the

algorithm can make use of optimised BLAS subroutines

or indeed the algorithm could simply use a prepackaged

ScaLAPACK solver.

HPF Implementation

HPF is derived from the experimental Fortran D lan-

guage [2] and has been described as implementing a

data-parallel, owner-computes model. Whilst this does

describe the behaviour in simple cases it should be re-

alised that there are signi�cant di�erences between HPF

and earlier data parallel languages. HPF has many fea-

tures designed to support the arrangement and rear-

rangement of data and computations so that the locality

of data is exploited in as e�cient and portable manner

as possible. HPF directives should allow the compiler to

produce e�cient and correct code for a variety of archi-

tectures and processor numbers, the only requirement

being recompilation of source code. A greater discus-

sion of the philosophy of HPF and the language itself

can be found in HPF standards [10] and books [11].

The key features of the panel methods computa-

tion and the various aspects of HPF will be discussed

below.

2

Data Layout

The two most important parts of the panel method code

are the application of the physical equations and the as-

sembly and solution of the resulting matrix. Note that

di�erent sections of the code may suit di�erent layouts

and that there may be considerable interaction between

sections. Due to the owner computes rule of HPF it is

best to use arrays of exact size when known, otherwise

there may be alignment or loadbalance problems later,

although for some problems we can foresee the use of

padded arrays to ensure alignment. ALLOCATE can

be used to create work arrays as needed. The DIS-

TRIBUTE or ALIGN directives should be used to en-

sure that variables used in the same expression share

data layouts. In all but the most trivial cases di�erent

data distributions will interact. Communication as de-

termined by the compiler can occur or TRANSPOSE or

REDISTRIBUTE and REALIGN directives can be em-

ployed. The high communication cost of such a global

data rearrangement should only be undertaken when

converting to a lower or from a high communication

cost distribution. It is a compromise between the cost

of data rearrangement and the cost of performing data

communications within the subroutines.

Expressing Parallelism

It should be noted that FORALL is not just a parallel

DO loop. Statements within a FORALL are executed

independently and in no �xed order. A full description

and explanation is given in [11]. The INDEPENDENT

directive can be used to provide additional reassurances

to the compiler that the activities within the FORALL

can be executed without need to consider interactions.

Examples of FORALL usage in place of DO loops be

illustrated in sections of the panel code. In addition to

the FORALL statement the array syntax notation of

F90 is used and here the execution order of any array

syntax statement cannot be assumed.

Coding Issues

In this section the various issues raised for each major

part of the panel code will be discussed. Since the panel

code is similar to many other scienti�c and engineering

codes the solution of the matrix dominates the compu-

tation cost and will be addressed in the greatest depth.

Matrix Solution.

Here we must consider the actions being performed

upon the matrix and the right hand side (RHS) as part

of the LU solution procedure. The relative advantages

and disadvantages of two possible arrangements will be

discussed below.

Row distribution.

In the case of a row distribution the matrix rows

are distributed between processors either according to

BLOCK or CYCLIC structures as shown in �gure 2.

BLOCK CYCLIC

Figure 2: Row Distribution

The determination of the pivot requires a dis-

tributed global test and the broadcast of the results.

The pivot row is then exchanged and broadcast so it

can be used in the elimination process. Note if the rows

are distributed in BLOCK structure the loadbalance is

poor. Here the subset of the matrix referenced at an in-

termediate stage of the diagonalisation is identi�ed by

the smaller square in �gure 2 showing how some pro-

cessors are idle. Whilst this reduction in the number

of processors involved in the computation may be re-

warded in reduced broadcast communication costs and

the computational demand lessens as each row becomes

shorter due to the elimination process there is still a sig-

ni�cant load imbalance. This can be improved by using

a CYCLIC distribution where alternate rows are on dif-

ferent processors. A CYCLIC distribution also ensures

that at each stage the computation is loadbalanced in

contrast to the BLOCK distribution where each pro-

cessor is expected to perform the elimination operation

until the current row is part of the allocated set.

Column Distribution

In the case of the column distribution, the matrix

columns are distributed across processors as shown in

�gure 3.

The global test to determine the pivot row loca-

tion is restricted to a single processor but the results

must still be broadcast. The exchange of the pivot is

an entirely local process. The elimination process re-

quires only the broadcast of a multiplying factor since

3

BLOCK CYCLIC

Figure 3: Column distribution

all data for the elimination occurs within columns. The

same arguments regarding loadbalancing and the rela-

tive merits of BLOCK and CYCLIC distributions dis-

cussed for the case of row distribution apply here also

and are illustrated in �gure 3.

Comparison of Distributions

The di�erence between row and column distributions

can be summarised as follows. The row distribution fea-

tures a distributed global test for the pivot row whereas

column distribution the global test is poorly balanced

not being distributed, and also requires no communica-

tion. The row decomposition requires the broadcast of

a partial matrix row in comparison to the broadcast of a

multiplication factor in the column decomposition. The

choice between these di�erent structures many depend

on the typical matrix size, number of processors and rel-

ative communication costs of the architecture and soft-

ware.

The demands of the decomposition here are quite

di�erent to those involved with any code requiring the

multiplication of the matrix and vector. A description

of the issues arising in this case can be found in [9].

Forward Elimination and Back Substitu-

tion.

The factorisation of the matrix into upper diagonal form

is the expensive part of the algorithm requiring of order

n3 operations. However in any parallel code any fea-

ture which does not parallelise well will degrade perfor-

mance. The forward elimination and back substitution

stages can be such processes.

The forward elimination stage of the solver in the

F90 code is serial in nature, �gure 4. Here the RHS

is mapped according to the elimination sequence stored

within lookup tables. The parallelism of the actual mul-

tiplication can be exploited but is a small fragment of

the total work involved. Use of a distributed list also

causes problems since the exchange of the entries in the

RHS follows the pivoting operation in the matrix and

must be performed in sequence.

! Forward elimination:

nm = n -1

DO k=1,nm

kp = k+1

l = jpvt(k)

s = rhs(l)

rhs(l) = rhs(k)

rhs(k) = s

DO i=kp,n

rhs(i) = rhs(i) + a(i,k) * s

ENDDO

ENDDO

Figure 4: Use of list to sort RHS in forward elimination.

Note that the inner loop over i can be expressed as

a FORALL construct and is INDEPENDENT requiring

a broadcast of the multiplication factor s. This however

represents a very small and poorly loadbalanced section

of the algorithm.

Since the elimination is performed on both the

matrix and the vector RHS, a simple modi�cation to in-

corporate the vector as an additional column within the

matrix can be made. A common parallel optimisation is

of performing two or more identical computations inline

for the cost of one communication event. The RHS data

layout will mirror that of the matrix rows and this may

require some remapping for later stages of the code.

The back substitution phase can be considered as

an equivalent to the factorisation, �gure 5. There is no

pivoting since only one row can perform the necessary

elimination. For all distributions this section is poorly

loadbalanced and generates a low ratio of computation

to communication. The degree of parallelism could be

increased but this would involve complex coding or ex-

plicit knowledge of the data decomposition or processor

number.

Note again that the inner loop over i can be ex-

pressed as a FORALL and is INDEPENDENT requir-

ing a broadcast of the multiplication factor s and as with

the forward elimination is a small and poorly loadbal-

anced workunit. The data transfers involved would be

improved by selecting a di�erent data decomposition to

that in the factorisation stage. Figure 6 shows possible

decomposition of both vector and matrix.

4

! Back substitution:

DO ka=1,nm

km = n - ka

k = km + 1

rhs(k) = rhs(k) / a(k,k)

s = - rhs(k)

DO i=1,km

rhs(i) = rhs(i) + a(i,k) * s

ENDDO

ENDDO

rhs(1) = rhs(1) / a(1,1)

Figure 5: F90 code for back substitution.

Figure 6: Substitution inline with elimination

Matrix Assembly

The assembly of the matrix simply of following the pro-

cedure outlined in the introduction to panel methods.

Here the majority of data references are local however

there are two patterns of reference which are di�cult

to express in HPF. As described in the introduction,

panel methods involve the interaction of all panels and

produce a dense matrix. The production of these terms

results in a loop similar to that shown in �gure 7, where

some code has been omitted for clarity.

Many options exist for the distributions of xc, yc.

The preferred distribution of the two dimensional arrays

will determine the HPF loop order to reduce commu-

nication and that some re-expression of the structure

will be required. The need to compute xd for all values

of i and j will always place a communication cost on

this section, either through communication during the

computation or in a replication of one array depending

on which loop if converted to a FORALL. It is assumed

that the second dimension of fn and ft is distributed so

! F90 version

DO k=1,n

DO j=1,n

IF(k .ne. j)THEN

xd = xc(k) - xc(j)

yd = yc(k) - yc(j)

........

ukj = qt * ci(j) - qn * si(j)

vkj = qt * si(j) + qn * ci(j)

fn(k,j) = - ukj * si(k) + vkj * ci(k)

ft(k,j) = ukj * ci(k) + vkj * si(k)

ENDIF

ENDDO

ENDDO

! HPF version

DO k=1,n

FORALL (j=1:n, k/=j)

xd(j) = xc(k) - xc(j)

yd(j) = yc(k) - yc(j)

ENDFORALL

FORALL (j=1:n, k/=j)

........

ukj(j) = qt(j) * ci(j) - qn(j) * si(j)

vkj(j) = qt(j) * si(j) + qn(j) * ci(j)

ENDFORALL

FORALL (j=1:n, k/=j)

fn(k,j) = - ukj(j) * si(k) + vkj(j) * ci(k)

ft(k,j) = ukj(j) * ci(k) + vkj(j) * si(k)

ENDFORALL

ENDDO

Figure 7: Part of matrix assembly code

FORALLs are constructed to use this dimension. The

loops could easily have been inverted in the �rst di-

mension is distributed. In HPF if no DISTRIBUTE

or ALIGN directive is used an array is assumed to be

replicated.

Input of Geometry and Output of Results

For this example the geometry of the test problem is

de�ned within the code, rather than from an input �le.

It is interesting to note that the use of a lateral symme-

try results in poor loadbalance and that a more e�cient

solution is to compute the geometry on all nodes ignor-

ing the potential for reduced computation since this will

require communication later.

5

The solution of the matrix is only part of the com-

putation. To obtain velocities at the desired points fur-

ther computation is required. Here I/O is involved since

a list of x,y pairs must be read and then the contribu-

tion from each panel summed. This is a simple pro-

cess and the matrix solution provides these terms and a

FORALL can be constructed. The summation process

can use an intrinsic function. The value for each x,y

coordinate pair must be replicated since �nal computa-

tion involves similar operations to the matrix assembly.

The design of optimised input/output, [1] is outside the

scope of this paper and we do not discuss it further.

Data Rearrangements

For both forward elimination and back substitution an

alternative data distribution could be considered. In

�gure 6 we show di�erent possible data layouts for the

back substitution phase.

Note that a CYCLIC row distribution provides

the best load-balancing for both matrix and RHS vector

operations. The column distributions are poorly load-

balanced since a single processor is required to work

on the entire RHS vector of all stages of the back sub-

stitution. It is also possible to mix vector and matrix

distributions, indeed the cost of performing a REDIS-

TRIBUTE on the matrix may be too high, but by per-

forming a REDISTRIBUTE on the RHS vector a com-

munication saving may be obtained. The low level of

computation combined with the global nature and small

size of the messages to be exchanged suggests this would

be highly dependent on both problem size and upon fea-

tures of the target architecture.

Higher Dimensionality of Decomposition.

Only distributions of one dimension of the matrix have

been discussed. The di�culty of this is that if two di-

mensions of the matrix are distributed the associated

vectors cannot be aligned with all vector parts. The

vector could be replicated across all processors but the

cost of maintaining such updated replicants can be high.

In this case much of the data needed for maintenance

of the vector is broadcast as part of the pivot elimina-

tion operation. The loadbalancing of the algorithm for

higher dimensionality is considerably poorer than with

a single dimension, �gure 8.

BLOCK CYCLIC

Figure 8: Higher dimension distributions

Discussion

The greatest improvement in performance can be ob-

tained by removing any serial code. Some parts of any

algorithm may require recoding or the selection of an

alternative algorithm. LU factorisation possesses a se-

quential data
ow, the elimination of rows at any one

stage can be performed in parallel but these elimina-

tions must be performed in a strict sequence. Here we

shall discuss several examples encountered in the coding

of the panel algorithm.

Determination of Pivot

In Fortran the use of a serial DO loop is a natural

method to determine the values and locations of ex-

treme bounding values or to determine summations.

However in HPF such a DO loop would be processed

serially and no advantage is taken of the parallelism,

the MAXLOC intrinsic can be used. These two code

fragments are shown in �gure 9. In this example, data

has been copied to a temporary work vector so that the

ABS function can be applied. Here the variable atmp

would be aligned with aa so that no data transfer would

occur. Perhaps the list of intrinsic functions should be

expanded so that ABSMAXLOC is included, or a more

general calling interface so that any PURE function can

be used in a reduction operation rather than just MAX

and MIN. MAXLOC is a generalisation of the F90 in-

trinsic. There are other intrinsics described in the HPF

standard [10] and book [11].

In the particular case of the pivot operation it is

interesting to note that the actual exchange of rows is

to improve the numerical stability and accuracy of the

computation. In some cases the actual pivoting might

not be necessary and could save a considerable parallel

overhead in terms of the requirement for global reduc-

tion operations.

Other uses of such global reductions can be found

in the code for example, where a loop is used to de-

6

f90 code

iset=ks

DO i=kp,n

IF(abs(aa(i,k)) > abs(aa(iset,k))) iset = i

ENDDO

HPF code

!

atmp=0.0d0

atmp(kp:n)= aa(kp:kn,k)

atmp(:)= abs(atmp(:))

!

iset = maxloc(atmp, dim=1)

Figure 9: example of intrinsic replacing serial DO loop

termine if some error condition has occurred and a
ag

set. Again these loops will be processed serially un-

less expressed as a FORALL or a reduction operator is

employed.

Numerical Accuracy and Intrinsic Func-

tions

Methods which involve a signi�cant amount of numer-

ical computation on a small number of variables can

often exhibit sensitivity to rounding error. There are

two examples in the panel code, the use of MAXLOC

to determine the pivot and then perform an elimination

and the use of SUM in computing the velocity at desired

points.

The distributed nature of the MAXLOC intrinsics

can lead to di�erent solutions being obtained. Here the

actual value of the pivot exchanged is identical, but if

multiple entries exist in any one column with the same

absolute numerical value the selected pivot will depend

on the order of processing. This can cause numerical

di�erences since there are considerable dependencies on

data
ow in direct solution methods like GE and LU.

In the case of the SUM intrinsics if the result were

to be assembled as a partial sum and these summed dur-

ing the merging of private copies numerical di�erences

could occur. The sum of partial sums

PX
j=1

N=PX
iP=1

6=

NX
i=1

(6)

is not necessarily equal to the full sum, in �nite arith-

metic.

Both these and other reduction operations could

be at least made into a deterministic (repeatable) de�-

ciency by exchanging the entire partial vector and per-

forming the summation on these sets in a rigid predeter-

mined order. It will only in
uence parallel performance

if the data volume is considerable. It is problematic

in using a high level construct such as the INTRINSIC

functions and other numeric reduction operations, that

the user has no strict way of controlling the order in

which operations are carried out.

We note that it is therefore unrealistic to expect

arbitrary precision reproduction on an arbitrary proces-

sor con�guration, without some sacri�ced performance.

In practice, it is hoped that the problem data will be

relatively insensitive to such considerations.

FORALL and DO Loops

As has been noted the FORALL loop construct is not

a parallel DO loop. For example, in �gure 10 the pivot

interchange and elimination is shown in F90, HPF and

FORALL and array syntax. The outer loop must be

performed in sequence since it modi�es data references

in the next iteration. The inner loops can be performed

independently and replaced by a FORALL or an ar-

ray syntax expression. In HPF, FORALL loops will be

analysed to ensure correct execution in parallel. The

INDEPENDENT directive many be required to express

true independence in particular if indirect addressing is

used.

Both the FORALL and array syntax expression

provide an elegant formulation of the expressions in-

volved often being equivalent to the su�x notation in

the algebra. This may produce clearer and less error

prone code in some cases and will allow the compilers

to generate more e�cient code.

Temporary Workspace Vectors

Many sections of the code can easily be expressed in ar-

ray notation, �gure 10. Often where a DO loop contains

a scalar temporary this must be promoted to a vector

temporary and aligned with the source data to allow the

use of a FORALL loop and the independent parallel exe-

cution. For the exchange of the pivot a two dimensional

array is used which is aligned with the source matrix.

If a one dimension temporary variable were used here

a considerable overhead in data mapping could occur.

Also this two dimensional array is only required in row

7

F90 code

! interchange and eliminate by columns:

DO j=kp,n

s = a(l,j)

a(l,j) = a(k,j)

a(k,j) = s

DO i=kp,n

a(i,j) = a(i,j) + a(i,k) * s

ENDDO

ENDDO

HPF code using FORALL

! interchange and eliminate by columns:

FORALL (j=kp:kf)

s(l(ks),j) = aa(l(ks),j)

aa(l(ks),j) = aa(ks,j)

aa(ks,j) = s(l(ks),j)

ENDFORALL

!

FORALL (i=kp:kf)

aa(kp:kf,i) = aa(kp:kf,i)

& + aa(kp:kf,k) * aa(k,i)

ENDFORALL

HPF code using array syntax

! interchange and eliminate by columns:

s(l(ks),kp:kf) = aa(l(ks),kp:kf)

aa(l(ks),kp:kf) = aa(ks,kp:kf)

aa(ks,kp:kf) = s(l(ks),kp:kf)

!

aa(kp:kf,kp:kf) = aa(kp:kf,kp:kf)

& + aa(kp:kf,k) * aa(k,kp:kf)

Figure 10: Comparison of FORALL and DO loop usage.

decomposition. If the matrix is distributed in column

order only a one dimensional array is required.

The copy operation is somewhat costly since it

also implies communication as the two rows being ex-

changed need not be on the same processor. Pointers

could be used to reduce data transfer and a mask func-

tion to determine which rows are actually below the

diagonal on each sweep. A �nal rearrangement of the

rows could be performed at the end of the factorisation

process. The pivot row exchange is a small fraction

of the total communication since the pivot row will be

broadcast in order to eliminate the column below the

diagonal.

An Alternative Solution Procedure

Since the operation count for the LU factorisation is of

order (n3) there are alternative methods which require

similar computation costs but o�er increased paral-

lelism. The LU factorisation process presents a range of

granularities and the forward elimination and back sub-

stitution process is essentially poorly loadbalanced with

a high communication to computation ratio. An al-

ternative formulation, Gaussian Elimination (GE) pro-

vides a higher degree of parallelism avoiding the poor

performance of the forward elimination and backsubsti-

tution steps.

Gaussian Elimination

For GE the
oating point operation count is twice that

of LU but the memory access and data distribution re-

quirements are roughly equivalent. This suggests that

since our solver will be limited by data transfer rather

than
oating point performance we can use GE to elim-

inate the serial coding di�culties of LU.

The �rst stage is shown in �gure 11. The op-

erations performed are identical in nature except that

the elimination in GE is performed over all rows rather

than just those below the diagonal as in LU, the pivot

row is still selected from below the diagonal since only a

member of this set can perform the desired elimination.

Gaussian Elimination LU Factorisation

Figure 11: Comparison of the GE and LU solution pro-

cedures

Advanced Parallelism

In several parts of the code there are actions for which

there are no optimal alignments or best �tted data dis-

tributions. One example is seen in the equation assem-

bly phase where the interaction between panels is con-

sidered. The DO loop structure here can cause many

small messages to be exchanged. Here options are to

global broadcast and replicate one of the two arrays or

to perform the operation in a blocked sequence. This is

often used in message passing or cache based systems to

improve performance. Some of these points, and others,

are part of the HPFF discussion forum [10] and are also

discussed in [3].

8

Conclusions

In this paper we have shown how a simple application

involving the solution of a dense matrix can be ex-

pressed in HPF. The basic concepts of HPF have been

demonstrated through several examples which are char-

acteristic of current scienti�c and engineering codes.

The removal of serial features from sections of code

has been as important as adding parallelism. The rel-

ative merits of alternative decompositions have been

compared and we conclude that the coding changes

made between the two data decompositions are minor.

The choice between the di�erent decompositions and

the remapping of data between the di�erent stages of

the algorithm will depend upon the problem sizes being

considered and the performance of the TRANSPOSE

intrinsic function and the REDISTRIBUTE directive

for particular machines. At present HPF cannot ex-

press the
exible degree of parallelism obtained with

message passing implementations of dense matrix algo-

rithms, such are implemented in the ScaLAPACK li-

brary and perhaps it is necessary for an HPF runtime

library to be developed to obtain high levels of per-

formance { particularly for the case of relatively small

problems on large numbers of processors, where the op-

timal decomposition is more dependent upon problem

size.

Acknowledgments

One of us (KAH) wishes to acknowledge valuable dis-

cussions on the work reported here with E.A.Bogucz.

References

[1] Bordawekar, R., Thakur, R., Ponnusamy, R.,

Choudhary, A., \Runtime Support for Parallel I/O

in PASSION", NPAC Technical Report SCCS-670,

1995.

[2] Bozkus, Z., Choudhary, A., Fox, G., Haupt, T.,

and Ranka, S., \Fortran 90D/HPF compiler for

distributed-memoryMIMD computers: design, im-

plementation, and performance results," Proceed-

ings of Supercomputing '93, Portland, OR, 1993,

p.351.

[3] Chapman, B., Mehrotra, P., Mortisch, H., and

Zima, H., \Dynamic data distributions in Vienna

Fortran," Proceedings of Supercomputing '93, Port-

land, OR, 1993, p.284.

[4] Cheng, G., Fox, G.C., and Hawick, K.A., \A Scal-

able Paradigm for E�ectively-Dense Matrix For-

mulated Applications" Proc. HPCN 1994, Munich,

Germany April 1994. Volume 2, PP202.

[5] Cheng, Gang., Hawick, Kenneth A., Mortensen,

Gerald, Fox, Geo�rey C., \Distributed Computa-

tional Electromagnetics Systems", Proc. of the 7th

SIAM conference on Parallel Processing for Scien-

ti�c Computing, Feb. 15-17, 1995.

[6] Choi,J., Dongarra, J.J., Pozo, R., and Walker,

D.W., \ScaLAPACK: A Scalable Linear Algebra

Library for Distributed Memory Concurrent Com-

puters", In Proc. of the Fourth Symposium on the

Frontiers of Massively Parallel Computation, PP

120-127. IEEE Computer Society Press, 1992.

[7] Du�, I.S., \Tutorial on ," Supercomputing '93,

Portland, OR, 1993.

[8] Du�, I.S., Erisman, A.M., Reid, J.K., \Direct

Methods for Sparse Matrices", Clarendon Press,

Oxford 1986.

[9] Hawick, K.A., Dincer, K., Robinson, G., Fox, G.C.,

\Conjugate Gradient Algorithms in Fortran 90 and

High Performance Fortran", NPAC Technical Re-

port SCCS 691,Northeast Parallel Architectures

Center, Syracuse, NY 13244-4100.

[10] High Performance Fortran Forum (HPFF), \High

Performance Fortran Language Speci�cation," Sci-

enti�c Programming, vol.2 no.1, July 1993.

[11] Koelbel, C.H., Loveman, D.B., Schreiber, R.S.,

Steele, G.L., Zosel, M.E., \The High Performance

Fortran Handbook", MIT Press 1994.

[12] G. von Lazewski, M. Parashar, A.G. Mohamed,

G.C. Fox, \On the parallelization of blocked LU

factorization algorithms on distributed memory ar-

chitectures" Supercomputing 92, Minneapolis, Nov.

1992.

[13] Metcalf, M., Reid, J., \Fortran 90 Explained", Ox-

ford, 1990.

[14] Moran, J., \An Introduction to Theoretical and

Computational Aerodynamics", Pub. Wiley, 1984.

[15] Tritton, D.,J., \Physical Fluid Dynamics", Oxford

Science Publications, 1987.

9

