
Application of Massively Parallel

Architecture to Computational

Electromagnetics

by

Xianneng Shen

B.S., Chengdu Institute of Radio Engineering, 1982

M.S., Syracuse University, 1993

Dissertation

Submitted in partial ful�llment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering

in the Graduate School of Syracuse University

August, 1994

Approved

Professor Roger F. Harrington

Date

c
 Copyright 1994

Xianneng Shen

Application of Massively Parallel Architecture to

Computational Electromagnetics

by Xianneng Shen

Abstract of Dissertation

In this thesis, we discuss the development and implementation of computational elec-

tromagnetics simulations on massively parallel processing systems. The possibility of

predicting radar cross section (RCS) for a full scale aircraft is discussed and demon-

strated by combining the most advanced computational electromagnetics techniques

and massively parallel processing technologies. Wilkes' and Cha's exact surface model

and their basis function are used to develop numerical solutions for electromagnetic

scattering problems involving arbitrarily shaped conducting bodies with and without

lossy dielectric coatings.

The ParaMoM code|one of the most sophisticated and complicated software

packages for electromagnetic scattering developed by Cha's group at Syracuse Re-

search Corporation|is extended to treat arbitrarily shaped conducting bodies with

lossy dielectric coatings. The parallel algorithms development of ParaMoM is dis-

cussed. The parallel ParaMoM, called ParaMoM-MPP, is implemented on three

massively parallel architectures: the TMC CM-5, the Intel Paragon, and the IBM

SP-1.

The accuracy of the ParaMoM-MPP code is discussed and demonstrated by com-

paring the numerical results with physical measurements. E�ciency of the parallel

implementation is discussed. Portability of ParaMoM-MPP is discussed and tested

by porting the ParaMoM-MPP code to di�erent architectures. The scalability of the

parallel implementation of each component of the ParaMoM-MPP code is discussed.

The out-of-core algorithm is discussed as a method for solving large problems which

require a large amount of memory exceeding that available in core.

This work demonstrates that parallel computing and advanced numerical tech-

niques are equally important to successfully achieving full-scale aircraft RCS predic-

tion. This thesis gives an example of the successful combining of state-of-the-art

massively parallel processing technologies with state-of-the-art computational elec-

tromagnetic techniques.

Acknowledgements

I am most indebted to Professors Roger F. Harrington and Geo�ery C. Fox, my

academic and research advisors, for their encouragement, fruitful suggestions, invalu-

able and friendly guidance, and �nancial support. Without these, the success of the

present work would not have been possible.

I would like to express my sincere gratitude to Dr. Chung-Chi Cha, Gerald E.

Mortensen, and Debra L. Wilkes of Syracuse Research Corporation for their support

and various useful discussions.

I am grateful to Dr. Joseph R. Mautz for his day-to-day consultation, taking the

time to read this dissertation and to o�er his suggestions. I greatly appreciate the

courses taught by Dr. Arlon T. Adams, Dr. Jay K. Lee, and Dr. Ercument Arvas.

I am very grateful to Dr. Kim Mills and Gang Cheng for their useful suggestions

on parallel implementation. I specially thank Mr. Gang Cheng for providing the

data obtained on the Intel, IBM SP-1, and the network cluster. I thank Gerald E.

Mortensen and Dr. Kenneth A. Hawick for their reading of the manuscript of the

dissertation and o�ering suggestions. I am thankful for Mr. Jim Lauer providing

EMCC testing results.

I thank the Northeast Parallel Architectures Center at Syracuse University, and

the Numerical Aerodynamic Simulation (NAS) Facility at NASA Ames Research

Center for providing extensive computer resources.

Finally, I would like to give my deepest thanks to my family. I am most grateful

to my wife, Pingyan Zou, and my son, Kevin, for their patience and understanding

of my frequent absence.

iv

Contents

Acknowledgements iv

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Integral Equation Methods : 4

1.2 Parallel Implementation of EM Scattering : : : : : : : : : : : : : : : 9

2 EM Scattering from Conducting Bodies 11

2.1 Parametric Modeling and Basis Functions for a Parametric Surface : 11

2.1.1 Parametric Patch Model : 12

2.1.2 Basis Functions : 15

2.2 Electric Field Integral Equation Formulation : : : : : : : : : : : : : : 16

2.2.1 Derivation of the Electric Field Operator Equation : : : : : : 16

2.2.2 Numerical Formulation for Surface Current : : : : : : : : : : : 18

2.3 Magnetic Field Integral Equation Formulation : : : : : : : : : : : : : 25

2.4 Combined Field Integral Equation : 30

3 EM Scattering from a Coated Conducting Body 33

3.1 Impedance Boundary Conditions for Scattering from a Conducting

Body with a Thin Lossy Dielectric Coating : : : : : : : : : : : : : : : 33

v

3.2 Numerical Solution of EFIE : 37

4 Parallel Implementation 42

4.1 Introduction : 42

4.1.1 Distributed Memory System : : : : : : : : : : : : : : : : : : : 46

4.1.2 Parallelism and Performance Issues : : : : : : : : : : : : : : : 47

4.2 Structure of the Code : 50

4.2.1 The Parallel Programming Model and Approaches : : : : : : : 54

4.3 Implementation : 61

4.3.1 Parallel Setup : 61

4.3.2 Precomputation : 62

4.3.3 Moment Matrix Fill : 63

4.3.4 Fill the Right-Hand Side Vectors : : : : : : : : : : : : : : : : 71

4.3.5 LU Factor and Solve : 72

4.3.6 RCS Computation : 74

4.3.7 Out-of-Core Algorithm : 77

5 Performance and Numerical Results 81

5.1 Performance and Scalability Analysis : : : : : : : : : : : : : : : : : : 82

5.1.1 Performance Measurement for a Fixed Machine Size : : : : : : 82

5.1.2 Performance Measurement for a Fixed Problem Size : : : : : : 84

5.1.3 Scalability Analysis : 95

5.2 Numerical Results : 101

5.3 Discussion of Two Parallel Moment Method Codes : : : : : : : : : : 125

6 Conclusion 129

A A Normalized Local Area Coordinate System 137

B De�nition of Scattering Angles 140

vi

C Overview of Three MPP Architectures 143

C.1 The CM-5 System Overview : 143

C.2 The CM-5 at NAS : 147

C.3 The Intel Paragon System at NAS : 151

C.4 The IBM SP-1 System at ANL : 154

Bibliography 158

vii

List of Tables

4.1 The elapsed time of writing the moment matrix to a SDA �le us-

ing CMMD global write under CMMD synchronous sequential mode

(recorded using the CMMD timer). : : : : : : : : : : : : : : : : : : : 59

4.2 The elapsed time of reading the moment matrix from a SDA �le using

CM Fortran (SO mode) function (recoded by CM Fortran timer). : : 59

4.3 The time comparison between the out-of-core �ll algorithmwithNout =

10 and the in-core �ll algorithm on the CM-5. : : : : : : : : : : : : : 80

5.1 The running time in seconds on a 32-node partition CM-5 : : : : : : 83

5.2 The running time in seconds on a 512-node partition CM-5 : : : : : : 83

5.3 The running time in seconds on an Intel 32-node Paragon, 512-node

and 64-node Touchstone Delta. : 85

5.4 The running time in seconds on the IBM 58-node and 32-node SP-1. : 85

5.5 N: matrix size, �ll: matrix �lling time in seconds, LU: matrix factor

time in seconds : 86

viii

List of Figures

2.1 A special class of parametric surface : : : : : : : : : : : : : : : : : : 13

2.2 Triangulation of a parametric surface : : : : : : : : : : : : : : : : : : 14

2.3 Domain for a parametric surface basis function : : : : : : : : : : : : : 16

2.4 Illustration of the relationship of ~Jn and ~r � ~r 0 : : : : : : : : : : : : : 28

2.5 Three sub-triangles generated from a testing point to avoid a singular-

ity in the integration : 31

3.1 Original problem of EM scattering from a conducting body with a

dielectric coating : 34

3.2 An external equivalent to the original problem : : : : : : : : : : : : 35

4.1 Flynn's classi�cation of computer architectures : : : : : : : : : : : : : 44

4.2 An example of a shared memory system : : : : : : : : : : : : : : : : 46

4.3 Distributed-memory architectures. : 48

4.4 The sequential code structure : 53

4.5 The pseudo code for the precomputation algorithm : : : : : : : : : : 64

4.6 Data decomposition for matrix �ll implementation : : : : : : : : : : : 68

4.7 The pseudo code of the parallel �ll algorithm : : : : : : : : : : : : : : 69

4.8 Varying amounts of data can be written by nodes in CMMD syn-

chronous sequential mode : 70

4.9 The pseudo code for the �ll RHS vectors algorithm : : : : : : : : : : 72

4.10 Divide and conquer algorithm for global summation : : : : : : : : : : 75

4.11 The pseudo code for the RCS computation algorithm : : : : : : : : : 76

4.12 The pseudo code of the parallel out-of-core �ll algorithm : : : : : : : 79

ix

5.1 Performance of matrix �ll portion of code implemented on small CM-5

partitions for �xed small problems : 88

5.2 Performance of matrix �ll portion of code implemented on large CM-5

partitions for �xed problem sizes : 89

5.3 Performance of matrix factor portion of code implemented on large

CM-5 partitions for �xed problem sizes : : : : : : : : : : : : : : : : : 90

5.4 Performance of matrix �ll portion of code implemented on the Intel

Paragon system : 91

5.5 Performance of matrix factor portion of code implemented on the Intel

Paragon System : 92

5.6 Performance of matrix �ll portion of code implemented on the Intel

Touchstone Delta system : 93

5.7 Performance of matrix factor portion of code implemented on the Intel

Touchstone Delta system : 94

5.8 Performance of matrix �ll portion of code implemented on the IBM

SP-1 system : 96

5.9 Performance of matrix factor portion of code implemented on the IBM

SP-1 system : 97

5.10 The wedge cylinder with gap geometric model : : : : : : : : : : : : : 102

5.11 The RCS with HH polarization of a wedge cylinder with gap : : : : : 103

5.12 The NASA's half almond parametric geometry model : : : : : : : : : 105

5.13 The RCS with HH polarization of a NAS almond : : : : : : : : : : : 106

5.14 The RCS with VV polarization of a NASA almond : : : : : : : : : : 107

5.15 The single ogive parametric geometry model with symmetry : : : : : 108

5.16 The RCS with HH polarization of a single ogive : : : : : : : : : : : : 109

5.17 The RCS with VV polarization of a single ogive : : : : : : : : : : : : 110

5.18 The double ogive parametric geometry model : : : : : : : : : : : : : 111

5.19 The RCS with HH polarization of a double ogive : : : : : : : : : : : 112

5.20 The RCS with VV polarization of a double ogive : : : : : : : : : : : 113

5.21 The cone-sphere parametric geometry model : : : : : : : : : : : : : : 115

x

5.22 The RCS with HH polarization of a cone-sphere : : : : : : : : : : : : 116

5.23 The RCS with VV polarization of a cone-sphere : : : : : : : : : : : : 117

5.24 The cone-sphere with gap parametric geometry model : : : : : : : : : 118

5.25 The RCS with HH polarization of a cone-sphere with gap : : : : : : : 119

5.26 The RCS with VV polarization of a cone-sphere with gap : : : : : : : 120

5.27 The quarter of rectangular parallelpiped parametric geometry model : 121

5.28 The RCS with HH polarization of a rectangular parallelpiped : : : : : 122

5.29 The RCS with VV polarization of a rectangular parallelpiped : : : : : 123

5.30 The RCS with HH polarization of a coated conducting sphere : : : : 124

5.31 Comparison of accuracy on a small sphere : : : : : : : : : : : : : : : 127

5.32 Comparison of matrix size for a speci�ed (0.5 dB) error tolerance : : 128

A.1 De�nitions of areas used in de�ning area coordinates. : : : : : : : : : 138

A.2 The local area system of coordinates. : : : : : : : : : : : : : : : : : : 139

B.1 De�nition of azimuth, elevation, and RLOS angles : : : : : : : : : : : 141

B.2 De�nition of monostatic and bistatic angles for di�erent RCS modes : 142

C.1 CM-5 network interface. : 145

C.2 CM-5 data network with 16 nodes. : : : : : : : : : : : : : : : : : : : 146

xi

Chapter 1

Introduction

Electromagnetic radiation and scattering problems are old problems in the sense that

they have been research topics for over 100 years. They are also new and challeng-

ing problems since there are still a lot of unsolved problems. Since the development

of digital computer technology, computing electromagnetic scattering and radiation

involving a complicated geometry became possible. Computational electromagnet-

ics (CEM) based on advanced numerical technology and state-of-the-art computer

technology becomes a very active research area in electromagnetic �elds. Today, the

major numerical methods in computational electromagnetics are the di�erential equa-

tion solver and the integral equation solver in both frequency and time domains. The

�nite element method is the most widely used method for di�erential equations in

the frequency domain. The �nite di�erence time domain method is a popular one for

di�erential equations in the time domain. A popular numerical method in the past

30 years is the Method of Moments (MoM), which was proposed for electromagnetics

by Harrington [1]. The method of moments is an integral equation solver. There are

thousands papers published on these methods.

The problem we are going to tackle is how to predict the full-scale aircraft radar

cross section (RCS) combining the state-of-the-art of CEM techniques and the state-

of-the-art of massively parallel processing technologies. Practical RCS prediction

using numerical methods has long been thought of as unrealistic. This is because

1

CHAPTER 1. INTRODUCTION 2

numerical solutions, while exact in concept, demanded amounts of computation too

large to accomplish in the past. The RCS prediction of a �ghter-sized aircraft using

MoM, for example, requires the solution of a matrix equation whose dimension can

easily exceed 100,000. The impossibility of such computations also discouraged e�orts

to improve other aspects of CEM techniques.

Successful developments of massively parallel processing (MPP) technologes have

moved us into a position from which the opportunity now looks much better for

solving the above-mentioned problem. Parallel computing not only drastically im-

proves speed, and promises much more, it also prompts new developments in CEM

techniques by bettering the prospects of real problem solutions.

In this thesis, we discuss the development and implementation of computational

electromagnetics techniques on massively parallel architectures. We focus on ad-

vanced numerical formulations and parallel implementation for electromagnetic scat-

tering problems. The goal of this work is to demonstrate the possibility of predicting

RCS for full-scale aircraft by applying e�cient computational eletromagnetic tech-

niques and massively parallel processing. The exact surface patch model, a parametric

patch model proposed by Wilkes and Cha [2], is used for scattering from conduct-

ing bodies with or without dielectric coatings. Electric �eld, magnetic �eld, and

combined �eld integral equations are derived for unknown surface currents. A so-

phisticated and complicated computer program package, called ParaMoM, has been

developed by Cha's group at the Syracuse Research Corporation (SRC). ParaMoM

utilizes the curvilinear surface patches in conjunction with a new type of basis func-

tion developed at SRC. We extend ParaMoM to treat electromagnetic scattering from

conducting bodies coated with dielectric material. The ParaMoM code is parallelized

on three MIMD (multiple instruction, multiple data) distributed memory systems.

Thinking Machine Corporation's CM-5, the Intel Paragon, and the IBM SP-1 are

representative of the state-of-the-art massively parallel processing architectures. The

parallel ParaMoM code is called ParaMoM-MPP. The CM-5 implementation is dis-

cussed in detail and the di�erence of other two implementations is given when it is

necessary. The Intel and IBM SP-1 implementations are done by Mr. Gang Cheng

CHAPTER 1. INTRODUCTION 3

at the Northeast Parallel Architecture Center. This dissertation includes this for the

purpose of comparison and completeness. The work porting the ParaMoM-MPP code

to the network cluster is also done by Mr. Gang Cheng.

The performance, scalability, and portability of the ParaMoM-MPP code are dis-

cussed. Some of the Electromagnetic Code Consortium (EMCC) benchmark cases

are computed and the results are in good agreement with the EMCC benchmark

measurement data.

The thesis is organized into six chapters. The parametric patch model of the

moment method formulation for scattering from arbitrarily shaped three dimensional

conducting bodies is derived in Chapter 2. The parametric patch model and a set

of basis functions proposed by Wilkes and Cha [2] are described in Section 2.1, the

electric �eld integral equation (EFIE) formulation is derived in Section 2.2, the mag-

netic �eld integral equation (MFIE) formulation is developed in Section 2.3, and the

combined �eld integral equation formulation is discussed in Section 2.4. The electric

�eld integral equation for electromagnetic scattering from coated conducting bodies

is given in Chapter 3. The impedance boundary condition is used to formulate the

electric �eld integral equation. The parallel implementation is given in Chapter 4.

The parallel algorithms for matrix �ll and factor/solve are given in detail. An out-of-

core matrix �ll algorithm is discussed. In Chapter 5, we present not only performance

measurements and numerical results but also a brief comparison between ParaMoM-

MPP and PATCH, which is a parallel MoM code [43]. The conclusion is presented

in Chapter 6.

In the rest of this chapter, we review numerical methods using integral equations

and their parallel implementations. Particularly, in Section 1.1, we review surface

patch development in the integral equation approach using di�erent numerical tech-

niques. In Section 1.2, parallel implementation of some integral equation methods is

reviewed.

CHAPTER 1. INTRODUCTION 4

1.1 Integral Equation Methods

Since Harrington �rst proposed the method of moments (MoM) in 1967 [1], MoM has

become one of the most important numerical methods using the integral equation

approache in computational electromagnetics. The MoM of Harrington is a method

which transforms a functional operator equation describing the physical problem into

a matrix equation by �rst approximating the unknown functions by a set of expan-

sion functions with a set of unknown coe�cients and then performing a scalar (or

symmetric) product on the operator equaiton with selected testing functions. Today,

more than two and a half decades after Harrington's now well-known book [3] was

published, the MoM has been enriched by many researchers and many new features

have been added and many new application areas have been explored. Here, we only

discuss MoM in scattering and radiation applications.

An integral equation can be derived for the induced current in the scatterers or for

the equivalent current on the scatterers. When the unknowns are volume currents in

the scatterer the associated integral equation is called the volume integral equation,

whereas when the unknowns are surface currents or equivalent surface currents on the

surface of the scatterer the associated integral equation is called the surface integral

equation (or boundary integral equation). We can convert the integral equation into a

matrix equation by discretizing the unknown currents. Since the unknown quantities

to be solved for in an integral equation formulation are restricted to be on or within

the scatterers, the number of unknowns in this formulation is generally smaller than

the number of those found in the di�erential equation formulation. This is particularly

true of the surface integral equation formulation, in which the number of unknowns

can be much smaller than the number unknowns in di�erential equation formulations

and volume integral equation formulations.

The MoM can be applied in both time domain and frequency domain. Principal

di�erences in applying the method of moments in the two domains are primarily in

the formulation and solution steps, and hence much of the software developed for one

approach can be used for the other. In the time domain, the unknown equivalent

CHAPTER 1. INTRODUCTION 5

current or �eld must be discretized in both time and space. Local equivalent induced

currents depend only on the local excitation and, due to propagation delay e�ects,

to the past history of the other equivalent currents on the object. Since the equiva-

lent current can be locally updated without knowledge of the updated values of the

remaining currents, the solution can proceed in a marching on-in-time fashion. The

potentials used to compute time domain �elds are retarded potentials, and hence one

must store the history of the equivalent current distribution over the object for an

interval of time equal to the longest transit time across the object.

Which approach to apply depends on the quantities of interest. It is easier to

model dispersive material characteristics in the frequency domain, and relatively little

additional expense is involved in obtaining the response due to multiple monochro-

matic excitations once the moment matrix is obtained and factored. However, non-

linear characteristics are more easily modeled in the time domain. In this thesis, only

frequency domain formulations are considered.

One of the important issues in applying numerical methods is how to model the

geometry of a scatterer of speci�ed material. The geometry of an electromagnetic

boundary value problem is de�ned by specifying the spatial dependence and electrical

parameters of all materials. Let us review some common geometric models.

The wire-grid modeling approach has been remarkably successful in many prob-

lems, particularly those requiring the prediction of far-�eld quantities such as radia-

tion patterns and radar cross sections [4]. In addition to resulting in a surface model

that is easy to describe to the computer, the technique has the advantage that all

numerically computed integrals are essentially one-dimensional.

Piecewise linear straight line segments are commonly used to approximate wires [5],

the cross sections of two dimensional cylinders [6], and bodies of revolution [7, 8]. Only

the nodal coordinates and the connectivity between nodes are needed to completely

specify the geometry.

The most notable example of a wire-grid modeling code is the widely used Numer-

ical Electromagnetics Code (NEC) [9] developed at Lawrence Livermore Laboratory

as an extremely versatile general-purpose user-oriented code. The code can treat

CHAPTER 1. INTRODUCTION 6

complex wire con�gurations which model either surfaces or multi-wire antennas in

the frequency domain. The Livermore group has also developed the Thin Wire Time

Domain (TWTD) code, which has similar capabilities for solving transient problems

directly in the time domain. Apparently because of computer limitations, this code

has not been used extensively to model surfaces, however.

Despite its simplicity and generality, the wire-grid modeling approach is not well-

suited for calculating near-�eld and surface quantities such as surface current and

input impedance. Other di�culties encountered in wire-grid modeling include the

occasional presence of �ctitious loop currents in the solution, di�culties with internal

resonances [10], and the problem of relating computed wire currents to equivalent

surface currents. The accuracy of wire-grid modeling has also been questioned on

theoretical grounds [11]. These di�culties have provided incentives for developing

the surface patch approach as an alternative to the wire-grid technique.

Surfaces are often modeled using planar rectangular and triangular elements, pro-

ducing piecewise linear models of the surface [12, 13, 14, 15]. The elements are

speci�ed by enumerating their boundary edge vertices. The order of these vertices

may be used to implicitly specify, via the right hand rule, the sense of the unit vector,

normal to the face. On orientable surfaces, one should ensure that the normal vector

is always on the same side of the surface; this is accomplished by requiring that the

common edge between every pair of adjacent faces is traversed in opposite directions

as one travels around the boundaries of the two faces in the sense of their orientation.

In surface modeling, the position of a vertex relative to the others can be speci�ed by

listing all the vertices connected to it by means of boundary edges. The most popular

method is that of Rao, Wilton, and Glisson [14], which uses
at triangles. Some

most popular general purpose computer programs for electromagnetic scattering and

radiation with 3-D arbitrarily-shaped surface are used RWG techniques [15, 16, 17].

The existence of arti�cial creases in such surface models leads to erroneous edge

scattering. Because of this, and because a more e�cient or accurate surface model is

desirable for other reasons, a mechanism for putting current basis functions on curved

CHAPTER 1. INTRODUCTION 7

surfaces is needed. The use of
at facets to model a nonplanar surface creates unnec-

essary man-made discretization errors in the solution. Such errors can be important,

for example, in near-�eld calculations when the observation point is on or close to the

object surface such that e�ects of surface roughness are more easily seen. Progress

has recently been made in developing more precise geometric models which take the

surface curvature into consideration [18, 19, 20, 21, 2, 22].

Graglia introduced a �nite element type of parametric element in the method of

moment analysis [18, 19]. He proposed parametric (curved) elements which are gener-

ated by distorting simple forms (such as triangles, rectangles, tetradrons, rectangular

prisms, etc.) so as to obtain other elements of more
exible shape which better match

the object to be approximated.

To demonstrate the practical usefulness of parametric elements, he developed a

program, based on a point matching technique, to study scattering from penetrable

cylinders of arbitrary shape. In a practical example, he showed the superiority of

parametric elements in the method of moments solution of a volume integral equation.

These elements permit a better geometrical description of the scatterer, reduce the

number of unknowns, shorten computation times, and give results more accurate than

those provided by the commonly used planar elements.

Sancer [20], reported that researchers at Northrop use a parametric elementmodel

in their MoM code to get accurate RCS predictions with a minimumnumber of surface

patches. A pulse basis function on each parametric element and point matching are

used for both MFIE and EFIE. The disadvantage of Sancer's approach is that the

pulse basis functions had line charges at the patch boundaries.

At Hughes Research Laboratory, Wandzura [21] constructed basis functions for

representing currents on curved surfaces using di�erential geometry. These basis func-

tions are appropriate for method of moments solution of boundary integral equations.

They maintain the essential properties of the basis functions of Rao-Wilton-Glisson

(RWG) [14], while allowing higher order basis functions (more variables per patch).

The use of these functions is expected to result in a large reduction in the com-

putational resources required to solve a given problem for a �xed level of accuracy.

CHAPTER 1. INTRODUCTION 8

Wandzura claimed that his basis functions can be reduced to those of RWG. But we

have not see his implementation yet.

The parametric model used in this report is the one proposed and developed by

Wilkes and Cha [2] at Syracuse Research Corporation. Wilkes and Cha's parametric

surface patch model is the exact geometric model. There is no discretization error

introduced by the model. Wilkes and Cha have proposed a simple and e�cient

basis function which is de�ned in terms of curvilinear cooordinates on the parametric

surface in question and conforms to its exact curvature. The parametric element

is a curved triangle in physical space and a
at triangle with straight edges in the

parametric space. Wilkes and Cha's basis functions have all the properties that a good

basis function should have. Namely, these basis functions are linearly independent

and capable of accurately representing the equivalent current on the surface. They are

also simple to work with. They are discussed in detail in Chapter 2. Some comparison

of performance between the popular RWG technique with
at facets and ParaMoM

is presented in Chapter 5.

The integral equation formulation for computational electromagnetics is consid-

erably aided by use of the electromagnetic equivalence principle. Harrington [3] has

shown that it may be used to derive most of the practical formulations for both con-

ductors and penetrable objects [3, 23, 24, 25]. It is now generally appreciated that

use of the equivalence principle eliminates much of the tedium and possibility for

error formerly associated with deriving integral equations from Green's theorems. Its

many forms also suggest alternative formulations.

It is seen that a common thread in any moment method formulation is the com-

putation of �elds due to equivalent electric and magnetic current sources radiating in

unbounded homogeneous regions. These �elds are most conveniently represented in

terms of magnetic vector, electric scalar, electric vector, and magnetic scalar poten-

tials.

When the scatterer has axial symmetry, the MoM approaches can be simpli�ed.

The body of revolution method [7, 8, 27, 28, 23, 24, 29, 30] is a good example.

Above, we have brie
y reviewed the MoM approach and given a little more detail

CHAPTER 1. INTRODUCTION 9

about surface modeling.

1.2 Parallel Implementation of EM Scattering

Parallel architectures have been studied from user experience over a broad range of

problem classes [31, 32, 33]. In this section, we only review the parallel implemen-

tation of EM scattering problems using the integral equation approach. The parallel

processing architecture application to electromagnetic scattering has received atten-

tion since late in the last decade. JPL/Caltech led the research on Hypercube archi-

tecture application. Their work was reported in [34, 35, 36, 37, 38, 39, 40, 41, 42, 43].

The �rst code they have implemented is the Numerical Electromagnetics Code (NEC-

2), developed at Lawrence Livermore National Laboratory. The NEC-2 code, which

used the wire-grid modeling approach, is an extremely versatile general-purpose user-

oriented code. The code can treat complex wire con�gurations which model either

surfaces or multi-wire antennas in the frequency domain. The code was implemented

on a JPL/Caltech Mark III Hypercube (Hypercube architecture is discussed in chap-

ter 4). The Mark III Hypercube's con�guration consists of 32 processing nodes [39];

each node has a pair of Motorola 68020 processors{one is the main application proces-

sor and the second is the communication processor. A Motorola 68881
oating point

coprocessor is added for
oating point operation, and a new
oating point accelerator

uses the Weitek chip set; each node has four megabytes (Mbytes) main memory with

128 kilobytes (Kbytes) cache memory. The Mark III Hypercube delivers about 1 to

14 mega
ops (M
ops) per node in computation, 2.0 Mbytes per second per channel

in synchronous communication and 0.5 Mbyte per second and per channel in asyn-

chronous communication. The 32-node Mark III Hypercube can run cases in core

which consist of up to 2400 equations. At the end of the last decade and the begin-

ning of this decade, JPL/Caltech upgraded the Mark III Hypercube to a 128 node

machine which can run cases in core which consist of 4800 unknowns [40, 41, 42, 38].

Beginning this decade, JPL/Caltech started to implement the PATCH code described

in [15] on the 128-node Mark III Hypercube [36]. The PATCH code is a method of

CHAPTER 1. INTRODUCTION 10

moments code which implements a discretization of the electric �eld integral equation

(EFIE) for conducting objects of arbitrarily shaped surfaces. An object is modeled

by a set
at triangular patches and Rao's basis functions [14]. For a small problem,

the parallel algorithm implemented has been termed \trivial parallelization" because

each processor executes identical code for varying excitations. In the parallelization

of large problems, row decomposition is used and direct LU factorization is employed.

The PATCH code is also implemented on the Intel iPSC Hypercube and Touchstone

Delta systems. The Hypercube system has been upgraded to 64 processors, and the

Delta system is a two-dimensional mesh (16 � 32) of 512 processors. Each proces-

sor has 16 Mbytes of RAM attached. During the �rst year's operation of the Intel

Touchstone Delta system, Cwik [37] reported that it has solved for scattering from

a conducting sphere with ka = 33:40 using the EFIE formulation out-of-core on a

512-node Delta machine.

We notice another parallel implementation of the integral equation method is a

body of revolution code using the EFIE by Gedney [44] on Hypercube architectures.

The parallel MoM algorithm in Gedney's code is based on the work presented by Ged-

ney and Mittra [45] which was derived from original work done by Glisson and Wilton

[46]. Column scattering decomposition is applied to map data onto the hypercube.

Although this mapping scheme eliminates a signi�cant amount of redundant integra-

tion computation, it requires a reshu�ing of the matrix before the LU factorization

is performed. They experienced that their parallel algorithm on a Coarse-Grained

Hypercube has bad scalability, because the additional communication is required by

reshu�ing the matrix elements when the number of the processors becomes large.

Gedney and Mittra have implemented their code not only on a Coarse-Grained Hy-

percube Mark III but on a Fine-Grained Hypercube (MIMD) nCUBE, which may

employ up to 8K processors. In addition, Gedney and Mittra have implemented their

code on a Fine-Grained SIMD Hypercube architecture, Thinking Machine's CM-2,

which has 64K bit-serial processors.

Chapter 2

EM Scattering from Conducting

Bodies

In this chapter, we deal with the application of electric, magnetic, and combined

�eld integral equations (EFIE, MFIE, and CFIE) to analyze electromagnetic scat-

tering from arbitrarily shaped three-dimensional perfectly conducting bodies in the

frequency domain. In Section 2.1, a parametric surface model is described and the

procedure of parametric patch generation is given. A set of basis function which

was �rst proposed by Wilkes and Cha [2] is de�ned on a parametric sub-domain. In

Section 2.2, the electric �eld integral equation (EFIE) formulation is presented. In

Section 2.3, the magnetic �eld integral equation formulation is derived. In Section

2.4, the combined �eld integral equation is given.

2.1 Parametric Modeling and Basis Functions for

a Parametric Surface

In this Section, the surface of the scatterer is decomposed into a set of parametric

triangles which have curved edges in the physical space. A set of basis functions is

de�ned on the parametric triangular sub-domain.

11

CHAPTER 2. EM SCATTERING FROM CONDUCTING BODIES 12

2.1.1 Parametric Patch Model

Many electromagnetic scattering modeling approaches represent the scatterer's sur-

face by a set of
at patches. The most popular one is that of Rao, Wilton, and

Glisson [14], which uses
at triangles. The disadvantages of the
at patch model are

in the following two important areas. One is that using
at patches to discretize a

curved surface is an approximate surface model which introduces discretization er-

ror in the solution. Next, the
at patch surface model requires a relatively larger

number of elements to represent a complex surface to a desired accuracy than would

a parametric surface model. The motivation for using curved patches rather than

at ones is to avoid any surface modeling errors. This allows one to get accurate

RCS predictions with a minimum number of surface patches. Figures 5.31 and 5.32

in Chapter 5 demonstrate that the parametric surface model is superior to the
at

patch surface model. As the density of the surface patches increases, the di�erence

in accuracy between curvilinear patches and
at patches (facets) decreases. However,

for the large 3D target in which we are interested, it is almost impossible to increase

the number of surface patches because of the limitation of both the physical memory

and the CPU time of the modern computer.

We will only consider a special class of surfaces which only depend on two surface

parameters. This class of surface is very useful in the course of RCS prediction

applications. Figure 2.1.1 shows an example of this type of surface, where u and v

are the surface parameters, and ~r is a position vector which can be represented as a

function of these two surface parameters as:

~r(u; v) = ~r0 + u4~r +R(u)n(v) (2.1)

where R(u) has the following form

R(u) =
p
Au2 +Bu+ C (2.2)

and A, B, and C are constants, and n(v) is a simple function of v. The tangent

CHAPTER 2. EM SCATTERING FROM CONDUCTING BODIES 13

R(u)

∆r

X

Z

r
Y

Figure 2.1: A special class of parametric surface

vectors of the position vector ~r(u; v) along constant u and v are de�ned by:

@~r

@u
= ~ru = huû

@~r

@v
= ~rv = hv v̂ (2.3)

where hu and hv are, respectively, the metrical coe�cients or the scalar factors along

u and v, and û and v̂ are the unit vectors of u and v, respectively. The Jacobian of

the surface is de�ned as a function of u and v by:

J(u; v) =j @~r
@u

� @~r

@v
j= huhv j û� v̂ j (2.4)

To generate this model, lines along constants u and v are �rst used to divide the

surface into four sided patches. Then curved diagonal lines are used to form curved

triangular patches.

The geometric model utilizes the parametric description to map the physical sur-

face into the parametric space shown in Figure 2.2, where the physical surface is de-

composed into a collection of curved triangles as shown in Figure 2.2(a). Figure 2.2(b)

shows a two-dimensional parametric space (u-v) representation of the physical sur-

face. In the physical space, the surface is closely modeled by an appropriate set of

curved triangles. In the corresponding two-dimensional parametric (u-v) space, these

triangles will have straight edges.

CHAPTER 2. EM SCATTERING FROM CONDUCTING BODIES 14

(a). Physical Space

u

v

(b). Parametric (u-v) Space

Figure 2.2: Triangulation of a parametric surface

CHAPTER 2. EM SCATTERING FROM CONDUCTING BODIES 15

2.1.2 Basis Functions

It is interesting to de�ne basis functions on the parametric space that conform to the

curvature of the physical surface. The basis function proposed by Wilkes and Cha

[2] is illustrated in Figure 2.3. The domain of the basis function is a pair of adjacent

triangles, T�
n and T+

n . The basis function is de�ned by

~Jn(u; v) =

8>>>>><
>>>>>:

1

2A+
nJ(u;v)

[(u� u1)huû+ (v � v1)hvv̂]; inT+
n ;

�1

2A�

n J(u;v)
[(u� u4)huû+ (v � v4)hv v̂]; inT�

n ;

0; otherwise;

(2.5)

where (ui; vi) are local vertices in the parametric u-v space. A�
n is the area of the

triangle T�
n .

This basis function has the following desirable properties:

� There are no line charges along the boundary (including the common edge of

the conjoined triangle pair T�
n and T+

n)

� the component normal to the shared edge is continuous, and thus, does not

generate a line charge accumulation.

� The surface divergence of the basis function, which is proportional to the surface

charge density associated with the basis element is

r � ~Jn =

8>>>><
>>>>:

1

2A+
n J(u;v)

inT+
n

�1

2A
�

n J(u;v)
inT�

n

0 otherwise

(2.6)

� When the patch dimensions become small compared to the radius of curvature,

this basis function approaches linearly the RWG (Rao, Wilton, and Glisson [14])

basis function for a
at triangle.

� This basis function is de�ned in terms of a general surface parameterization,

and it is not tied to any speci�c surface parameterization. This feature has

CHAPTER 2. EM SCATTERING FROM CONDUCTING BODIES 16

T-
n

(u4,v4)
(u2,v2)

(u1,v1)

(u3,v3)

J-
n(u,v)

T+
n

Figure 2.3: Domain for a parametric surface basis function

allowed for simple modular inclusion of several di�erent parameterizations in

the method of moment procedure.

After reviewing the above properties of the function de�ned in (2.5), we will select

this function as a basis function to approximate the electric currents induced on the

surface of scatterers. This basis function will be used throughout this thesis.

2.2 Electric Field Integral Equation Formulation

The integro-di�erential equation for the current distribution based on the electric

�eld operator is called the electric �eld integral equation (EFIE). In this section,

we are interested in the electric �eld operator equation. The method of moments is

applied to the electric �eld boundary value equation to obtain a set of linear equations

for the induced electric surface current on the surface of a scatterer. We shall give

a derivation of the operator equation in Section 2.2.1, and we will concentrate on

evaluating the so-called impedance matrix numerically in section 2.2.2.

2.2.1 Derivation of the Electric Field Operator Equation

Let S denote the surface of a perfectly conducting scatterer with unit normal vector n̂.

S may be either open or closed. The incident electric �eld ~Einc is due to an impressed

CHAPTER 2. EM SCATTERING FROM CONDUCTING BODIES 17

source in the absence of the scatterer. The boundary condition is such that the sum of

the incident, ~Einc, and the scattered, ~Es, electric �elds has no tangential component

on the perfectly conducting body surface, i.e.,

~Es
tan(

~J) + ~Einc
tan = 0 onS (2.7)

where the subscript \tan" denotes the components tangential to the surface S. ~J is

the electric current which is induced on the surface due to the incident �eld. If S is

open, we regard ~J as the vector sum of the currents on opposite sides of S.

The scattered electric �eld can be represented by the so-called vector potential

and the scalar potential which are produced by the surface current, as below:

~Es(~J) = �j! ~A�r	 (2.8)

The magnetic vector potential, ~A, and the electric scalar potential 	 are given

by [47]:

~A(~r) = �0

Z
S

~J(~r 0)
e�jkj~r�~r

0j

4� j ~r � ~r 0 jds
0 (2.9)

	(~r) =
1

�0

Z
S
�(~r 0)

e�jkj~r�~r
0j

4� j ~r � ~r 0 jds
0 (2.10)

An exp(j!t) time dependence is assumed and is suppressed, and k = !
p
�0�0 =

2�=�, where � is the wavelength. The permeability and permittivity of the sur-

rounding medium are �0 and �0, respectively, and ~r and ~r
0 are the arbitrarily located

observation point and source point, respectively. The surface charge density � is

related to the surface divergence of ~J through the equation of continuity,

rs � ~J = �j!�: (2.11)

where rs is the surface divergence operator. Substituting (2.8) into eq (2.7), an

integro-di�erential equation for ~J is given by

(j! ~A+r)tan = ~Einc
tan; ~r onS: (2.12)

With ~A and 	 given by eqs (2.9) and (2.10), (2.12) is the so-called electric �eld

integral equation (EFIE). In the next subsection, the method of moments is applied

to obtain a matrix equation for the unknown surface current.

CHAPTER 2. EM SCATTERING FROM CONDUCTING BODIES 18

2.2.2 Numerical Formulation for Surface Current

Let a basis function ~Jn as de�ned in the previous section be associated with the nth

non-boundary edge of the curved triangulated structure. Surface current exists on

both sides of the structure for an open surface. The unknown current ~J , being solved

for in the integral equation, is the vector sum of the currents on opposite sides of S.

At boundaries of S, the component of this vector sum normal to the boundary must

vanish due to continuity of the current; therefore, we need not de�ne basis functions

associated with boundary edges. The current on S can be approximated as a linear

combination of the basis functions with a set of unknown coe�cients.

~J �
NX
n=1

In ~Jn (2.13)

where N is the total number of non-boundary edges, and In is the unknown coe�cient

associated with the nth basis function ~Jn. Since there may be up to three non-

boundary edges in a triangle, so there will be up to three non-zero basis functions

within each triangular face. To convert (2.12) into a matrix equation, we choose the

expansion functions as testing functions. The symmetric product for any two vector

functions ~f and ~g as given by Harrington [3] is

< ~f;~g >�
Z
S

~f � ~gds: (2.14)

Testing (2.12) with ~Jm yields

j! < ~A; ~Jm > + < r	; ~Jm >=< ~Einc; ~Jm > (2.15)

where ~Jm is de�ned in (2.5), m = 1; 2; � � � ; N . Utilizing a surface calculus identity

[48], the last term of left hand side in (2.15) can be rewritten as

< r	; ~Jm >= � < 	;rs � ~Jm > (2.16)

The continuity equation (2.11) is substituted into (2.10) to make the current be

the only unknown for the scattered �eld. Inserting the current expansion (2.13)

CHAPTER 2. EM SCATTERING FROM CONDUCTING BODIES 19

into eqs (2.9) and (2.10) then into (2.12) yields N linear equations for N unknown

coe�cients. It may be written in a matrix form as:

[Zmn][In] = [V e

m] (2.17)

where [Zmn] is an N �N square matrix which is called the \moment matrix" or the

\generalized impedance" matrix. [In] and [V e

m] are column vectors. [In] is called the

\generalized current" vector, and [V e

m] is named the \generalized voltage" vector. The

nth element of [In] is In. The m
th element of [V e

m] is given by:

V e

m =
Z
Sm

~Jm � ~Einc
tands: (2.18)

The evaluation of the generalized impedance matrix elements follows from equa-

tions (2.14) through (2.16). Thus, utilizing the approximation (2.13),

Zmn = j!�0

Z
Sm

~Jm � ~ands+ 1

j!�0

Z
Sm

(rs � ~Jm) nds (2.19)

where Sm denotes the domain of ~Jm, and ~an and n are given by:

~an =
~An

�0
(2.20)

and

 n = �j!�0	n (2.21)

where ~An and 	n are the magnetic vector potential and the scalar potential due to

the current ~Jn on the n
th edge, Substituting the nth expansion function into (2.9) and

(2.10), (2.20) and (2.21) can be rewritten as:

~an(~r) =
Z
Sn

~Jn(~r
0)

e�jkj~r�~r
0j

4� j ~r � ~r 0 jds
0; (2.22)

and

 n(~r) =
Z
Sn

[r0

s � ~Jn(~r 0)]
e�jkj~r�~r

0j

4� j ~r � ~r 0 jds
0: (2.23)

where Sn denotes the domain of ~Jn and r0
s is the surface divergence operator on the

primed variables.

CHAPTER 2. EM SCATTERING FROM CONDUCTING BODIES 20

We note that each matrix element of Zmn is associated with a pair of non-boundary

edges m and n. However, the domains of the integrals and locations of the obser-

vation points are associated with the faces attached to these edges. For each pair

of triangular patches, contributions to the interactions between up to nine di�erent

combinations of source and �eld basis functions must be computed. Each source-

�eld basis function interaction corresponds to a single matrix element. Much of the

information required to compute the interaction between the source and �eld basis

functions is only related to geometry. This information is the same regardless of which

basis function is currently considered. Once computed, the geometry information be-

tween a pair of patches may be used to obtain the contributions to a maximum of

nine di�erent matrix elements.

To evaluate these surface integrals, we �rst transfer the curved triangular domain

to a
at triangular parametric domain. Secondly, we transform the (u, v) parametric

space to a local system of area coordinates (see Appendix A) with the corresponding

triangle. Finally, the numerical integration formula for a triangular region in (see

Chapter 8, [49]) are used to evaluate these surface integrals. Implementing this idea,

we can rewrite Zmn in terms of each pair of faces as:

Zmn = Z++
mn + Z+�

mn + Z�+
mn + Z��

mn (2.24)

where Zpq
mn is the contribution from testing over T p

m on the electric �eld due to the

electric current ~Jn on T q
n, and p and q are either + or � signs.

Zpq
mn = j!�0

Z
T
p

m

~Jm � ~aqnds+
1

j!�0

Z
T
p

m

[rs � ~Jm] q
nds (2.25)

where ~aqn and q
n are given by:

~aqn =
~Aq
n

�0
(2.26)

and

 q
n = �j!�0	q

n (2.27)

where ~Aq
n and 	q

n are, respectively, the magnetic vector potential and the electric

scalar potential produced by the part of ~Jn on the patch T q
n . Both ~aqn and q

n can

CHAPTER 2. EM SCATTERING FROM CONDUCTING BODIES 21

be numerically computed after mapping the curved physical space to the (u; v) para-

metric space with parametric description in (2.1) and Jacobian in (2.4). Then, we

transform the (u; v) space to a local coordinate system. After substituting the basis

function and the expression for the surface element, ~aqn is given by

~aqn = q
Z
T
q

n

1

2Aq
nJ(u0; v0)

[(u0� ui)hu0 û+ (v0� vi)hv0 v̂] e�jkj~r�~r
0j

4� j ~r � ~r 0 jJ(u
0; v0)du0dv0 (2.28)

where (ui; vi) is (u1; v1) if q is + and (u4; v4) if q is � (see Fig. 2.3), and Aq
n is the

area of the triangle T q
n . Since ~r and ~r 0 are, respectively, ~r(u; v) and ~r(u0; v0) where

~r(u; v) is given by (2.1), q~aqn can be rewritten as:

q~aqn = q~aqn(u; v) =
Z
T
q

n

~fnq(u; v; u
0; v0)du0dv0 (2.29)

where ~fnq(u; v; u
0; v0), a vector function, is de�ned by

~fnq(u; v; u
0; v0) =

1

2Aq
n
[(u0 � ui)~ru(u

0; v0) + (v0 � vi)~rv(u
0; v0)]

� e�jkj~r(u;v)�~r(u
0;v0)j

4� j ~r(u; v)� ~r(u0; v0) j (2.30)

where (2.3) is used to replace hu0 û by ~ru(u
0; v0) and hv0 v̂ by ~rv(u

0; v0).

Similarly, q
n can be written as

 q
n = q

Z
T
q

n

1

2Aq
nJ(u0; v0)

e�jkj~r�~r
0j

4� j ~r � ~r 0 jJ(u
0; v0)du0dv0

= q
Z
T
q

n

gnq(u; v; u
0; v0)du0dv0 (2.31)

where gnq(u; v; u
0; v0), a scalar function of (u; v; u0; v0), is de�ned by

gnq(u; v; u
0; v0) =

1

2Aq
n

e�jkj~r(u;v)�~r(u
0;v0)j

4� j ~r(u; v)� ~r(u0; v0) j (2.32)

Equations (2.29) and (2.31) can be evaluated by Gaussian quadrature after trans-

forming the (u0; v0) coordinates to a local system of area coordinates (�; �;
) within

T q
n. The details of the local system de�nition are given in Appendix A. Then, aqn(u; v)

and q
n are given by:

~aqn(u; v) = q2Aq
n

Z 1

0

Z 1��

0

~fnq(u; v; u
0(�; �); v0(�; �)) d�d� (2.33)

CHAPTER 2. EM SCATTERING FROM CONDUCTING BODIES 22

 q
n(u; v) = q2Aq

n

Z 1

0

Z 1��

0
gnq(u; v; u

0(�; �); v0(�; �)) d�d� (2.34)

where only � and � appear in the above equations because u0(�; �) and v0(�; �) are

given in (A.4) where
 is a linear combination of � and �. Note that direct application

of a technique for numerical technique over a triangular region [49] allows equations

(2.33) and (2.34) to be evaluated as:

~aqn(u; v) = q2Aq
n

NsX
i=1

wi
~fnq(u; v; u

0(�i; �i); v
0(�i; �i)) (2.35)

 q
n(u; v) = q2Aq

n

NsX
i=1

wi gnq(u; v; ; u
0(�i; �i); v

0(�i; �i)) (2.36)

where Ns is the total number of integration points, wi is the weight for the ith in-

tegration point (�i; �i), where wi and (�i; �i) are given in Table 8.2, [49], and u0(�; �)

and v0(�; �) are given in (A.4). The testing integrals over T p
m in (2.25) can also be

evaluated numerically in the same way. For T p
m 6= T q

n, both ~a
q
n and q

n are well be-

haved. Substituting (2.35) and (2.36) into (2.25) and evaluating the testing integrals

using the same procedure as for the potential integrals, the numerical representation

of Zpq
mn is given, for T p

m 6= T q
n, by

Zpq
mn = j!�0p2A

p
m

NtX
j=1

wj
~fmp(u(�j; �j); v(�j; �j)) � ~aqn(u(�j; �j); v(�j; �j))

+
p2Ap

m

j!�0

NtX
j=1

wj gmp(u(�j; �j); v(�j; �j))
q
n(u(�j; �j); v(�j; �j)) (2.37)

where Nt is the total number of integration points on T p
m chosen according to the

accuracy requirement, and wj is the weight associated with the integration point at

(�j ; �j). The quantities wj and (�j ; �j) are given in Table 8.2, [49], u(�j; �j) and v(�j; �j)

are given in (A.4), p is either + or �, and Ap
m is the area of the triangle T p

m. The

vector function ~fmp and the function gmp are de�ned by

~fmp(u; v) =
1

2Ap
m

[(u� ui)~ru(u; v) + (v � vi)~rv(u; v)]

gmp(u; v) =
1

2Ap
m

(2.38)

CHAPTER 2. EM SCATTERING FROM CONDUCTING BODIES 23

For T p
m = T q

n, the integrands of both the vector and scalar potentials integrals are

singular. A term will be added and subtracted from each integrand. The term to be

added and subtracted must have the same singular behavior when ~r 0 approaches to ~r

and can be analytically evaluated. Thus, the result of the magnetic vector potential

~aqn in (2.25) is presented after adding and subtracting a selected term.

~aqn =
Z
T
q

n

[
~Jn(u

0; v0)J(u0; v0)e�jkR

4�R
�
~Jm(u; v)J(u; v)

4�Rs

]du0dv0

+
~Jm(u; v)J(u; v)

4�

Z
T
q

n

1

Rs

du0dv0 (2.39)

Adding and subtracting a term which has a 1=R singularity when R approaches zero

in the integraand of the scalar potential integral q
n, one has

 q
n =

q

2Aq
n

f
Z
T
q

n

du0dv0 [
e�jkR

4�R
� 1

4�Rs

] +
Z
T
q

n

du0dv0
1

4�Rs

g (2.40)

where q is either + or �, and R is the distance between the testing point ~r and the

source point ~r 0. RS is an approximation to R when ~r is very close to ~r 0, which can

be expressed in terms of a Taylor series approximation. Here, R and Rs are given by

R = j ~r � ~r 0 j (2.41)

Rs = lim
~r!~r 0

j ~r � ~r 0 j�j ~ru(u0 � u) + ~rv(v
0 � v) j

=
q
r2u(u

0 � u)2 + r2v(v
0 � v)2 + 2(~ru � ~rv)(u0 � u)(v0 � v) (2.42)

Now, RS has the same behavior as R near the singularity. Hence, the integrand of

the �rst integral on the right-hand side of each of (2.39) and (2.40) is well-behaved on

entire T q
n region, so these integrals can be evaluated numerically with the technique

in [49]. The second integral on the right-hand side of each of (2.39) and (2.40) can

be evaluated analytically, and is discussed in Appendix C of [16] and [50]. Therefore,

Zpq
mn for T p

m = T q
n is given by

Zpq
mn = j!�0p2A

p
m

NtX
j=1

fwj
~fmp(u(�j ; �j); v(�j; �j))

CHAPTER 2. EM SCATTERING FROM CONDUCTING BODIES 24

�[~aqn1(u(�j; �j); v(�j; �j)) + ~aqn2(u(�j; �j); v(�j; �j))]g

+
p2Ap

m

j!�0

NtX
j=1

fwj gmp(u(�j; �j); v(�j; �j))

�[q
n1(u(�j; �j); v(�j; �j)) + q

n2(u(�j; �j); v(�j; �j))]g (2.43)

where p is either + or � depending on whether the patch of the testing function Jm

that contributes to Zpq
mn resides on T+

m or T�
m. The vector function

~fmp and the scalar

function gmp are de�ned in (2.38). ~aqn1, ~a
q
n2,

q
n1, and

q
n2 are given by

~a
q
n1(u; v) = q2Aq

n

NsX
i=1

wi
~f1nq(u; v; u

0(�i; �i); v
0(�i; �i)) (2.44)

~aqn2(u; v) = q ~f2nq(u; v) (2.45)

and

 q
n1(u; v) = q2Aq

n

NsX
i=1

wi g
1
nq(u; v; u

0(�i; �i); v
0(�i; �i)) (2.46)

 q
n2(u; v) = qg2nq(u; v) (2.47)

where Ns is the total number of integration points and wi is the weight for the i
th in-

tegration point (�i; �i). Here wi and (�i; �i) are given in (Table 8.2 [49]). Furthermore,

u0(�i; �i) and v
0(�i; �i) can be found in (A.4).

The vector functions ~f1nq and
~f2nq in (2.44) and (2.45) are de�ned by

~f1nq(u; v; u
0; v0) =

1

2Aq
n

[(u0 � ul)~ru(u
0; v0) + (v0 � vl)~rv(u

0; v0)]
e�jkR

4�R

� 1

2Aq
n

[(u� ul)~ru(u; v) + (v � vl)~rv(u; v)]
1

4�Rs

(2.48)

and

~f2nq(u; v) =
1

2Aq
n

[(u� ui)~ru(u; v) + (v � vi)~rv(u; v)]
Z
T
q

n

du0 dv0

4�Rs(u; v; u0; v0)
(2.49)

where (ul; vl) is (u1; v1) if q is + and (u4; v4) if q is -. And the scalar functions in (2.46)

and (2.47) are de�ned by

g1nq(u; v; u
0; v0) =

1

2Aq
n

[
e�jkR

4�R
� 1

4�Rs

] (2.50)

CHAPTER 2. EM SCATTERING FROM CONDUCTING BODIES 25

and

g2nq(u; v) =
1

2Aq
n

Z
T
q

n

du0 dv0

4�Rs

(2.51)

The analytical evaluations of the integrals in 2.49 and 2.51 are given in [50].

2.3 Magnetic Field Integral Equation Formula-

tion

In this section, the magnetic �eld integral equation (MFIE) is derived for a conducting

scatterer. It is well-known that the MFIE applies only to closed bodies, so that

throughout this section we assume that the object has no boundary edges. The

vector basis functions given in Section 2.1, are used for both the expansion and

testing functions in the numerical solution of the MFIE.

Let S denote the surface of a perfectly conducting scatterer with unit normal

vector n̂. The incident magnetic �eld ~H inc is due to an impressed source in the

absence of the scatterer. The scatterer is in a homogeneous space characterized by a

pair of parameters (�0; �0), where �0 is the inductivity or permeability and �0 is the

capacitivity or permittivity. The result of enforcing the boundary condition on the

magnetic �eld is given by

n̂� (~H inc + ~Hs) = 0 on S� (2.52)

where n̂ is an outward unit normal vector on S, S� is the surface is just inside of

S, and ~H inc and ~Hs are the incident and scattered magnetic �elds, respectively. The

tangential component of the scattered magnetic �eld can be expressed as a limit for

observation points ~r not on an edge, (see [48] and [51])

n̂� ~Hs = lim
~r!S

n̂�r� ~A

= �
~J

2
+ n̂�

Z
S
(~J �r0G) ds0; (2.53)

where ~J is the induced electric surface current on S, and the integral on the right

hand side in (2.53), with the �eld point exactly on S, is interpreted as the Cauchy

CHAPTER 2. EM SCATTERING FROM CONDUCTING BODIES 26

principal value. G is free space Green's function, and r0 is the gradient operator on

the primed coordinates. The Green's function and its gradient are given below as

G =
e�jkR

4�R
(2.54)

and

r0G = (~r � ~r 0)(1 + jkR)e�jkR

4�R3
(2.55)

where k is the wave number as de�ned in the previous section, R is the distance

between the source point and the observation point which is R =j ~r � ~r 0 j, and
~r approaches S from the interior. Substituting (2.53) into (2.52), we obtain the

magnetic �eld integral equation:

~J

2
� n̂�

Z
S
(~J �r0G) ds0 = n̂� ~H inc (2.56)

In order to apply the method of moments, the surface of the scatterer is decomposed

into a set of curved triangular patches using a parametric description of the surface.

The procedure of the parametric surface model generation has been described in Sec-

tion 2.1. The next step after surface modeling is to de�ne a set of basis functions

which are used to approximate the surface current. Here, the basis functions de�ned

in (2.5) are to be used as expansion functions on the parametric surface. Then, the

electric surface current can be approximated as a linear combination of the expan-

sion functions with a set of unknown coe�cients as in (2.13). Substituting (2.13)

into (2.56) gives an integral equation with N unknown coe�cients. The method of

moments allows one to select a set of testing functions which are used to test (2.56)

with a symmetric product which is de�ned in (2.14). When the testing functions are

the same as the expansion functions, the procedure is called the Galerkin procedure.

This procedure gives

NX
n=1

In[< ~Jm;
~Jn
2
> � < ~Jm; n̂�

Z
S
(~Jn �r0G) ds0 >] =< ~Jm; n̂� ~H inc > (2.57)

CHAPTER 2. EM SCATTERING FROM CONDUCTING BODIES 27

where ~Jm is the mth testing function and m = 1; 2; � � � ; N . In is the unknown coe�-

cient associated with the nth basis function ~Jn.

The N linear equations for N unknowns in (2.57) can be rewritten in a matrix

equation as

[Lmn][In] = [V m

m] (2.58)

where [In] and [V
m

m] are column vectors and [Lmn] is an N�N square matrix. The nth

element of [In] is the unknown coe�cient associated with the nth expansion function.

The element of the mth row and the nth column of the matrix [Lmn] and the element

of the mth row of the vector [V m

m] are given by

Lmn =< ~Jm;
~Jn

2
> � < ~Jm; n̂�

Z
S
(~Jn �r0G) ds0 > (2.59)

and

V m

m =< ~Jm; n̂� ~H inc >=
Z
S
ds ~Jm(~r) � [n̂(~r)� ~H inc(~r)] (2.60)

From the de�nition of the symmetric product in (2.14), (2.59) can be rewritten as

Lmn =
1

2

Z
S
ds ~Jm(~r) � ~Jn(~r)

�
Z
S
ds ~Jm(~r) � n̂(~r)�

Z
S
ds0 [~Jn(~r

0)�r0G(~r; ~r 0)] (2.61)

Note that when the testing function and the expansion function reside on the same

patch the singularity contribution is the same for both the
at patch and the curved

patch. In other words, there is a ~Jn=2 term when ~r = ~r 0 for both the
at patch

and the curved patch. However, the contribution for the principal value integral is

di�erent. In the
at patch case, the current vector ~Jn is always on the same plane

as ~r � ~r 0, so that n̂ � ~Jn � r0G = 0 (see [16]). However, it is not the case for a

curved patch. Due to the surface curvature the current vector ~Jn on the patch is not

always in the same plane as ~r�~r 0, so that n̂� ~Jn�r0G 6= 0, as shown in Figure 2.4.

Thus, the principal value integral has a singular integrand when the testing patch is

also the source patch. That may be the only disadvantage of this model for MFIE.

Fortunately, this integral is easily evaluated..

CHAPTER 2. EM SCATTERING FROM CONDUCTING BODIES 28

x

y

z rr’

r-r’

n

Jn(r’)→

Figure 2.4: Illustration of the relationship of ~Jn and ~r � ~r 0

Following the procedure in the previous section, we intend to compute the elements

of Lmn sequentially by source-�eld patch pairs for all integrals. It will avoid the costly

and ine�cient recomputation of an identical integral up to nine times which would

result if the elements of Lmn were computed sequentially by basis functions. As with

the EFIE, it is convenient to write all the required integrals in terms of integrals over

a source-�eld patch pair, as

Lmn = L++
mn + L+�

mn + L�+
mn + L��

mn (2.62)

where Lpq
mn is the computation from testing over T p

m the magnetic �eld due to the part

of the electric current ~Jn on T q
n , p and q are either + or � signs, and Lpq

mn is given by

Lpq
mn = �

Z
T
p

m

ds ~Jm � n̂ �
Z
T
q

n

ds0 ~Jn �r0G

+

8<
:

1
2

R
T
p

m

~Jm � ~Jnds; T p
m = T q

n

0; T p
m 6= T q

n

(2.63)

For convenience, let ~Bq
n be the inner integral of the second term on the right-hand

side of (2.63). It can be expressed as

~Bq
n =

Z
T
q

n

[~Jn(~r
0)�r0G(~r; ~r0)]J(u0; v0)du0dv0

= q
Z
T
q

n

~Fnq(u; v; u
0; v0)du0dv0 (2.64)

CHAPTER 2. EM SCATTERING FROM CONDUCTING BODIES 29

where the vector function ~Fnq(u; v; u
0; v0) is de�ned after substituting (2.5) and (2.55)

into the integral, as

~Fnq(u; v; u
0; v0) =

[1 + jkR]e�jkR[(u0 � ui)~ru(u
0; v0) + (v0 � vi)~rv(u

0; v0)]

2A
q
n4�R3

� [~r(u; v)� ~r(u0; v0)]
2Aq

n4�R3
(2.65)

Here R = j ~r(u; v)�~r(u0; v0) j, and (ui; vi) is (u1; v1) when q is + and (u4; v4) when

q is �. We transform the parametric coordinates to a local system of area coordinates

(�; �;
) within T q
n , so (2.64) can be rewritten as

~Bq
n = q2Aq

n

Z 1

0

Z 1��

0

~Fnq(u; v; u
0(�; �); v0(�; �))d�d� (2.66)

where u0(�; �) and v0(�; �) are given by (A.4). Directly applying the numerical inte-

gration technique for a triangular region in [49] to (2.66) gives

~Bq
n(u; v) = q2Aq

n

NsX
i=1

wi
~Fnq(u; v; u

0(�i; �i); v
0(�i; �i)) (2.67)

where Ns is the number of points where the integrand is sampled on the triangle T q
n,

and wi is the weight corresponding to the integration point (�i; �i). Ns; wi, and (�i; �i)

are given in (Table 8.2, [49]).

Similarly, the testing integral in (2.63) can also be treated in the same way as

above. The �nal numerical equation for Lpq
mn when T p

m 6= T q
n is then given by

Lpq
mn = �p2Ap

m

NtX
j=1

wj
~fmp(u(�j; �j); v(�j; �j))

�[n̂(u(�j; �j); v(�j; �j))� ~Bq
n(u(�j; �j); v(�j; �j))] (2.68)

where ~fmp(u; v) is given in (2.38) and ~Bq
n(u; v) is given in (2.67). Nt, wj, �j , and �j

have the same meanings as in (2.37), and u(�j; �j) and v(�j; �j) are given in (A.4).

When T p
m = T q

n, the integrand of the integral over T q
n in (2.63) is singular at the

testing point. There are two ways to treat this singularity. One is, as with EFIE,

to subtract and add an analytically integrable function with the same singularity as

CHAPTER 2. EM SCATTERING FROM CONDUCTING BODIES 30

the integrand. Another is to divide the patch into three sub-patches for which the

testing point is a common vertex and then apply numerical integration directly on

these sub-patches. Numerically integrating over these sub-patches, we obtain

Lpq
mn =

1

2

Z
T
p

m

~Jm � ~Jnds�
Z
T
p

m

ds ~Jm � n̂� (
Z
T
q

n1

ds0+
Z
T
q

n2

ds0+
Z
T
q

n3

ds0) ~Jn�r0G (2.69)

where T q
n1, T

q
n2, and T

q
n3 are shown in Figure 2.5. Since the testing point is a vertex of

these three sub-patches and vertices are never picked as integration points, the result

of numerical integration over the sub-patches will be �nite and, hopefully, accurate.

The numerical integration technique used in the previous section and this section is

applied to (2.69). To avoid repeating work, the same notation as in the previous

section will be used. Thus, for T p
m = T q

n, the L
pq
mn is given by

Lpq
mn = pqAp

m

NtX
j=1

wj [~fmp(u(�j; �j); v(�j; �j)) � ~fnq(u(�j; �j); v(�j; �j))

=J(u(�j; �j); v(�j; �j))]

� p2Ap
m

NtX
j=1

wj [~fmp(u(�j; �j); v(�j; �j)) � n̂(u(�j; �j); v(�j; �j))

�f ~Bq
n1(u(�j; �j); v(�j; �j)) + ~Bq

n2(u(�j; �j); v(�j; �j))

+ ~Bq
n3(u(�j; �j); v(�j; �j))g] (2.70)

where ~fnq is de�ned on T q
n in the same way that ~fmp is de�ned on T p

m. Because

T p
m = T q

n ,
~fnq is ~fmp of (2.38) with the vertex (ui; vi) replaced by the vertex of T q

n

opposite the common edge of the two triangles where ~Jn exists. For i = 1; 2; and 3,

~Bq
ni is the contribution to ~Bq

n of (2.64) due to integration over T q
ni.

2.4 Combined Field Integral Equation

One of the most common integral equation de�ciencies is failure to have a unique

solution at certain discrete frequencies. At these frequencies, there exist nontrivial

solutions of the source-free (homogeneous) form of the integral equation. It has been

shown theoretically that neither the H-�eld equation nor the E-�eld equation has

CHAPTER 2. EM SCATTERING FROM CONDUCTING BODIES 31

Singular Point

A1

A2 A3

Figure 2.5: Three sub-triangles generated from a testing point to avoid a singularity

in the integration

unique solutions for the current on a conducting body at frequencies corresponding

to resonant frequencies of the region enclosed by the conducting surface, but the

combined-�eld equation does have a unique solution [53],[52].

In this section, the scatterer is an arbitrarily shaped perfectly conducting body

with a closed surface S. ~J denotes the electric surface current induced on S by the

incident �eld (~Einc; ~H inc). This current satis�es (2.7) and (2.52). The question is

whether (2.7) alone is su�cient to determine ~J , whether (2.52) alone is su�cient, or

whether both are necessary. The answer is given by Mautz [53]. In [53], Mautz has

proven that the solution ~J to (2.52) is not unique for values of k (wave number) at

which the equations

n̂� ~Hs(~J) = 0 just inside S (2.71)

r�r� ~Hs(~J) = k2 ~Hs(~J) inside S (2.72)

which are valid when there is no incident �eld, admit a nontrivial solution. This solu-

tion ~J is called a magnetic cavity mode. Applying the duality theory, one concludes

that the solution ~J to (2.7) is not unique for the same value of k.

The combined �eld formulation, which is a linear combination of (2.52) and (2.7),

CHAPTER 2. EM SCATTERING FROM CONDUCTING BODIES 32

is given by

� n̂ � ~Hs(~J)� �

�
~Es
tan(

~J) = n̂� ~H inc +
�

�
~Einc
tan just inside S (2.73)

The solution of (2.73) is unique and satis�es both (2.7) and (2.52) whenever � is a

positive real number (see [53]).

Since (2.73) is the linear combination of (2.7) and (2.52) with a relative weight �,

the method of moments formulation obtained from (2.73) is the same linear combi-

nation of (2.17) and (2.58). Hence,

f[Lmn] +
�

�
[Zmn]g[In] = [V m

m] +
�

�
[V e

m] (2.74)

where all matrices and column vectors have the same meaning as in Section 2.2 and

2.3, and � is a constant. From experience, � should be between 0.2 and 1.0.

Chapter 3

EM Scattering from a Coated

Conducting Body

In this chapter we discuss the electromagnetic scattering from an arbitrarily shaped

perfectly conducting body either partially or fully covered by a thin layer of lossy

material.

It is well known that the radar cross section of a conducting body can be reduced

if it is coated with an electrically or magnetically lossy layer. There are many ap-

plications where lossy materials are applied as coatings to metallic bodies in recent

years [54, 55, 56, 57]. Fighter jets and stealth aircraft are good examples.

3.1 Impedance Boundary Conditions for Scatter-

ing from a Conducting Body with a Thin

Lossy Dielectric Coating

In this section, the scattering of a plane electromagnetic wave by a 3-D perfectly con-

ducting body with a dielectric material coating is studied by the parametric method

of moments described in the previous chapter with an impedance boundary condition.

The problem can be formulated in terms of various integral equations derived from

33

CHAPTER 3. EM SCATTERING FROM A COATED CONDUCTING BODY 34

dielectric coating

n
^

,

(E , H)→ →

(Einc, Hinc)
→ →

S(ε0, µ0)

perfectly conducting body

Figure 3.1: Original problem of EM scattering from a conducting body with a dielec-

tric coating

the Leontovich [58] impedance boundary condition (IBC). There are many papers on

IBC [59, 60, 61, 62, 63]. This approximation makes integral equation formulations of

the problem nearly as simple as those for perfectly conducting bodies without coating.

When using IBC, one can take advantage of the derivation in the previous chapter

for using IBC.

Let S denote the closed surface of a three-dimensional perfectly conducting body

with an in�nitely thin layer of lossy dielectric material coating shown in Figure 3.1

where n̂ is the outward unit vector normal on S and (~Einc; ~H inc) are incident �elds

which are produced by some impressed sources (~J imp; ~M imp) in the absence of the

scatterer. The material coating on the perfectly conducting body is characterized

by a pair of complex parameters (�; �), where � is the permittivity and � is the

permeability. The space outside the scatterer is �lled with the homogeneous material

with permeability �0 and permittivity �0.

In solving the problem, it is often useful to apply the equivalence principle (Chap-

ter 3, [47]) using equivalent electric and magnetic surface currents to represent the

CHAPTER 3. EM SCATTERING FROM A COATED CONDUCTING BODY 35

E =

n

→ →
H = 0

^(E , H)→ →

(Einc, Hinc)
→ →

S

J

M
→

→

(ε0 , µ0)

(ε0 , µ0)

ηs

Figure 3.2: An external equivalent to the original problem

scatterer. If the task is to �nd the exterior �eld only, an exterior equivalent problem

can be shown in Figure 3.2, where the �elds external to the scatterer can be consid-

ered equivalent (to those of the original problem) due to the electric (~J) and magnetic

(~M) surface current densities on S which are given by

~J = n̂� ~H on S+ (3.1)

~M = ~E � n̂ on S+ (3.2)

where S+ is the external surface of the dielectric coating.

Although the exterior �elds must be unique, there are many sets of equivalent

currents and interior �elds which will give rise to the correct exterior �elds in general

scatterers. It is natural to let the interior �eld be the null �eld, since the perfectly

conducting body is inside S. The Leontovich impedance boundary condition on

S implies that only the electric and magnetic �elds external to the scatterer are

relevant and their relationship is a function of the material constitution (here, surface

impedance) of the scatterer. As shown in Figure 3.2, the electric and magnetic �elds

CHAPTER 3. EM SCATTERING FROM A COATED CONDUCTING BODY 36

are zero inside S, and the electric and magnetic �elds outside S are related by [63]

~Etan = �0�s(n̂ � ~H) (3.3)

The dual form of the IBC is

~Htan =
�1
�0�s

(n̂� ~E) (3.4)

where �0 is the intrinsic impedance of free space which is given by �0 =
q
�0=�0 �

377
; �s is the relative surface impedance.

The total electric �eld is the vector sum of the incident electric �eld and the

scattered electric �eld. The scattered electric �eld produced by the surface currents

(~J; ~M) can be expressed in terms of the magnetic and electric vector potentials and

the electric scalar potential, and the total electric �eld is given by

~E(~r) = ~Einc � j! ~A(~r)�r	(~r) �r� 1

�0
~F (~r) (3.5)

where ~A(~r) and 	(~r) are the magnetic vector potential and the electric scalar po-

tential, respectively, given by (2.9) and (2.10) in the previous chapter. ~F (~r) is the

electric vector potential given by

~F (~r) = �0

Z
S
ds0 ~M(~r0)G(~r; ~r0) (3.6)

where G(~r; ~r0) is the free space Green's function given in the previous chapter. Sub-

stituting (3.5) and (3.1) into (3.3) yields

�0�s ~J + fj!0 ~A+r	+
1

�0
r� ~Fgtan = ~Einc

tan on S+ (3.7)

Either of the boundary conditions in (3.3) and (3.4) the following simple relation-

ship between the electric surface current and the magnetic surface current

~M (~r) = ��0�s(n̂� ~J(~r)) (3.8)

With ~M(~n) given by (3.8), (3.7) is the so-called electric �eld integral equation

when the impedance boundary condition exists. In the next section, we will apply

the parametric method of moments to solve for the electric current.

CHAPTER 3. EM SCATTERING FROM A COATED CONDUCTING BODY 37

3.2 Numerical Solution of EFIE

There are two equations for two unknowns. The surface currents will be obtained after

solving the equations together. Using (3.8) the curl of the electric vector potential

(3.6) can be expressed as

1

�0
r� ~F (~r) =

��0�s
2

~J +
Z
S
ds0 ~M(~r 0)�r0G(~r; ~r 0) (3.9)

where r0G(~r; ~r 0) is the divergence of the Green's function with respect to the primed

coordinates. Since ~r is on S, the integral on the right-hand side of the above equation

must be interpreted in the Cauchy principal value sense.

The surface current will be computed using the parametric method of moments

described in the previous chapter. To do so, �rst the surface S is decomposed into a set

of curved triangular patches. Secondly, the unknown current on S is approximated

as a linear combination of the basis functions ~Jn in (2.5) with a set of unknown

coe�cients In in (2.13). Using the symmetric product de�ned in (2.14) to test the

result of substituting (3.9) into (3.7) with ~Jm gives

< ~Einc
tan;

~Jm > =
1

2
< �0�s ~J; ~Jm > +j! < ~A; ~Jm >

+ < r	; ~Jm > + <
Z
S
ds0 ~M �r0G; ~Jm > (3.10)

where ~Jm is de�ned in (2.5) for m = 1; 2; � � � ; N . The electric charge is obtained

from the electric current according to the continuity equation (2.11). Substituting

the current expansion (2.13) into (3.10) yields the following matrix equation for the

unknown electric current coe�cients

[Zmn][In] = [Vm] (3.11)

where [In] and [Vm] are column vectors, and [Zmn] is an N �N square matrix. The

nth element of the vector [In] is In, the unknown coe�cient associated with the nth

expansion function. The nth element of the vector [Vm] is given by

Vm =
Z
S
ds ~Jm(~r) � ~Einc

tan(~r) (3.12)

CHAPTER 3. EM SCATTERING FROM A COATED CONDUCTING BODY 38

The element of the mth row and the nth column of the matrix [Zmn] is given by:

Zmn =
1

2
< �0�s ~Jn; ~Jm > +j!�0 < ~an; ~Jm >

+
1

j!�0
< n; rs � ~Jm > + <

Z
S
ds0 ~Mn(~r

0)�r0G; ~Jm > (3.13)

where ~an and n are given in (2.22) and (2.23), respectively. ~Mn is the magnetic

current related to the nth electric current expansion by (3.8):

~Mn = ��0�s(n̂ � ~Jn) (3.14)

Applying the same technique as stated in Chapter 2, we intend to compute se-

quentially by faces all the vector and scalar potential integrals associated with each

observation-face and source-face combination, to avoid the costly and ine�cient re-

computation of identical integrals which would result if the elements of Zmn were

computed sequentially by edges. The numerical integration for a triangular region in

[49] is applied to evaluate the integrals in (3.13) after transforming coordinates to a

local system of area coordinates. To implement this idea, it is necessary to rewrite

the element of Zmn in (3.13) in terms of each pair of faces as

Zmn = Z++
mn + Z+�

mn + Z�+
mn + Z��

mn (3.15)

where Zpq
mn is the contribution from testing over T p

m the electric �eld due to the parts

of ~Jn and ~Mn on T
q
n, and p and q are either + or � signs. Zpq

mn can be further divided

into two parts, as

Zpq
mn = Zpqe

mn + Zpqm
mn (3.16)

where Zpqe
mn , the part of Zpq

mn originally contributed by the electric surface current,

arises from the second and third terms on the right-hand side of equation (3.10). It

is given by

Zpqe
mn = j!�0

Z
T
p

m

~Jm � ~aqnds +
1

j!�0

Z
T
p

m

ds (rs � ~Jm) q
n (3.17)

where ~aqn and q
n are given in (2.28) and (2.31). Similarly, Zpqm

mn , the part of Zpq
mn

originally contributed by the magnetic surface current, arises from the �rst and fourth

terms on the right-hand side of equation 3.10. It is given by

CHAPTER 3. EM SCATTERING FROM A COATED CONDUCTING BODY 39

Zpqm
mn =

Z
T
p

m

ds ~Jm(~r) �
Z
T
q

n

ds0 ~Mn(~r
0)�r0G(~r; ~r 0)

+

8<
: 0; T p

m 6= T q
n

�0
2

R
T
p

m
ds ~Jm(~r) � �s(~r) ~Jn(~r); T p

m = T q
n

(3.18)

Comparing the expression of Zpqe
mn in (3.17) with the expression in (2.25), they

are exactly the same. Therefore, the numerical evaluation of Zpqe
mn in (3.17) is going

to be exactly the same as that of (2.25) described in Chapter 2. Therefore, we will

only use the result produced in Chapter 2 and leave the derivation out here. The

comparison between the expression of Zpqm
mn in (3.18) and that of Lpq

mn in (2.63), shows

that there is only a little bit of di�erence in the inner integral of the second term on

the right-hand side of them. Here, we only focus on the numerical evaluation of the

second term on the right-hand side of (3.18).

As with MFIE for a perfect conductor in the previous chapter, let ~Cq
n be the inner

integral of the second term on the right hand side of (3.18). It can be written in terms

of the (u; v) coordinates, as:

~Cq
n(u; v) =

Z
T
q

n

~Mn(~r
0)�r0G(~r; ~r 0)J(u0; v0)du0 dv0

=
Z
T
q

n

~Dnq(u; v; u
0; v0)du0 dv0 (3.19)

where J(u0; v0) is the Jacobian de�ned in (2.4), and the vector function ~Dnq(u; v; u
0; v0)

is de�ned as

~Dnq(u; v; u
0; v0) = ~Mn(u

0; v0)�r0G(u; v; u0; v0)J(u0; v0) (3.20)

where

~Mn(u
0; v0) = �q �0�s(u

0; v0)

2Aq
nJ(u0; v0)

f~n(u0; v0)� [(u0�ui)~ru(u0; v0)+(v0�vi)~rv(u0; v0)]g (3.21)

and

r0G(u; v; u0v0) =
[~r(u; v)� ~r(u0; v0)](1 + jk j ~r(u; v)� ~r(u0; v0) j)e�jkj~r(u;v)�~r(u0 ;v0)j

4� j ~r(u; v)� ~r(u0; v0) j3
(3.22)

CHAPTER 3. EM SCATTERING FROM A COATED CONDUCTING BODY 40

where Aq
n denotes the area of the triangle T q

n, q is a + or � sign, (ui; vi) is (u1; v1) if

q is + and (u4; v4) if q is � (see Fig. 2.3). If we transform the parametric coordinates

to a local system of area coordinates (�; �;
) within in T q
n , (3.19) can be rewritten as:

~Cq
n(u; v) = 2Aq

n

Z 1

0

Z 1��

0

~Dnq(u; v; u
0(�; �); v0(�; �)) d�d� (3.23)

where u0(�; �) and v0(�; �) are given in (A.4), and the details of the coordinates trans-

formation are in Appendix A.

Directly applying the numerical integration technique for a triangular region in

[49] to (3.23) gives

~Cq
n(u; v) = 2Aq

n

NsX
i=1

wi
~Dnq(u; v; u

0(�i; �i); v
0(�i; �i)) (3.24)

where Ns is the total number of integration points on the triangle T q
n, and wi is the

weight corresponding to the integration point (�i; �i). Ns, wi, �i, and �i are given in

(Table 8.2, [49]).

When T p
m 6= T q

n, all the integrals in Z
pq
mn are well-behaved, so Zpq

mn can be numeri-

cally evaluated as

Zpq
mn = p2Ap

m

NtX
j=1

wj
~fmp(u(�j; �j); v(�j; �j)) �

[j!�0~a
q
n(u(�j; �j); v(�j; �j)) +

~Cq
n(u(�j; �j); v(�j; �j))]

+
p2Ap

m

j!�0

NtX
j=1

wj gmp(u(�j ; �j); v(�j; �j))
q
n(u(�j ; �j); v(�j; �j)) (3.25)

where the vector function ~fmp and the scalar function gmp are de�ned in (2.38), the

vectors ~aqn and ~Cq
n are given by (2.35) and (3.24), respectively, q

n is given in (2.36),

and u(�j; �j) and v(�j; �j)) are given in (A.4).

For the case of T p
m = T q

n, G and r0G have a singularity at ~r 0 = ~r. To remove the

singularity of G in Zpqe
mn , the treatment described in Section 2.2.2 of Chapter 2 will

be applied. The singularity of r0G in Zpqm
mn will be treated by the method used in

Section 2.3 of Chapter 2.

CHAPTER 3. EM SCATTERING FROM A COATED CONDUCTING BODY 41

When T p
m = T q

n, numerical formulation of Zpq
mn is given by

Zpq
mn = pqAp

m

NtX
j=1

wj [~fmp(u(�j; �j); v(�j; �j)) � ~f ibcnq (u(�j; �j); v(�j; �j))]

+ j!�0p2A
p
m

NtX
j=1

wj
~fmp(u(�j; �j); v(�j; �j))

�[~aqn1(u(�j; �j); v(�j; �j)) + ~aqn2(u(�j; �j); v(�j; �j))]

+
p2Ap

m

j!�0

NtX
j=1

wj gmp(u(�j; �j); v(�j; �j))

�[q
n1(u(�j; �j); v(�j; �j)) + q

n2(u(�j; �j); v(�j; �j))]

+ p2Ap
m

NtX
j=1

wj [~fmp(u(�j; �j); v(�j; �j))

�f~Cq
n1(u(�j; �j); v(�j; �j)) + ~Cq

n2(u(�j; �j); v(�j; �j))

+ ~Cq
n3(u(�j; �j); v(�j; �j))g] (3.26)

where ~fmp and gmp are de�ned in (2.38), and

~f ibcnq (u; v) =
�0�s(u; v)

2Aq
nJ(u; v)

[(u� ui)~ru(u; v) + (v � vi)~rv(u; v)] (3.27)

Furthermore, ~an1, ~a
q
n2,

q
n1, and

q
n2 are given in (2.44), (2.45), (2.46), and (2.47),

respectively. ~Cq
n1, ~C

q
n2, and ~Cq

n3 are de�ned in (3.19) with the integral domain T q
n1,

T q
n2, and T

q
n3, respectively.

Chapter 4

Parallel Implementation

4.1 Introduction

Parallel processing has emerged as an enabling technology in modern computers,

driven by the ever increasing demand for higher performance, lower costs, and sus-

tained productivity in real life computer applications. Concurrency is being used in

today's high performance computers with the common practice of multiprogramming,

multiprocessing, or multicomputing.

Over the past �ve decades, electronic computers have gone through �ve gener-

ations of development. Fifth-generation computers are targeted to achieve tera
op

performance by the end of this century. Massively parallel processing is the main-

stream of the software and applications of the �fth generation. The �fth-generation

MPP systems are represented by several projects at IBM (SP-2), Cray Research

(T3D), Thinking Machine Corporation (CM-5), and Intel Supercomputer Systems

(Paragon).

Before exploring the methods for mapping a given formulation of an electromag-

netic scattering problem onto parallel computers, we take a look at di�erent computer

architecture classi�cations given by Flynn [64]. As shown in Figure 4.1, conventional

sequential computers are classi�ed as SISD (single instruction stream over a single

42

CHAPTER 4. PARALLEL IMPLEMENTATION 43

data stream) computers, SIMD (single instruction over multiple data streams) com-

puters shown in Figure 4.1, and MIMD (multiple instruction stream over multiple

data streams) machines shown in Figure 4.1. In Figure 4.1, CU denotes Control

Unit; PU denotes processing unit; MU is memory unit; IS is instruction stream; DS

is data stream; PE represents processing element; LM denotes local memory.

The predominant type of computers until recently has been SISD or von Neu-

mann; the CPU progresses in sequential manner from one instruction to the next

and performs operations on data items one at a time. Many widely used computer

languages, such as FORTRAN, were designed for SISD computers. The advantage of

the SISD approach is its simplicity and familiarity to many programmers.

The �rst important dichotomy in parallel systems is how the processors are con-

trolled. In SIMD systems, all processors are under the control of a master processor,

called the controller, and the individual processors all do the same instruction (or

nothing) at a given time. Thus, there is a single instruction stream operating on

multiple data streams, one for each processor. The Illiac IV, the �rst large parallel

system (which was completed in the early 1970s), was a SIMD machine. Think-

ing Machine Corporation's connection machine CM-2 is a SIMD machine with 64k

simple 1-bit processors. Vector computers may also be conceptually included in the

class of SIMD machines by considering the elements of a vector as being processed

individually under the control of a vector hardware instruction.

SIMD machines execute e�ciently on the types of problems for which they were

designed, but there are limitations to their applications. Disappointed numerical

analysts discovered soon after the �rst SIMD machines were programmed that the

projected speed improvements were not obtained. The cause was found to be program

sections that are not vector operations. In the limit that vector operations take zero

time, the maximum throughput is determined by the execution of the non-vector

(scalar) instructions in SISD mode (see [65]).

Most parallel computers built since the Illiac IV have been MIMD systems. Here,

the individual processors run under the control of their own program, which allows

great
exibility in the tasks the processors can do at any given time. Theoretically,

CHAPTER 4. PARALLEL IMPLEMENTATION 44

IS

IS DS
CU PU MU

I/O

(a). SISD Architecture

IS
CU

PE1 DS
LM1 DS

IS ..
. ...

DS

PEn LMn

DS

Data
Sets
loaded
from
host

Program loaded
from host

(b). SIMD architecture (with distributed memory)

CU1 IS
PU1 DS

..

. ...
IS

CUn PUn

DS

IS

I/O

I/O

IS

Shared

Memory

(c). MIMD architecture (with shared memory)

Figure 4.1: Flynn's classi�cation of computer architectures

CHAPTER 4. PARALLEL IMPLEMENTATION 45

this
exibility allows the application programmer to run a greater fraction of the

problem in parallel than with vector processing alone. In practice, programming

MIMD machines is di�cult because of the inherent complexity of multiple processors

doing di�erent things simultaneously, as well as the general lack of automatic parallel

decomposition software tools. It also introduces the problem of synchronization. In

an SIMD system, synchronization of the individual processors is carried out by the

controller, but in an MIMD system other mechanisms must be used to ensure that

the processors are doing their tasks in the correct order with the correct data.

For many problems, the programs in the individual processors for an MIMD sys-

tem may be identical (or nearly so). Thus, all programs are carrying out the same

operations on di�erent sets of data, just as SIMD machines would do. This gives rise

to the Single-Program Multiple-Data (SPMD) model of computation.

Another important dichotomy in parallel computers is shared versus distributed

memory. An example of shared memory system with four processors is illustrated

in Figure 4.2. Here, all the processors have access to a common memory. Each

processor can also have its own local memory for program code and intermediate

results. Interprocess communication consists simply of writing to and reading from

the common data area, a fast operation because it occurs at random memory access

rates. Shared memory architectures also lend themselves to conventional time-sharing

applications with multiple users running multiple jobs. Since each user's program and

data reside in a common memory area, jobs can be assigned to CPUs dynamically

for the purpose of load balancing.

A serious disadvantage is that di�erent processors may wish to use the common

memory simultaneously, in which case there will be a delay until the memory is

free. This delay, called contention time, can increase as the number of processors

increase. Typically, shared memory has been used for systems with a small number

of processors such as Cray machines with up to 16 processors.

An alternative to shared memory systems is distributed memory systems, in which

each processor can address only its own local memory. Communication between

processors takes place by message passing, in which data or other information is

CHAPTER 4. PARALLEL IMPLEMENTATION 46

Memory

P P P P

Figure 4.2: An example of a shared memory system

transferred between processors. The most practical massively parallel computers

are distributed memory MIMD systems. The connection machine CM-5, the Intel

Paragon, and the IBM SP-1 are examples.

4.1.1 Distributed Memory System

An important and interesting aspect of parallel computer systems is how the indi-

vidual processors communicate with one another. This is particularly important for

distributed memory systems but it is also important for shared memory systems since

the connection to the shared memory can be implemented by several di�erent com-

munication schemes. We next discuss brie
y a number of the more common schemes.

A distributed-memory machine consists of a set of processors linked by intercon-

nection networks. Each processor has its own memory that is directly accessible only

by this processor. Data exchange and global operations among processors are accom-

plished through message passing. Each processor is connected to a �xed number of

processors in some regular geometry (Figure 4.3) such as ring, 2-D mesh (e.g., Intel

CHAPTER 4. PARALLEL IMPLEMENTATION 47

Touchstone Delta and Intel Paragon), fat tree (e.g., TMC CM-5), and hypercube

(e.g., Intel iPSC/860 and nCUBE 2).

Writing an e�cient program on distributed-memory machines is more di�cult

than programming on sequential machines or shared-memory machines. Some is-

sues that arise in programming distributed-memory machines that must be carefully

addressed are:

� Parallelism|This involves decomposing a large computation into a set of tasks

that are assigned to processors and executed in parallel.

� Data Distribution|Since there is no globally shared memory on a distributed-

memory machine, data structures in an application must be partitioned and

distributed among processors.

� Data Exchange and Global Operations|Parallel tasks that coordinate a joint

computation often need to exchange data or synchronize operations with each

other. To do this, explicit message passing must be inserted into the user

program.

Load balancing and reduction of communication cost are always two important

factors for achieving good performance on distributed-memory machines. They are

discussed in the implementation section.

In Appendix C, we describe important features of three distributed-memory ar-

chitectures that were used in this thesis. We will focus on the architecture of the

Connection Machine CM-5 in detail and also brie
y on the Intel and the IBM SP-1.

4.1.2 Parallelism and Performance Issues

Conventional algorithms that have been optimized for a single processor computer,

or a vector-pipelined computer, are often taken for granted since they are readily

available as subroutine packages. However, these algorithms may perform poorly

in the parallel environment of a particular parallel computer. To achieve superior

CHAPTER 4. PARALLEL IMPLEMENTATION 48

(d) 4-D Hypercube

(a) Ring (b) 2-D Mesh

(c) Fat Tree

Figure 4.3: Distributed-memory architectures.

performance, new algorithms must be developed that conform better to the parallel

architecture.

To illustrate parallelism and load balancing, we consider the problem of adding

two n-vectors ~a and ~b. The additions

ai + bi; i = 1; 2; � � � ; n; (4.1)

are all independent and can be done in parallel. Thus, it has perfect mathematical

parallelism. On the other hand, it may not have perfect parallelism on a parallel

computer because it may not have perfect load balancing. By load balancing we mean

the assignment of tasks to the processors of the system so as to keep each processor

doing useful work as much as possible. For example, there are p = 32 processors and

n = 98 in (4.1). Then, the processors can work in perfect parallelism on 96 additions

but only two processors will be busy during the remaining 2 additions. Thus, there

is not perfect load balancing to match the perfect mathematical parallelism.

In general, load balancing may be done either statically or dynamically. In static

load balancing, tasks (and, perhaps, data for distributed memory system) are assigned

CHAPTER 4. PARALLEL IMPLEMENTATION 49

to processors at the beginning of a computation. In dynamic load balancing, tasks

(and data) are assigned to processors as the computation proceeds. A useful concept

for dynamic load balancing is that of a pool of tasks, from which a processor obtains

its next task when is is ready to do so.

Related to load balancing is the idea of granularity. Large-scale granularity means

large tasks that can be performed independently in parallel. Small-scale granularity

means small tasks that can be performed in parallel.

In general, in a distributed memory system, exchange of data between processors

will be necessary at various times during an overall computation, and to the extent

that processors are not doing useful computation during the communication, this

constitutes an overhead.

Synchronization is necessary when certain parts of a computation must be com-

pleted before the overall computation can proceed. There are two aspects of synchro-

nization that contribute to overhead. The �rst is the time to do the synchronization;

usually this requires that all processors perform certain checks. The second aspect is

that some, or even almost all, processors may become idle, waiting for clearance to

proceed with the computation.

The degree to which an algorithm can exploit a multiprocessor is often measured

by either speed-up or e�ciency. Ideally, we could solve a problem p times as fast on

p processors as on a single processor. This ideal is rarely achieved; what is achieved

is called the speed-up de�ned by:

Sp =
execution time for a single processor

execution time using p processors
(4.2)

The e�ciency can be de�ned as

Ep =
Sp

p
(4.3)

Since Sp � p, we have Ep � 1 and an e�ciency of Ep = 1 corresponds to a perfect

speedup of Sp = p.

The speed-up de�ned in (4.2) is a measure of how a given algorithm compares

with itself on 1 and p processors. However, the parallel algorithm may not be the

CHAPTER 4. PARALLEL IMPLEMENTATION 50

best algorithm on a single processors. Hence, a better measure of what is gained by

parallel computation is given by the alternative de�nition

S0

p =
execution time on a single processor of fastest serial algorithm

execution time of the parallel algorithm on p processors
(4.4)

Both of the measurements Sp and S0
p are useful and the context of discussion will

determine which is to be used.

4.2 Structure of the Code

A sequential computer program was written based on the formulation developed in

Chapter 3. This code was merged into the ParaMoM code previously developed by

Cha's group at SRC based on the formulation derived in Chapter 2. In this section,

we discuss the ParaMoM features and its program structure.

There are two major components in the ParaMoM package: the target model

processing software and the MoM code itself. The target model processing software

generates the target model using CAD and a model processor for input into the MoM

code. The package is capable of accepting data �les that consist of a limited class of

Initial Graphics Exchange Standard (IGES) data types, as well as �les from SCAMP

which is a computer-aided design (CAD) package. The model processor allows the

user to perform the following tasks:

� specify wires as either radiating antennas or scatterers

� place distributed load impedances on both surfaces and wires

� place lumped loads at antenna feed nodes

� �nd the intersection of wires and surfaces

� view a simple, coarse grid version of the model

� triangulate all curved surfaces (and subdivide all wires) according to a speci�ed

maximum edge length

CHAPTER 4. PARALLEL IMPLEMENTATION 51

� specify planes of symmetry

The output of the model processor (DC �le) is in a format that can be read by the

MoM program. It can also be read back in to the model processor to be regridded,

or have its wire or material impedance characteristics modi�ed.

Some of the capabilities of the MoM code in this package are summarized as

follows:

� For curved surfaces with a parametric description, a new basis function has

been used.

� Three operator equations have been implemented; electric, magnetic, and com-

bined �eld integral equations.

� In addition to the default of perfect electric conductors (PECs), objects can

be described using a surface impedance value in units of ohms per square.

This is intended for either a material sheet (for example an R-card) of �nite

conductivity or a dielectric material coating on a PEC surface and is handled

within the E-�eld formulation.

� A target with mirror symmetries can be treated by only modeling a portion of

the target and specifying up to three planes of symmetry.

� Wires can be included in the model. They may be separate or connected to

surfaces. Where they are connected to surfaces, appropriate junction basis

functions will be used (see Reference [66]).

� The user may compute either radiation or scattering due to wire antennas.

� The desired far-�eld pattern can be computed for a variety of monostatic and

bistatic con�gurations.

� The far-�eld patterns can be computed for up to 16 di�erent combinations of

transmit/receive polarizations (four receiver polarizations for antenna gain) in

a single run.

CHAPTER 4. PARALLEL IMPLEMENTATION 52

The ParaMoM's structure is shown in Figure 4.4. A brief description of each box

in Figure 4.4 is given below:

Setup: The role of the ParaMoM setup phase is to read in necessary information

from two �les. One is the parameters' �le and the other is the target geometry

description (DC) �le. The information given in the parameters' �le is listed as

1. The integration formulation type (EFIE, or MFIE, or CFIE).

2. The excitation frequency in megahertz.

3. The transmitter and receiver polarization combinations (up to 16 of them).

4. Three angle sweep scenarios to be chosen (see Appendix B): monostatic or �xed

bistatic angle, bistatic with �xed transmitter, or bistatic with �xed equivalent

line of sight.

The target geometry description (DC) �le is generated by a preprocessor, which

triangulates all curved surfaces according to a speci�ed maximum edge length. The

DC �le contains the following information:

1. The total number of triangular faces, edges, and nodes in the model.

2. The connectivity of these triangles.

3. The parametric coordinates of vertices of these triangles

4. The material speci�cation

Precomputation: In this stage, several arrays, which are required by the �ll algo-

rithm, are computed. The position vector arrays are computed at each integration

point for both expansion and testing integrals on each triangular patch. The expan-

sion and testing functions and their divergences are calculated at each integration

point on each patch.

CHAPTER 4. PARALLEL IMPLEMENTATION 53

START

SETUP

PRECOMPUTATIONS

FILL THE MOMENT

MATRIX [A]

FACTOR THE MOMENT

MATRIX [A]

FILL RHS VECTOR [B]

SOLVE [A] [x] = [B]

COMPUTE

THE FAR-FIELD

MORE

RHS VECTOR ?

yes No COMPUTE

RCS
END

Figure 4.4: The sequential code structure

CHAPTER 4. PARALLEL IMPLEMENTATION 54

Fill Moment Matrix: Most sequential MoM codes �ll the matrix by looping

through surface patches. The reason for this is that each source or testing basis

function domain generally extends over more than one patch; each basis function

overlaps one or more neighboring basis functions. A source-patch is only half the

domain of each of three basis functions (likewise for �eld patches); a patch-patch in-

teraction produces contributions to nine di�erent matrix locations. A matrix element

is not completely computed until the two patches that make up the basis function

have interacted with the two patches that make up the testing function domain.

Thus, each matrix location is written to four times. Each time the new contribution

is added to the current value.

The moment matrix can be either one of EFIE, MFIE, and CFIE depending on

the speci�cation given in the input �le.

RHS Vector Fill: Computing the excitation (right-hand side vector) for either

EFIE, or MFIE, or both. This is due to an incident plane wave.

Factorization and Solve: Linpack library LU function calls for the single precision

complex data used to factorize the moment matrix into lower and upper triangular

matrices, then back substitution is applied to solve the linear system.

Far-Field and RCS Computation: After the solution of the system, the induced

current is used for computing the far �eld for each combination of the transmitter

and receiver polarizations. For the case of multiple excitation vectors, summation of

all the contributions from all induced currents is required to compute the far-�eld for

evaluating the radar cross section.

4.2.1 The Parallel Programming Model and Approaches

The Parallel ParaMoM Code is implemented on three parallel platforms (CM-5 , Intel,

IBM SP-1). Each of the platforms is a coarse-grained MIMD (multiple instruction

multiple data) with relatively powerful nodes. Each machine supports an explicit

CHAPTER 4. PARALLEL IMPLEMENTATION 55

message-passing programming model. In each case, the message-passing library may

be accessed from a Fortran program.

The explicit message-passing approach has a number of advantages for the MoM

application. Performance of a message-passing program is less dependent on the

interconnection topology of the parallel machine than it is in data-parallel and shared-

memory approaches. There is more direct control over the message volume and

timing. Therefore, message-passing programs are more likely to port e�ciently from

one parallel architecture to the next. In addition, the functions of the message-passing

library are quite similar on all architectures; di�erences are mainly in syntax rather

than in philosophy. In contrast, various data-parallel and SIMD machines rely on

compiler technologies to varying extents to perform the parallelization work, and the

parallel facilities may exist at di�erent levels of abstraction. For the data-parallel

processing, an array object refers to all the data elements of the array simultaneously

from the software perspective; the separate operations on the array's elements are all

performed simultaneously from the hardware perspective.

There are a number of methods available to perform the solution of dense linear

system of equations. In specialized problems, iterative approaches can be quite e�-

cient in terms of memory and computation time. However, iterative techniques su�er

when used to treat many right-hand side vectors. In this study, it is of interest to solve

systems with a large number of right-hand side vectors (i.e., scatterers illuminated by

multiple incident waves) and iterative methods will not be considered. The Gaussian

elimination method will be employed under these conditions, since the computational

intensive factorization need only be performed once.

The computational expenses of the setup phase, precomputation phase, rhs vector

�ll phase, and scattered-�eld computation phase are of order N, where N is the number

of unknowns (proportional to surface area of target). The matrix �ll phase is of order

N2, the matrix factorization is of order N3, and the matrix solution is of order

N2. Because our primary interest in applying parallel computers lies in reducing

the total time required to solve large problems (i.e., large N), we concentrate our

energy on reducing the N2 and N3 processes. In this e�ort we are developing parallel

CHAPTER 4. PARALLEL IMPLEMENTATION 56

algorithms for the matrix �ll, factorization, and solution processes, but also for the

setup, precomputation, rhs vector (or vectors) �ll, and scattered-�eld computation

phases as well, since the whole program must be run on the target system.

In addition to computational cost concerns, it is necessary to consider memory

requirements. On the class of computers we are considering, the main memory (RAM)

is distributed among the nodes. The moment matrix is generally much too large to

�t in the memory of one node, so it must be distributed equitably among the nodes.

The matrix size is of order N2, but all other arrays used in the ParaMoM code are

of order N or lower.

To parallelize the ParaMoM code, we �rst need to discuss what kind of algorithm

design strategy to use. In designing an parallel algorithm for MIMD computers,

several approaches are possible. Here, we give a few commonly used approaches. For

one of them, each processor may execute exactly the same program, but with di�erent

input data. No communication is ever required. This is the trivial parallelization

strategy, which is the easiest for programming. The drawback is that this approach

requires the entire computation �ts into a single processor's memory, which is often

found to be impossible. The pipeline approach is to break the computation into a

series of small tasks which have to �nished sequentially for a large set of data. Each

task is assigned to one or a few processors. After completing its computation, a

processor passes its result on to processors which handle the next task. However, this

approach is applicable to a restricted class of problems.

The problem partition approach has received the most attention in scienti�c com-

puting applications. In this approach, each processor executes substantially the

same program, but on a portion of the problem data. Processors are loosely cou-

pled throughout the computation, exchanging information whenever necessary. It

is very suitable for solving large problems, where all available memory is required.

The implementation di�culties are how to partition the problem to have a good load

balance.

The parallel algorithm implemented on the Intel Paragon and IBM SP-1 is an

example of the partitioning approach. On the CM-5, the algorithm used is one that

CHAPTER 4. PARALLEL IMPLEMENTATION 57

combines both the message passing paradigm and the data parallel paradigm. The

matrix �ll and �eld computation use the partitioning strategy implemented in the

message passing paradigm. The dense linear system solver is the CM Fortran interface

with the CMSSL library [67] which uses Gaussian Elimination and back substitution.

The connection between these two paradigms is accomplished by a high speed massive

storage device.

The implementation on Intel utilizes the NX message-passing library [68], the

standard PVM (Parallel Virtual Machine) message-passing library [69] and ScaLA-

PACK [70] for excellent portability. This PVM implemented on Intel machines has

been ported to the IBM SP-1 with little e�ort. ScaLAPACK, a publicly available

software, was developed at Oak Ridge National Laboratory.

ScaLAPACK is a distributed-memory version of the standard LAPACK linear al-

gebra library. It is built on the BLAS library, which is at the heart of LAPACK1

and its predecessor LINPACK, in combination with a linear algebra communication

library (BLACS [71]). The current portable version of the BLACS utilizes calls to

the standard PVM (Parallel Virtual Machine) message-passing library and, therefore,

can be easily ported to any machine on which PVM runs (for example Intel or Cray

T3D). In addition, BLACS has also been implemented using the Intel NX message-

passing library for optimum performance. ScaLAPACK performance [72] is scalable

over a wide range of problem sizes and machine sizes.

In the Intel and IBM implementations, the parallel code structure can be the same

as the sequential one in Figure 4.4, whose components are implemented in parallel

instead of sequentially.

ScaLAPACK is currently not an e�cient matrix solution option on the CM-5

because a BLAS library that is optimized for the CM-5 vector units does not exist.

Therefore, the platform speci�c CMSSL matrix equation solver is being used.

The CMSSL library [67] uses a data-parallel programming model and cannot be

1LAPACK is a public domain, transportable linear algebra library in Fortran 77 designed to

replace EISPACK and LINPACK libraries.

CHAPTER 4. PARALLEL IMPLEMENTATION 58

globally interfaced with the message-passing, matrix-�lling algorithm. Therefore,

in our implementation, the matrix �ll and matrix factorization and solution (fac-

tor/solve) are two distinct program units. A high-speed device, such as the scalable

data array (SDA) or DataVault (see [73]), is used to link these two stages. The

message-passing MoM matrix-�lling program �lls the matrix and writes it to a �le in

the format required for the factor/solve stage. The matrix is subsequently read in by

the data-parallel matrix solver stage.

There is very little performance penalty for using separate program units for the

�lling and factor/solve because the DataVault or the SDA has very high data rates.

As an illustration, we have run some exercises to demonstrate our claim. There are

time data from both CMMD2 timer [74] and the CM Fortran timer [75, 75] listed in

Tables 4.1 and 4.2. In Table 4.1, the elapsed time for writing the moment matrix to a

SDA �le is measured by the CMMD timer. The writing operation is executed by the

CMMD global write under CMMD synchronous sequential mode [74, 77]. The CM

Fortran Utility library [75] provides a \SO" mode which is compatible with almost all

CM systems. One can see that the extra e�ort in using a high performance storage

device to utilize both the message-passing paradigm and the data-parallel paradigm

is justi�ed.

For this moderate-sized problem the I/O time is small compared to the factor

time. Since the I/O time scales as N2 and the LU time scales as N3, it is evident

that for very large problems the I/O time will not be a limiting factor.

The implementation of the matrix-�lling algorithm on the CM-5 is written in

Fortran 77 with calls to the CMMD message-passing library. The resulting code is

adequate to investigate the e�ciency of the parallel algorithm as measured by the

speed-up (ratio of elapsed time for one node versus elapsed time for p nodes). How-

ever, the per-node performance is expected to be poor because Fortran 77 code cannot

utilize the CM-5 vector units e�ciently [78, 79]. However, the data-parallel code for

matrix factor and matrix solve utilizes the vector units. The LU and Solve operations

2CMMD is a trademark of Thinking Machines Corporation. It is a library of message-passing

routines for the CM-5 system.

CHAPTER 4. PARALLEL IMPLEMENTATION 59

Table 4.1: The elapsed time of writing the moment matrix to a SDA �le using CMMD

global write under CMMD synchronous sequential mode (recorded using the CMMD

timer).

Ny 32-node 512-node

write �ll write �ll

3000 1.19(s) 1207(s) 0.39(s) 94.1(s)

5000 2.93(s) 3295.2(s) 0.78(s) 237.9(s)

10000 1.47(s) 901(s)

Table 4.2: The elapsed time of reading the moment matrix from a SDA �le using CM

Fortran (SO mode) function (recoded by CM Fortran timer).

N 32 512

read factor read factor

3000 2.01(s) 79.6(s) 0.67(s) 19.9(s)

5000 5.24(s) 170.7(s) 2.08(s) 41.0(s)

10000 2.25(s) 156.4(s)

CHAPTER 4. PARALLEL IMPLEMENTATION 60

require the most
oating point operations. The performance of the CM-5 implemen-

tation is expected to have a good overall speed-up.

Memory Requirements

The matrix size is N2 where N is the number of basis functions (or edges between

triangular facets or \faces"; if the scatter has an open surface then N is slightly less

than the number of edges since boundary edges do not have basis functions, but this

e�ect is small). Each face has three edges and each edge is shared by two faces, so

the relationship between the number of faces Nf and N is N � 3
2
Nf .

For the parallel approach we use to develop a parallel algorithm, each node runs

the same program. The matrix is distributed among the p nodes so that the mem-

ory required by each node is 8N2=p bytes assuming single precision complex matrix

storage. The sequential paramom requires memoryM

M =Ms +Mz � 2500Nf + 18N2
f (4.5)

where Ms denotes the portion of memory required by arrays other than the matrix,

and Mz is the memory required by the matrix. In the parallel approach, the local

memory of each node must be large enough to exceedMs and a portion of Mz.

The most important task before implementing the ParaMoM as a parallel code

is to reconstruct the program in such a way to reduce Ms. This is very di�cult to

accomplish. The new version of the ParaMoM code has a lower Ms, which is given

by

Ms � 1000Nf (4.6)

This signi�cant reduction of Ms makes it possible for a MIMD computer with a

typical con�guration of 16 Mbytes to 32 Mbytes local memory to be used to compute

a large application problem. For a very large problem which has a large Mz and

moderate Ms, an out-of-core algorithm may be needed to save on memory. In the

next section, we discuss an out-of-core �ll algorithm for the CM-5 implementation.

CHAPTER 4. PARALLEL IMPLEMENTATION 61

4.3 Implementation

In this section, the parallel implementation of the ParaMoM is presented. We discuss

the CM-5 implementation in detail and give brief information about the Intel and

IBM implementations as well. This section is organized following the order of the di-

agram in Figure 4.4. In Section 4.3.1, the details of the parallel implementation of the

setup code are given and the CMMD global synchronous broadcast I/O mode is intro-

duced to perform parallel I/O for setup. In Section 4.3.2, a parallel precomputation

algorithm is presented and a pseudo code of the algorithm is given. In Section 4.3.3,

a data-parallel algorithm for �lling the moment matrix is given. The matrix �lling

is implemented with Fortran 77 and CMMD message passing library on the CM-5

system, Fortran 77 and NX message-passing library or PVM on the Intel, and Fortran

77 and PVM on the IBM SP-1. In Section 4.3.4, we discuss a very
exible algorithm

to compute the excitation vectors either sequentially or in parallel, depending on the

problem. In Section 4.3.5, a data-parallel implementation of the Gaussian elimination

linear system solver is presented. In Section 4.3.6, the parallel implementation of the

RCS code is discussed and a pseudo code of the parallel algorithm is given. Finally,

in Section 4.3.7, the parallel out-of-core �ll algorithm is presented.

4.3.1 Parallel Setup

During setup, there are two input �les to be read. One is a parameters �le which is

described in the previous section. Another is the target DC �le. They are described in

some detail in the previous section. For a large problem, the size of the DC �le varies

from several Mbytes to several tens of Mbytes. One may use the sequential setup for

each node, where each node opens the DC �le and reads the data independently. The

argument for that is that the setup complexity is in the order of N where N is the

maximumnumber of unknowns of the system. Since UNIX sets a limit on the number

of �les that can be open at any one time, for a coarse grain computer with a UNIX

type of operating system this may easily exceed the limited number of �les that can

be opened at the same time. Also only one node can read data at a time so the rest

CHAPTER 4. PARALLEL IMPLEMENTATION 62

of the nodes remain idle. This could be very time consuming. A solution is to use

parallel I/O to achieve high performance. On the CM-5, CMMD provides a parallel

I/O mode called global synchronous broadcast, in which a global �le is accessed by all

nodes simultaneously, with each node reading (or writing) the same data. This mode

provides a signi�cant increase in
exibility and parallelism for I/O operations.

For Intel and IBM machines, there is a global broadcasting mode in which one

node opens the �le and reads the data sequentially then broadcasts the data to the

rest of nodes.

4.3.2 Precomputation

In the precomputation stage, there are six arrays to be computed. They are position

vectors, basis functions, and the divergence of the basis functions at each integration

point on the source patches and �eld patches, respectively. These arrays are three

or four dimensional arrays. One of the dimensions of each of these arrays has the

size of the maximum number of patches. For the problem we are interested in,

the maximum number of the patches could be in the range from one thousand to

several thousand. Each array is required by the �lling algorithm in each node. We

can simply let each node compute these arrays independently. However, it is too

computationally expensive and ine�cient, so instead these arrays will be computed

in parallel. Let rs(k; i; j) and rf (k; i; j) denote the position arrays of the source patch

and �eld patch, respectively. Also bs(k; n; i; j) and bf (k; n; i; j) respectively denote

the basis function arrays on the source patches and the �eld patches, and dbs(n; i; j)

and dbf (n; i; j) denote the divergences of the basis function on the source patches

and the �eld patches, respectively where k = 3, i = 4 or 7, n = 3, and j = Nf , the

number of the patches in the model.

To compute these arrays, we �rst divide the computational work almost evenly for

each node. Each node works on its portion, and when it has completed its work the

node broadcasts the result to the rest of nodes. The partition of the arrays is done

along the largest dimension. Let d =
Nf

p
, and q = mod(Nf ; p), then these nodes whose

CHAPTER 4. PARALLEL IMPLEMENTATION 63

index values are less than q compute (d+1) components of the arrays, and the rest of

the nodes compute d components. That is, the node 0 computes j = 0 : d, the node 1

computes j = d+1 : 2d+2, node q�1 computes j = (q�1)� (d+1) : q� (d+1), node

q computes j = q�(d+1)+1 : q�(d+1)+d, and node p computes j = Nf�d+1 : Nf .

The details of the algorithm are shown in Figure 4.5.

The CMMD library provides a global broadcast function. In a broadcast, a mes-

sage is sent from a single source to all nodes. All nodes must take part in the broad-

cast. One node must signal its intention to send the broadcast message; all other

nodes must signal their readiness to receive the message. From the hardware aspect,

once a broadcast signal is up, the system begins checking the responses. When all

the receiving nodes have received the broadcast message, the system considers the

broadcast completed and returns the broadcast call. Keep in mind that all nodes

receive data simultaneously and all receive the same amount of data in every broad-

cast. Therefore, every node must have su�cient bu�er space to hold the broadcast

message.

4.3.3 Moment Matrix Fill

In the matrix �lling process, there are two separate decomposition or partitioning

concerns. An important point is that these decompositions need not be the same.

Our general approach may be summarized as follows:

� The data decomposition is driven by the requirements of the matrix solver

software.

� The basic matrix �lling algorithm should be relatively independent of the spe-

ci�c data decomposition and the work decomposition schemes used. This in-

creases
exibility and portability in terms of working with a variety of solvers

and architectures.

� The work decomposition should be done to optimize the tradeo� between com-

putational and message-passing costs.

CHAPTER 4. PARALLEL IMPLEMENTATION 64

Precomputation

1. Compute the lower bound and upper bound for each node;

2. Loop over the patches from lower bound to upper bound;

Loop over all the integration points on one patch;

Compute all three components of the position vector arrays, rs and rf ;

Loop over the edges on the patch;

Compute the divergence of the basis functions, dbs and dbf ;

Compute all three components of the basis function arrays, bs and bf .

3. Find out the size of the message and the start address of the message to be

broadcasted for each node;

4. Find out the location of the received message in each node from the rest of the

nodes.

5. Each node broadcasts its data to the system;

Figure 4.5: The pseudo code for the precomputation algorithm

CHAPTER 4. PARALLEL IMPLEMENTATION 65

The MoM matrix �lling is very well suited to MIMD parallel processing. Each matrix

element is completely independent of every other element. Therefore, the simplest

parallel algorithm is to simply partition the work the same way the data is partitioned

(which is driven by the needs of the matrix solver as mentioned above) and have every

node compute a piece of the matrix independently. However, this is not necessarily

the most e�cient algorithm, as described below.

The most obvious way to �ll the matrix in a sequential program is for the outer-

most loops to be indexed by the columns and rows of the matrix. Each column of

the matrix corresponds to an expansion function (\source basis function") and each

row corresponds to a testing function (\�eld basis function"). In practice, however,

most sequential MoM codes �ll the matrix by looping through surface patches. The

reason for this is that each source or testing basis function domain generally extends

over more than one patch; each basis function overlaps one or more neighboring basis

functions.

In a typical triangular patch formulation such as that described in Chapters 2

and 3, each basis function is de�ned on the edge between two adjacent patches.

Each patch is part of the domain of three di�erent basis functions. A source-�eld

pair of patches is involved in the computation of nine di�erent source-�eld basis

function interactions. Each such source-�eld basis function interaction corresponds to

a single matrix element. Much of the information required to compute the interaction

between the source and �eld basis functions is related only to the geometry (e.g., the

distance between two points in the basis function domain). This information is the

same regardless of which basis function interaction is currently considered. Because

there are nine basis function interactions for a given pair of patches, the geometry

information may be computed once and used nine times if the loops are indexed by

patches rather than by basis functions.

A source patch is only half the domain of each of three basis functions (likewise

for �eld patches); a patch-patch interaction produces contributions to nine di�erent

matrix elements. A matrix element is not completely computed until the two patches

that make up the basis function have interacted with the two patches that make up

CHAPTER 4. PARALLEL IMPLEMENTATION 66

the testing function domain. Thus, each matrix location is written to four times.

Each time the new contribution is added to the current value.

The exact savings due to patch-by-patch looping depends on the speci�c formula-

tion and computer system being used. However, a typical timing shows that 25% to

40% of the total �ll time is spent computing the patch-patch geometry interactions.

If each such interaction were to be calculated nine times, as is necessary when looping

is done over columns and rows, the total computational cost for matrix �lling would

be 300% to 420% of the original.

By using a sequential computer, there is no question that the patch looping algo-

rithm is more e�cient than looping over basis functions. On the parallel computer, if

the work is partitioned by patches the patch interactions can again be computed once

and used nine times. However, each resulting matrix contribution must be distributed

to the node on which it resides, which in general is NOT the local node. Therefore,

the costs associated with communication between nodes could possibly overcome the

advantage of reusing the patch interactions.

A valid point is that if the work is partitioned according to matrix position, as pre-

viously mentioned, no internode communication is required during the matrix �lling

loops. Therefore, although the computation time per node may be increased 300% to

420% of the original time as previously described, the TOTAL performance should

increase directly proportionally to the number of nodes p, giving speed-up in the

range of p/3 to p/4.2 relative to the single-node patch-looping algorithm. These are

very respectable speedup numbers, and should be very easy to achieve. We consider

this partitioning to be an acceptable fallback position if performance with the more

complicated patch partitioning algorithm described in the next subsection is not as

good as expected.

Patch-Partioned Parallel Algorithm

As described in the previous paragraph, patch partition has certain advantages

over edge partition. In this section, a patch partitioned parallel algorithm will be

CHAPTER 4. PARALLEL IMPLEMENTATION 67

presented. The question is how to design an e�cient patch partition algorithm. A

simple thought is to select one node to compute the patch pair interaction for a given

source-�eld patch pair, and then send the result as message to the nodes that need

the result. There are up to eight nodes which receive this message. That means

that eight possible messages are required to replace eight possible recomputations.

Communication is very expensive in a distributed memory system. Although some

techniques like asynchronous message passing, collective message passing, and active

message passing will reduce communication overhead, intensive communication is

what we try to avoid. We can conclude that it is not an attractive idea. If the

partition is done in such a way that the computation involves a �eld patch that can

be performed by one node, then the possible number of computations of interaction is

reduced to three. From a data decomposition point view, this is nothing but column

decomposition. We have the choice of scattering and slab decomposition; a slab is a

matrix block consisting of a number of adjacent columns of the matrix. The decision

is based on which decomposition is more e�cient. Relating to this question, we have

to look at the global numbering scheme used to number the edges of the triangular

patches in the geometry model. Each triangle has at least two of its edges with an

adjacent global number. If the triangle is a source patch then the global number

of its edges is related to the column number in the moment matrix. On the other

hand, the global edge number of a �eld patch is the row number of the moment

matrix. The locality of the edge number within a patch gives an indication to use

the block decomposition instead of the scattering one. The column block (or slab)

decomposition can be described as follows.

Let q = mod(N; p) and d = N
p
, then the partition is as presented in Figure 4.6.

Except for the boundary column in each node, the possible number of computations

for the interaction is two. In other words, there is only one possible redundant com-

putation for patch interaction. If N=p is a big number or there is a large granularity

problem, the probability is high for there being no redundant computation. Since

there are no communication requirements for this �lling implementation, the term

CHAPTER 4. PARALLEL IMPLEMENTATION 68

Node 0 Node q-1 Node q Node p

.A(:,1:d+1) A(:,(q-1)(d
+1)+1:q(d
+1))

A(:,q(d+1)
+1:(q+1)(d
+1))

A(:,N-d:N)

Columns: (d+1) d+1 d d

Figure 4.6: Data decomposition for matrix �ll implementation

`embarrassingly parallel' is used to discribe such an algorithm in the parallel comput-

ing community.

The details of the �lling algorithm are described in the rest of this subsection.

In our algorithm, every node loops over all the source patches sequentially (actually,

this could be done in any order). On one source patch, there are up to three possible

edges. Each node �nds out the column number which is associated with the edge,

the index of the node that should compute this column, and the local index of the

column in the slab within the node. A job counter is assigned to each node. One

node's job counter will be increased by one if it is found to be the one to compute the

current column. After each node goes through all three possible edges of that source

patch, only the nodes which are selected to do the computation �ll the momentmatrix

elements. The rest of the nodes go ahead to pick another source patch, repeating the

selecting process. One can see the selecting process by the nodes is the only overhead

compared with the sequential algorithm. So, one can expect the parallel algorithm to

have a good speed-up. Since there are usually only two nodes selected for one source

patch and both of them will compute the patch-pair interaction, this is only one

extra computation. This �ll algorithm allows for nearly total load balance because

any processor will have at most one extra row compared to all other processors. Figure

4.7 shows a pseudo code of matrix �ll algorithm which described.

CHAPTER 4. PARALLEL IMPLEMENTATION 69

Parallel Moment Matrix Fill Algorithm

1. Loop over source patches from one to Nf ;

2. Loop over three possible edges on the source patch;

(a) Find out the global index of the edge;

(b) Compute the index of the node in whose slab includes the column whose

number is the same as the global edge index;

(c) Compute the local index for the location of the column in the node;

(d) The selected node increases its job counter by one and stores the informa-

tion of the edge (the global edge index, the local edge index, and the local

position in the node);

3. Those nodes whose job counter is 0 go back to 1;

4. Loop over �eld patches from one to Nf ;

(a) Compute all the integration points for the source-�eld patch pair interac-

tion (Green's function);

(b) Loop over source basis functions for that node, from 1 to its job counter;

� Loop over all possible �eld basis functions (or edges on the �eld patch)

� Use the formula derived in Chapter 2 to compute the elements of the

moment matrix;

� Sum all the contributions from the four pairs of patches associated

with each source-�eld basis function;

End of the source patch loop.

Figure 4.7: The pseudo code of the parallel �ll algorithm

CHAPTER 4. PARALLEL IMPLEMENTATION 70

Nodes write varying data lengths to a global sync-seq file:

Bytes
Node 0

0-1023

Node 1
1024-
1535

Node 2

(0 bytes)

Node 3
1536-
1551

Node 4
1552-
1559

. . .

1024 512 0 16 8

Figure 4.8: Varying amounts of data can be written by nodes in CMMD synchronous

sequential mode

To write the moment matrix to a �le, we use the CMMD global I/O mode called

global synchronous sequential mode, in which a global �le is accessed by all nodes

simultaneously, with each node reading (or writing) its own portion of the �le. The

data written to the �le comes from each node in sequence, from node 0 up to the

highest numbered node. Each node contributes a bu�er of data (of arbitrary size) to

be written, and the data is written into the �le sequentially by node number (node 0

�rst, node 1 next, etc.) This mode allows the amount of data written by each node

to be di�erent; the bu�er on each node can have a di�erent size. Nodes that have no

data to write may set their bu�er length to be zero shown in Figure 4.8.

The CMMD I/O library only provides UNIX-level I/O calls. So there are potential

problems in using Fortran 77 read/write functions, which use bu�ered I/O. Bu�ered

I/O calls are permitted in all nodes. However, they are not guaranteed to work as

expected in CMMD-sync-seq mode. Since CMMD relies on the C run-time library

to provide the bu�ered I/O code, CMMD has no control over the timing of when a

bu�er spills and actually performs a read and write.

CHAPTER 4. PARALLEL IMPLEMENTATION 71

Bu�ered I/O, by its nature, removes control from the user over when the underly-

ing read or write occurs. It is di�cult or impossible for the programmer to guarantee

synchronous calls across the partition to the underlying I/O routines.

This restriction results in a di�culty for Fortran I/O under this mode, as the only

provided Fortran I/O mechanisms are built on top of a layer of bu�ering. To overcome

this restriction, CMMD provides a global write function which utilizes UNIX write

mechanisms to perform global write under CMMD-sync-seq.

The algorithm implemented on the Intel machine is almost the same as the one

described above. There are two points to be mentioned. One is that the slab partition

is very good for matrix �ll but may not be good for factor/solve using ScaLAPACK

since the slab partition may not have good load balancing for ScaLAPACK. The

other is that the moment matrix does not need to be written out in the Intel and

IBM implementations.

4.3.4 Fill the Right-Hand Side Vectors

The computation for �lling the right-hand side vectors does not take a lot of time.

However, it could be signi�cant when the number of the vectors increases. The way

it is implemented is to assign one node to �ll one right-hand side vector when the

total number of the vectors is less than the number of the nodes in the system. The

block decomposition is employed as in the previous subsection when the number of

the vectors is more than the number of the nodes of the system. After being �lled,

the vectors are written to a SAD �le or a Data Vault �le using a CMMD global write

function with the CMMD sync-seq mode. The order of the �le is the �rst vector and

the second vector and so forth.

Let Ntr and Npo be the number of the transmitters and the number of the po-

larizations, respectively. The total number of right-hand side vectors is M , where

M = Ntr �Npo. The excitation vectors �lling algorithm is presented in Figure 4.9.

As with the matrix �ll, the algorithm for the Intel and IBM implementation is the

same except for no write operation.

CHAPTER 4. PARALLEL IMPLEMENTATION 72

Fill the Right-Hand Side Vector Algorithm

1. Loop over the transmitters;

(a) Loop over the polarizations; Find out the node that should do the work;

(b) Find out the local index of the vector within the node;

(c) Call the excitation vector �ll code which is the same as the sequential one;

2. Compute the amount of data in each node for the vectors;

3. Output the vectors to a storage device in parallel.

Figure 4.9: The pseudo code for the �ll RHS vectors algorithm

4.3.5 LU Factor and Solve

In this section, a data-parallel implementation to perform LU decomposition of the

moment matrix and solution of the matrix equation will be presented.

As we mentioned in Section 4.1 that the factor/solve code is a completely inde-

pendent program linking the rest of the ParaMoM-MPP with a an SDA �le or a Data

Vault �le. The CMSSL, a mathematical library on the CM-5 system, uses a data-

parallel programming model. A program which can call a CMSSL function must be

written either in CM Fortran or C-Star. Both computer languages are extensions of

the sequential traditional computer languages Fortran 77 and C, respectively.

The linear solver used for dense systems consists of the Gaussian elimination (LU

decomposition) and back substitution solver. For numerical stability we have chosen

the LU factorization with partial pivoting. The CMSSL's LU routines use the com-

bination of blocking and load balancing. Blocking means routines operating on and

transferring blocks of data rather than single data elements. Blocking reduces vector-

vector operations and increases matrix-vector operations, which can give very high

CHAPTER 4. PARALLEL IMPLEMENTATION 73

performance when local to a processing element. ScaLAPACK partition is controlled

by the user.

The elimination operation presents a load balancing problem using a slab block

decomposition. The load balancing provided in CMSSL uses cyclic ordering to achieve

load balancing. Let the columns be processed in cyclic order (column 1 of the �rst

column of processing elements, the column 1 of the second column of processing

elements, and so on). Then as columns are eliminated, the active subgrid on each

processing element shrinks, but no processing element becomes completely inactive

until the last column is eliminated from some column of processing elements. That

is, it increases the number of processing elements that are active at any time.

The combination of these two strategies is called Block Cyclic Ordering. In Block

Cyclic Ordering, a routine computes on a block of columns or rows as a unit. A

routine performs a block update of a number of columns instead of a single column at

a time. Thus, the load balancing scheme processes blocks, rather than single columns,

in cyclic order. Assuming that the block size is chosen to be b, the LU factorization

routine eliminates columns and rows in the following order:

� Columns 1 through b of the �rst column of processing elements, along with rows

1 through b of the �rst row of processing elements.

� Columns 1 through b of the second column of processing elements, along with

rows 1 through b of the second row of processing elements, and so on.

After eliminating b columns from each column of processing elements, the routine

returns to columns b+1 through 2b of processing element column 1, and so on.

Letting a linear system be AX = B, the forward elimination gives

A = LU (4.7)

Let U X = C, and then C = L�1B. Following the back substitution

X = U�1 C = U�1(L�1B) (4.8)

CHAPTER 4. PARALLEL IMPLEMENTATION 74

where B and X are N�M matrices, and L and U are the N�N lower triangular and

upper triangular matrices respectively. When M 6= 1, (4.8) provides the opportunity

to take advantage of data-parallel paradigm in this implementation.

The CM Fortran Utility Library's parallel I/O is used to open a SDA or Data

Vault �le and read in the moment matrix and the right-hand side vectors. The `SO'

I/O mode function is used (see [75]). Although, the `SO' I/O mode is slower than

the `FMS' I/O mode, it provides the most portability across CM con�gurations and

execution models. The LU routine is called after reading in the moment matrix and

the right-hand side vectors. The lower and upper triangular matrices are written to

the moment matrix to save memory space. The back substitution is applied to obtain

the solution vector or vectors. Once again, the `SO' I/O mode is used to write the

solution vectors to a storage device. The LU/SOLVE program reports the M
ops

achieved for the LU decomposition and back substitution separately.

As mentioned in the previous section, ScaLAPACK is used for factorizing the

moment matrix and back substitution solution on the Intel machines and IBM SP-

1. The performance is very much dependent on the data partition. Achieving good

node-level performance on the IBM SP-1 is relatively easy, because each node is a

general purpose RISC processor and there are no node-level vectorization issues.

4.3.6 RCS Computation

The RCS computation program implemented on the CM-5 is written in Fortran 77

with the CMMD message passing library. The �rst task is to read in the current

coe�cients from a storage device. The CMMD global-read function, which is the

same as the CMMD global-write described in the matrix �ll subsection, is employed

to carry out this task. Then, the far �eld contributed by all currents is computed.

Finally, the radar cross section is computed. The far �eld computation is the major

task discribed in this subsection. There are two cases; one is for a single current

vector and another is for multiple current vectors.

Let Ntr and Nre denote the numbers of the transmitters and receivers, respectively,

CHAPTER 4. PARALLEL IMPLEMENTATION 75

0 1 2 3 4 5 6 7node:

node:

+ + + +

0 2 4 6

+ +

node: 0 4
+

node:
0

Figure 4.10: Divide and conquer algorithm for global summation

and Npt and Npr be respectively the numbers of the polarizations of the transmitter

and the receivers.

For a single current vector, if N=p is a small number then only one node is active

and the rest of the nodes stay inactive. If N=p is considerably larger it is worthwhile

to divide the current vector into p pieces and assign each node to do some work. The

result of each node is summed up in node 0. For M current vectors, if M � p, then

make the �rst M nodes do the computation and the rest of nodes remain idle. If

M � p, then each node is associated with a slab of the current matrix. The result

of each node is again summed up in node 0. The divide and conquer algorithm is

applied to sum the result of each node in node 0. The algorithm is illustrated in

Figure 4.10, where p = 8.

A pseudo code of the algorithm implemented is given in Figure 4.11.

CHAPTER 4. PARALLEL IMPLEMENTATION 76

Parallel Far-�eld Computation Algorithm

1. Loop over the transmitters;

(a) Loop over the transmitter's polarizations; Find out the node that should

do the work;

(b) Find out the local index of the vector within the node;

Loop over the receivers;

Loop over the receivers' polarizations;

� If node index is not equal to the selected one go back to 1;

� The selected node computes the far �eld produced by the current due

to the transmitter with the polarization along a given direction.

2. Sum the far �eld for all current vectors;

3. Compute the radar cross section from the computed far �eld.

Figure 4.11: The pseudo code for the RCS computation algorithm

CHAPTER 4. PARALLEL IMPLEMENTATION 77

4.3.7 Out-of-Core Algorithm

Solution of very large problems requires out-of-core matrix �lling and solution. The

out-of-core matrix solution would be done using a vendor-speci�c out-of-core solver,

such as ProSolver DES [80] on the Intel Paragon or the out-of-core CMSSL solver

on the CM-5. Here, we only consider the development of out-of-core �lling on the

CM-5 system. The reason for developing an out-of-core �lling algorithm is that the

matrix is too large to be stored in the main memory of the system. We have to �ll

one portion of the matrix at a time and write it to a �le, and then �ll another portion

of the matrix and write it out, and so on. Compare this with the in-core matrix �ll

algorithm, where the matrix is �lled once then written out once. The main idea of

designing an out-of-core algorithm is to modify the in-core �lling algorithm structure

and �ll a portion of the matrix instead of the whole matrix.

Similarly, the issues involved with parallel out-of-core algorithm design are the

problems of decomposition, load-balancing and communication. As with the in-core

�ll algorithm, the no communication approach is adopted here. The important ques-

tion for out-of-core �lling is how to decompose the problem into a set of small problems

which can be �tted in in-core memory.

Before answering the question, we assume that the matrix, with N rows and

columns, contains Nb bytes; the system hasM bytes of available memory attached on

each node; the number of processors is p; and the total number of out-of-core �lling

is Nout, where Nout has to satify the inequality

Nout >
Nb

pM
(4.9)

When the column block decomposition is used, each in-core �ll is to �ll a slab of

matrix. The size of the ith out-of-core slab Ni is restricted by

N =
NoutX
i=1

i �Ni (4.10)

and

Ni = ni � p i 6= Nout (4.11)

CHAPTER 4. PARALLEL IMPLEMENTATION 78

where ni is the number of columns for each node to �ll at the ith out-of-core �ll.

At the last out-of-core �ll (or i = Nout), the number of un�lled columns is NNout
=

N �PNout�1
i=1 i � Ni. The job to �ll the NNout

columns is distributed into p nodes as

evenly as possible. Let q = mod(NNout
; p) and d =

NNout

p
. A node �lls the (d + 1)

columns if its index is less q, otherwise it �lls d columns. The worst load balancing

is when some nodes have one column more to �ll than the other nodes.

Now, we can discuss our out-of-core �ll algorithm since the data decomposition

is decided. Based on the application and the particular system architecture, one

supplies Nout and Nc which is the maximum number of columns that can be held

in each node's memory. Let each node go through a loop of number of out-of-core

procedures (from 1 to Nout). Each node calculates Ni for the i
th out-of-core �ll and

sets the global upper and lower bound. For example, the global lower bound is one

and upper bound is N1 for i = 1; and the global lower bound is N1 + 1 and upper

bound is N2 + N1 and so on. Each node �lls a portion of the matrix in the same

way as the in-core �ll algorithm. However, each node does not pay any attention to

the columns which fall outside the �ll bound. After every node has completed the

desired �lling, a global synchronous write command is issued to write the portion of

the matrix into a �le. Then, each node examined goes back to the loop.

A pseudo code of the out-of-core matrix �ll is shown in Figure 4.12

We implemented this algorithm and tested it on the CM5 for the N = 9882 case.

The results are summarized in Table 4.3. It is seen that there is relatively little

di�erence between out-of-core and in-core �ll times.

CHAPTER 4. PARALLEL IMPLEMENTATION 79

Parallel Moment Matrix Out-of-Core Fill Algorithm

1. Loop over the number of out-of-core procedures, from one to Nout;

2. Calculate the global upper-bound and lower-bound;

(a) Loop over source patches from one to Nf ;

(b) Loop over three possible edges on the source patch;

i. Find the global index (i) of the edge;

ii. Compute the node index in whose slab includes the column whose

number is the same as the global edge index ;

iii. If (i) is not in [lower-bound, upper-bound], go to 2(b)i;

iv. Compute the local index for the location of the column in the node;

v. The selected node increases its job counter by one and stores the in-

formation of the edge (the global edge index, the local edge index, and

the local position in the node);

(c) Those nodes whose job counter is 0 go back to 1;

(d) Loop over �eld patches from one to Nf , the same as in the in-core �ll

algorithm;

3. Write the portion of matrix out using CMMD global write;

End out-of-core �ll.

Figure 4.12: The pseudo code of the parallel out-of-core �ll algorithm

CHAPTER 4. PARALLEL IMPLEMENTATION 80

Table 4.3: The time comparison between the out-of-core �ll algorithm with Nout = 10

and the in-core �ll algorithm on the CM-5.

Matrix Fill algorithm Nodes Fill Time (Sec.) Write Time (Sec.)

in-core 256 1841 3.74

in-core 64 7364(estimated)

out-of-core 64 7883 30.77

Chapter 5

Performance and Numerical

Results

In this chapter, we present performance measurement data for the parallel algorithms,

which are given in the previous Chapter, implemented on three parallel platforms.

Measuring the performance of the parallel implementation, we present the following

two test procedures: 1) with a �xed machine size, we change the problem size to see

the run time of all components of the implementation; 2) with a �xed problem size,

we change the machine size to see the run time and speed-up for the dominant parts

of the implementation. The scalability analysis is given for each parallel algorithm

in the parallel implementations. Portability is demonstrated by porting the PVM

implementation from Intel machines to IBM SP-1 with little work.

The numerical accuracy of the algorithms developed in Chapters 2 and 3 is in-

vestigated by running test cases provided by the Electromagnetic Code Consortium

(EMCC). The results obtained by the ParaMoM-MPP code are presented for compar-

ison with measurements provided by the EMCC done on their well-known benchmark

targets. A discussion of the suitability of multiprocessing architectures for electro-

magnetic scattering problems is given. A conclusion drawn from this work is presented

in this Chapter.

This chapter is divided into 3 sections: Section 5.1 discusses the performance

81

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 82

measurement and scalability analysis, Section 5.2 provides the numerical results of

the EMCC testing cases, and Section 5.3 presents a discussion and comparison of the

performance between the PATCH code and the ParaMoM-MPP code.

5.1 Performance and Scalability Analysis

In this section we analyze the performance and scalability of parallel algorithms and

their implementation. We demonstrate scalability empirically using speed-up curves

and show expressions for memory, computation, I/O, and communication costs versus

problem size and machine size. The performance is measured in terms of the run

time, speed-up, and M
ops. The �rst performance measurement is the run time for

�xed machine size versus problem size. The time is reported for most components of

the implementation on the CM-5 which gives the overall picture of the role of each

component in terms of run time requirements within the code. We present the run

times for three machine sizes for two Intel machines and two machine sizes for the

IBM SP-1 computer. The section consists of three sub-sections. In Section 5.1.1,

the CPU time is reported on a certain number of nodes of partition of CM-5, Intel

Touchstone Delta, Intel Paragon, and IBM SP-1 of the particular architecture. In

Section 5.1.2, the performance measurement in terms of speed-up is presented by

speed-up curves. The scalability analysis for each portion of parallel algorithm in the

parallel code is given in Section 5.1.3.

5.1.1 Performance Measurement for a Fixed Machine Size

For the purpose of measuring performance, the parallel RCS prediction code has been

run for a set of conducting spheres. The number of equations goes from a few hundred

to about ten thousand. There is only one right-hand (RHS) vector. The run time

of each part of the parallel code gives a better view of the CPU time distribution

from a user's perspective. The machine size (or the number of nodes in the system)

is �xed but the problem size (the number of equations to be solved) is variable. For

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 83

Table 5.1: The running time in seconds on a 32-node partition CM-5

N �ll w/r far �eld precomputation

4988 3295.2 9.1 4.3 11.3

3060 1207.0 4.7 2.8 6.0

988 137.5 3.0 0.5 2.1

468 31.5 4.2 0.6 1.1

Table 5.2: The running time in seconds on a 512-node partition CM-5

N �ll w/r far �eld precomputation

9882 901.9 4.5 2.0 9.5

4988 237.9 3.7 1.1 4.8

3060 94.1 3.3 0.9 3.1

988 12.6 0.8 0.5 1.0

468 3.1 0.7 0.2 0.5

the CM-5 implementation, two machine sizes are chosen to present the run time.

They are the 32-node CM-5 at NPAC and the 512-node CM-5 at MSCI/AHPCRC.1

In Tables 5.1 and 5.2, the matrix �ll time, the total time for extra I/O operation of

CM-5 implementation, far-�eld time, and precomputation time is presented.

The �ll, far �eld, and precomputation time are recorded in Tables 5.1 and 5.2

using a CMMD timer. The w/r time is the total time required for writing out the

matrix and RHS vector and reading in the solution vectors using CMMD timer plus

the time required for reading in the matrix and RHS vectors and writing out the

solution vectors using CM Fortran timer. The w/r is elapsed time and the rest of the

time is the CPU busy time. The last column in Table 5.2 is the M
ops generated by

1MSCI stands for Minnesota Supercomputer Center, Inc. and AHPCRC is Army High Perfor-

mance Computing Resource Center.

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 84

the matrix factorization. The formulation computing the M
ops is

M
ops =
number of operations

CPU time
(5.1)

For single precision complex type, the CMSSL LU function takes 8N3

3
operations to

factorize an N by N matrix. The time used to compute the M
ops is the CPU busy

time recorded by the CM Fortran timer.

From the run times listed in Tables 5.1 and 5.2, we see that the extra time required

for the write/read operation to connect between the CMMDmessage passing program

and a data-parallel CM Fortran program is indeed very short. The matrix �ll and

factor consume the most CPU time. Both the nature of the problem making the

matrix �ll code very ine�cient to be vectorized and Fortran 77 being inaccessible to

the vector units within CM-5 node make the matrix �ll slow. On the other hand,

since a CM Fortran code is able to utilize all vector units associated with the CM-5

node, the matrix factor/solve code is able to use the system much more e�ciently.

We only list the matrix �ll time and the matrix factorization time for the Intel

machines and IBM SP-1 implementation because they are the dominant parts of the

code. To present the run time on the Intel machines, we choose the 32-node Intel

Paragon at NAS and the 64-node partition and 512-node partition of the Touchstone

Delta at JPL/Caltech in Table 5.3.

For the IBM SP-1 implementation, we list the time data on the 58-node partition

and the 32-node partition of SP-1 at Argonne National Laboratory (ANL). As with

the Intel machines, only the �ll time and the factor time are listed in Table 5.4.

For the purpose of performance comparison, the PVM implementation of the RCS

prediction code is ported to a 8-node DEC Alpha farm cluster with 64 Mbytes memory

per node. The Alpha cluster is connected by a FDDI-based Gigswitch. In Table 5.5,

we list the CPU time and M
ops running on these machines.

5.1.2 Performance Measurement for a Fixed Problem Size

Another way to measure performance of a parallel algorithm is in terms of speed-up

which is de�ned as the increase in performance (units of work per unit time) with

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 85

Table 5.3: The running time in seconds on an Intel 32-node Paragon, 512-node and

64-node Touchstone Delta.

N Paragon 32-node Delta 512-node Delta 64-node

�ll factor �ll factor �ll factor

9882 277.9 411.6

4988 692.9 371.5 72.5 80.7 525.6 280.9

3060 262.4 98.1 28.9 28.3 203.5 98.5

988 29.3 6.9 4.0 3.4 23.9 4.0

468 7.3 1.9 1.0 1.2 6.5 0.9

Table 5.4: The running time in seconds on the IBM 58-node and 32-node SP-1.

N SP-1 58-node SP-1 32-node

�ll factor �ll factor

9882

4988 217.9 1404.8 393.6 2487.8

3060 85.5 322.5 149.8 550.9

988 9.7 9.4 17.6 13.8

468 2.6 1.3 4.6 1.7

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 86

Table 5.5: N: matrix size, �ll: matrix �lling time in seconds, LU: matrix factor time

in seconds

N PlatformNodes �ll LU LU(M
ops)

4992 Alpha+

Gigswitch

8 1420.0 1119.9 147.8

4992 IBM

SP1+

Ethernet

8 1500.9 1804.7 116.3

4992 Intel

iPSC

64 525.6 280.9 1027.1

/860

4992 CM-5 32 3295.2 170.7 1938.8

increase in the number of nodes for a �xed problem size. The de�nition of speed-up

is given in Chapter 4. The hallmark of good scalability is nearly linear speed-up

on su�ciently large problems. For a large problem, we would like to halve the total

solution time when we double the machine size. It should be noted that many parallel

algorithms do not have good scalability due to the increasing dominance of internode

communication as the number of nodes increases. Speedup is computed as

Speed-up =
T1

Tp
(5.2)

where T1 is the time needed on one node and Tp is the time on p nodes.

It must be noted that it is not possible for speed-up to be linear for endlessly

increasing machine size and �xed problem size, since at some point the number of

nodes would exceed the total number of operations required to solve the problem!

However, for large problems this is rarely a concern, and so we strive to achieve linear

speed-ups.

For large problem sizes it may not be possible to obtain the one-node timing

required to compute speed-up due to memory or computation time limitations. In

these cases, T1 is estimated based on Tp for the smallest possible p. This estimate is

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 87

typically very accurate since the speed-up tends to vary linearly for small p on large

problems.

Speedups for matrix �ll on the CM-5 for several problem sizes are shown in Fig-

ures 5.1 and 5.2. The small problems are nearly linear for small numbers of processors

(p is small), as shown in Figure 5.1, but for big p the use of additional nodes is less

e�ective than on the large problems, as shown in Figure 5.2. Important point: the

parallel algorithm reduces to the sequential algorithm in the special case p = 1, so

the speed-up may be viewed as being relative to the original sequential algorithm.

Thus we can �ll the matrix 500 times as fast as we could with the original serial code

implemented on a SUN SPARC workstation.

The large problems are nearly linear for a large p. Figure 5.2 shows that the large

problem sizes yield better performance in terms of speed-up when a 512-node CM-5

partition is used. This partition is one of the largest CM-5 partitions available for

general use. For small problems, the speed-up curves are almost
at after the certain

number of nodes.

The matrix factor (LU decomposition) speed-up for the CM-5 is shown in Fig-

ure 5.3. Again the speed-ups are much better for the largest problem size than for

the smallest. The speed-up curve may have an negative slope when a small problem

is executed on a large machine. When the CMSSL LU with partial pivoting is used,

the performance cost of pivoting is very much dependent on size and layout. The

extra cost of pivoting is greatest for relatively small matrices. For very large matrices

(using nearly all processing element memory), the performance of the factorization

with pivoting is comparable to the performance without pivoting, whereas the solver

remains about 50% slower for the pivoting version. However, for a small matrix,

internode communication is actually dominating the total run time, which increases

the cost of pivoting.

The speed-up curves obtained on the Intel machines are shown in Figures 5.4, 5.5,

5.6, and 5.7. Figures 5.4 and 5.5 show the speed-up curves on the Intel Paragon at

NAS. Figures 5.6 and 5.7 show the speed-up curves obtained on the Intel Touchstone

Delta system at JPL/Caltech.

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 88

0

5

10

15

20

25

30

0 5 10 15 20 25 30

S
p
e
e
d
u
p

Number of processors

N=187
N=368
N=468
N=672
N=988

Figure 5.1: Performance of matrix �ll portion of code implemented on small CM-5

partitions for �xed small problems

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 89

0

100

200

300

400

500

0 100 200 300 400 500

S
p
e
e
d
u
p

Number of processors

N=3060
N=4988
N=9882

Figure 5.2: Performance of matrix �ll portion of code implemented on large CM-5

partitions for �xed problem sizes

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 90

0

100

200

300

400

500

0 100 200 300 400 500

S
p
e
e
d
u
p

Number of processors

N=468
N=988

N=3060
N=4988
N=9882

Figure 5.3: Performance of matrix factor portion of code implemented on large CM-5

partitions for �xed problem sizes

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 91

0

10

20

30

40

50

60

0 10 20 30 40 50 60

S
p
e
e
d
u
p

Number of processors

N=468
N=988

N=3060
N=4988

Figure 5.4: Performance of matrix �ll portion of code implemented on the Intel

Paragon system

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 92

0

10

20

30

40

50

60

0 10 20 30 40 50 60

S
p
e
e
d
u
p

Number of processors

N=468
N=988

N=3060
N=4988

Figure 5.5: Performance of matrix factor portion of code implemented on the Intel

Paragon System

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 93

0

10

20

30

40

50

60

0 10 20 30 40 50 60

S
p
e
e
d
u
p

Number of processors

N=468
N=988

N=3060
N=4988

Figure 5.6: Performance of matrix �ll portion of code implemented on the Intel

Touchstone Delta system

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 94

0

10

20

30

40

50

60

0 10 20 30 40 50 60

S
p
e
e
d
u
p

Number of processors

N=468
N=988

N=3060
N=4988

Figure 5.7: Performance of matrix factor portion of code implemented on the Intel

Touchstone Delta system

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 95

The BLACS on these test runs is from an unoptimized pre-release of this package

on SP-1's high performance switch with EUI-H protocol by ORNL's Clint Whaley.

An optimized o�cial release of the BLACS on EUI-H will be available in the near

future. The speed-up curves obtained on the IBM SP-1 are shown in Figures 5.8 and

5.9.

5.1.3 Scalability Analysis

Six separate parallel algorithms are implemented. They are the setup phase, the

precomputation phase, the matrix �ll phase, the RHS vector (or vectors) �ll phase,

matrix factor/solve phase, and far-�eld phase. By reviewing Chapter 4 on parallel im-

plementation, we know that the setup and precomputation employ the same parallel

mechanism in the global broadcast operation. Therefore, only one of three algorithms

will be to be analyzed. In the far-�eld algorithm, the far-�eld computation is carried

out in parallel when there are multiple current vectors. The number of the current

vectors is the same as that of the excitation vectors, and this number is usually lim-

ited to about thousand. These algorithms described in Chapter 4 are scalable. There

is the same amount of work for each node when the number of the excitation vectors

increases by the factor m and the number of the nodes in the system increases by the

factor m. The RHS vector �ll algorithm is very similar to the far �eld algorithm. It

is scalable like the far �eld algorithm. We only consider to conduct a scalability anal-

ysis for the precomputation phase, the matrix �ll phase, and the matrix factor/solve

phase. The scalabilities of these components are analyzed separately below.

Precomputation Phase Scalability

In the precomputation phase, several arrays are computed in a distributed fashion.

These arrays contain the locations of the numerical integration points, as well as the

values of the basis functions and their divergences at those points. These arrays are

of order Nf , where Nf is the number of surface patches, which is proportional to the

number of basis functions or matrix size (the relation between Nf and the number

of basis funcitons is given in Chapter 4). The work of computing these arrays is

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 96

0

10

20

30

40

50

60

0 10 20 30 40 50 60

S
p
e
e
d
u
p

Number of processors

N=468
N=988

N=3060
N=4988

Figure 5.8: Performance of matrix �ll portion of code implemented on the IBM SP-1

system

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 97

0

10

20

30

40

50

60

0 10 20 30 40 50 60

S
p
e
e
d
u
p

Number of processors

N=468
N=988

N=3060
N=4988

Figure 5.9: Performance of matrix factor portion of code implemented on the IBM

SP-1 system

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 98

distributed almost evenly among the nodes.

One may ask what is the broadcasting complexity here. We will give a short

analysis to ensure the broadcast operation used here will not be a bottleneck of our

approach.

Assume that there are Nb elements in the basis function array, Ndb elements for

the divergence of the basis function array, and Nr elements for the position vector

array. The total time T of this procedure is

T = Tc + Tbc (5.3)

where Tc is the maximum computing time needed for a node, and Tbc is the total

broadcasting time. Tc can be expressed as

Tc � tcb(
Nb

p
) + tcdb(

Ndb

p
) + tcr(

Nr

p
) (5.4)

where tcb; tcdb; and tcr are the times required to compute an element of the basis

function array, the divergence of the basis function array, and the position vector

array, respectively. The total broadcasting time can be expressed as

Tbc = p[tl log2(p) + ttr(
Nb +Ndb +Nr

p
)] (5.5)

where tl is the latency for broadcasting a message and ttr is the time required to

transfer a four-byte word from one node to another.

In the CM-5, global operations generally are extremely fast. A broadcast of a

single word to all nodes take about 8 microseconds. The broadcast operations take

longer for longer messages, reaching an aggregate bandwidth of 25 MB/sec on 32

nodes (see [74]).

The only potential liability in the precomputation is seen to be the p�log2(p) term.

However, since the practical upper limit on p for the class of machines of interest is

a few thousand, this term will never be drastically larger than the worst case we

have run to date (p = 512). For reasonable problem sizes (N � 10; 000) the setup

and precomputation time with p = 512 was seen to be very small compared to the

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 99

matrix �ll and factor times. The ratio of �ll to setup and precomputation remains

approximately equal if p is increased by a factor of p0 and N is increased by a factor

of
p
p0. Since N is expected to increase as p increases, it is clear that the setup and

precomputation will not become dominant under any practical circumstance.

Matrix Fill Scalability

No internode communication is performed during the matrix �ll phase. However,

the �ll time is somewhat dependent on p due to the possibility of redundant com-

putations in the parallel algorithm. As described in the previous chapter, each node

computes the necessary patch-to-patch geometric interactions. There is some redun-

dancy in this scheme in that more than one node may compute the same interactions

when the nine basis functions de�ned for the source and �eld patches are not assigned

to the same node.

In the slab partitioned algorithm, the amount of redundancy increases as the num-

ber of nodes increase up to a statistical limit; the probability that a patch-to-patch

interaction will be computed more than twice is very small. The extreme case where

the three basis functions on a source patch are assigned to three di�erent nodes has

extremely small probability. Therefore the upper bound on the worst case is ob-

tained when each patch-to-patch interaction is computed twice. These computations

typically represent less than 25% of the total �ll time (this percentage is system de-

pendent) for the sequential algorithm, and so the total work in the parallel �ll is

typically less than 1.25 times the total work in the sequential algorithm. In other

words the lower bound on the �ll speedup relative to the sequential algorithm is p

1:25
.

Matrix Factor and Solve Scalability

Our approach in the matrix factor and solve phase is to utilize existing parallel

LU matrix solvers. It is reasonable to assume that state-of-the-art solvers provided

by a vendor or a respected sources such as the Oak Ridge National Laboratory have

been designed to achieve scalable performance, and that the scalability characteristics

are well documented [72]. Although it is impossible to characterize all parallel LU

solvers in this report, we brie
y describe the scalability of the ScaLAPACK solver as

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 100

an example of the state-of-the-art.

ScaLAPACK uses a block-scattered decomposition of matrix blocks of size r �
r distributed among a \virtual" P � Q array of processors (the total number of

processors is p = P � Q). If r is smaller than N
p
there may be multiple blocks per

node.

The e�ciency E is de�ned in the previous Chapter as T1
Tp�p

, where T1 and Tp are

the solution times for one node and p nodes respectively. E may be thought of as

the percentage of optimal speed-up obtained. For ScaLAPACK, E if given by the

following formula [72].

E � f1 + p

N2
[c1 log(P) + c2]

�

+
P

N
[c3 log(P)

�

+ c4] +

Q

N
[c5
�

+ c6]g�1 (5.6)

where

ci depend on only r

i = 1; � � � ; 6

� = communication latency

� � 1

bandwidth

 = time to compute one
oating point operation

Consider the special case P = 1, Q = p. This is the con�guration used in the

ScaLAPACK code. For su�ciently large N ,

E � f1 + p

N2
c2
�

+
p

N
[c5
�

+ c6]g�1 (5.7)

In this case, we see that E is close to one provided that N � p. For smaller

N , however, p

N2 c1 log(P)
�

and P

N
c3 log(P)

�

can be signi�cant. On many multipcom-

puters, � is several orders of magnitude greater than
. On a network with limited

bandwidth, � is large and the term containing � may dominate.

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 101

5.2 Numerical Results

In this section, we present some numerical results computed by the ParaMoM-MPP

code described in this thesis. The test targets in this study are provided by the

Electromagnetic Code Consortium. All numerical results are checked against the

measurements provided by the EMCC (see references [81, 82]). The incident angles

are de�ned in Appendix B.

The parallel program requirements vary greatly and depend upon the EMCC

benchmark target geometries, the frequency, and the model symmetries imposed.

The numerical results are to provide a general idea of the accuracy obtained by using

a parametric method of moments approach, especially the parallel code ParaMoM-

MPP, in a MIMDwith a distributed memory environment. In fact, the patch sampling

rates used for the benchmark comparison runs are somewhat conservative and would

be reasonable on a large problem. In most cases, the maximum edge length speci�ed

during target gridding was one eighth of a wavelength.

Depending upon the speci�c method used for RCS prediction, target descriptions

may vary greatly. Of particular concern for several approaches, ParaMoM-MPP in-

cluded, is the actual parametric model. Syracuse Research Corporation provides

these models. All of the EMCC benchmark test cases indicated below were run on

the NAS Paragon known as GRACE. The RCS values for both horizontal (HH) and

vertical (VV) polarizations are plotted in dBSM the dB expression for the number of

square meters that the RCS is as a function of the azimuthal angle which is de�ned

in Appendix B.

The �rst example is the RCS from a
at plate in the shape of a wedge cylinder

with gap. The incident wave has a frequency of 5.9 GHz with horizontal polarization.

The receiver's polarization is also horizontal. The parametric patch model of the

target is shown in Figure 5.10, where the maximum edge length is �
8
, and the number

of triangular patches is 1008 with 553 nodes and 1560 edges. The radius of circular

part of the wedge cylinder is � and the length of its straight side is two �.

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 102

Figure 5.10: The wedge cylinder with gap geometric model

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 103

-40

-30

-20

-10

0

10

-150 -100 -50 0 50 100 150

R
C
S
(
d
B
S
M
)

azimuth

HH Polarization

computed
measured

Figure 5.11: The RCS with HH polarization of a wedge cylinder with gap

The monostatic radar cross section for horizontal transmitter and receiver po-

larizations (HH) is shown in Figure 5.11. The result is obtained by running the

ParaMoM-MPP on a 80-node partition Intel NAS paragon. Six Mbytes of memory

are required to run this target. There are 360 excitation vectors to compute the

monostatic radar cross section. The computation takes 309 seconds by a wall clock.

The RCS, in dB �2, plotted against the azimuthal angle is shown in Figure 5.11 in a

10o-elevation conical cut.

In Figure 5.12, NASA's half metallic almond parametric model is shown. The

mathematical description for the NASA almond is as follows:

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 104

for �0:41667 < t < 0 and �� < � < �

x = d � t Inches

y = 0:193333d

s
1 � f t

0:416667
g2 cos�

z = 0:064444d

s
1� f t

0:416667
g2 sin�

for 0 < t < 0:58333 and �� < � < �

x = d � t Inches

y = 4:83345df
s
1� [

t

2:08335
]2 � 0:96g cos �

z = 1:61115df
s
1 � [

t

2:08335
]2 � 0:96g sin �

where d = 9:936 inches. The total length of the almond is 9.936 inches. To take the

symmetry into consideration, only half the NASA almond is to be modeled as shown

in Figure 5.12. The plane of symmetry is the XY plane. The NASA's half almond is

segmented by a curved grid with 1232 curved triangles, 1915 edges, and 684 nodes.

The maximum edge length is �=8.

The monostatic radar cross section for both the HH and the vertical-vertical (VV)

polarizations at 7 GHz are plotted in dBSM as functions of azimuthal angle in Fig-

ures 5.13 and 5.14. The elevation angle is zero. There are 720 RHS vectors for this

problem. This problem is run on a 32-node partition of the NAS Paragon. The mem-

ory required to run this problem in the system is 7 Mbytes per node. The wall clock

time is 2817 seconds to complete the run.

A single metallic ogive's parametric patch model is shown in Figure 5.15, where

three symmetry planes are used so one eighth of the body is actually modeled. The

ogive is illuminated by an incident wave at 9 GHz. The ogival body is a classical test

case for RCS. The analytical expression for the ogive is

f(x) = f
r
1� [

x

5
]2 � cos(22:62o)g (5.8)

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 105

Figure 5.12: The NASA's half almond parametric geometry model

and

y =
f(x) cos �

1� cos(22:62o)

z =
f(x) sin �

1� cos(22:62o)
(5.9)

where x is greater than �5 inches and less than 5 inches, and � is greater then ��
and less than �. The single ogive has a half angle of 22.62 degrees, a half-length of 5

inches, and a maximum radius of 1 inch. The single ogive is 10 inches long physically

and about 7.6 wavelengths electrically. The single ogive is gridded into two di�erent

models. The �rst model utilizes three symmetry planes, so only one eighth of the

single ogive needs to be modeled. This one-eighth single ogive is modeled by 2088

curved triangles with 3208 edges and 1121 nodes. The maximum edge length is �
12
.

The second model uses no symmetry plane. It consists of about 5000 curved patches,

and 7332 edges.

The monostatic radar cross section characteristics for both HH and VV polariza-

tions are plotted in dBSM as functions of the azimuthal angle in Figures 5.16 and 5.17.

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 106

-40

-35

-30

-25

-20

-15

-10

-5

0

5

0 20 40 60 80 100 120 140 160 180

R
C
S
(
d
B
S
M
)

azimuth

HH Polarization

computed
measureed

Figure 5.13: The RCS with HH polarization of a NAS almond

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 107

-40

-35

-30

-25

-20

-15

-10

-5

0

5

0 20 40 60 80 100 120 140 160 180

R
C
S
(
d
B
S
M
)

azimuth

VV Polarization

computed
measured

Figure 5.14: The RCS with VV polarization of a NASA almond

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 108

Figure 5.15: The single ogive parametric geometry model with symmetry

The elevation angle is zero. In Figures 5.16 and 5.17, and computed without sym de-

notes the model uses no symmetry planes, computed with sym denotes the target

modeled with three symmetry planes. Although the number of the curved patches

of the model without symmetry planes is much less dense than that with symmetry

planes, Figures 5.16 and 5.17 shows good agreement. This demonstrates that the

parametric patch method of moments with fewer unknowns still obtains good accu-

racy. There are 360 RHS vectors for this problem. This problem is run on a 64-node

partition of the NAS Paragon. The symmetry model requires 9 Mbytes per node

and takes 9648 seconds to complete the run. The model without symmetry planes

requires 21 Mbytes per node and takes 3918 seconds to complete the run.

The double ogive consists of two di�erent-size half ogives. One half ogive has a

half angle of 46.4 degrees at the tip, a half length of 2.5 inches, and a maximum radius

of 1 inch. The other half ogive has a half angle of 22.62 degrees at the tip, a half

length of 5 inches, and a maximum radius of 1 inch. The parametric patch model of

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 109

-60

-50

-40

-30

-20

-10

0

10

0 20 40 60 80 100 120 140 160 180

R
C
S
(
d
B
S
M
)

azimuth

HH Polarization

computed_without_sym
computed_with_sym

measured

Figure 5.16: The RCS with HH polarization of a single ogive

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 110

-70

-60

-50

-40

-30

-20

-10

0

10

20

0 10 20 30 40 50 60 70 80 90

R
C
S
(
d
B
S
M
)

azimuth

VV Polarization

computed_without_sym
computed_with_sym

measured

Figure 5.17: The RCS with VV polarization of a single ogive

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 111

Figure 5.18: The double ogive parametric geometry model

the double ogive target is shown in Figure 5.18. The double ogive is 7.5 inches long

or about 5.7 wavelengths long under the illumination of 9 GHz incident waves. The

target surface is modeled by a set of 3822 curved triangles with 5772 edges and 1950

nodes.

The monostatic radar cross sections for both HH and VV polarizations are plotted

in dBSM as functions of the azimuthal angle in Figures 5.19 and 5.20. The elevation

angle is zero. There are 360 RHS vectors for this problem. This problem is run on

a 64-node partition of NAS Paragon. The memory required to run this problem on

that system is 17 Mbytes per node. The wall clock time is 2320 seconds to complete

the run.

The metallic cone-sphere has a half angle of 7 degrees, and a sphere radius of

2.947 inches. The length of the cone part is 23.821 inches, and the side of the cone

is tangent to the sphere, to provide a smooth transition and minimum di�raction at

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 112

-50

-40

-30

-20

-10

0

10

20

0 20 40 60 80 100 120 140 160 180

R
C
S
(
d
B
S
M
)

azimuth

HH Polarization

computed
measured

Figure 5.19: The RCS with HH polarization of a double ogive

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 113

-50

-40

-30

-20

-10

0

10

20

0 20 40 60 80 100 120 140 160 180

R
C
S
(
d
B
S
M
)

azimuth

VV Polarization

computed
measured

Figure 5.20: The RCS with VV polarization of a double ogive

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 114

the joint. The cone-sphere can be described as:

for �23:821 inches < x < 0 inches and �� < � < �,

y = 0:87145(x + 23:821) cos �

z = 0:87145(x + 23:821) sin �

for 0 inch < x < 3.306 inches and �� < � < �,

y = 2:947

s
1� [

x� 0:359

2:947
]2 cos�

z = 2:947

s
1� [

x� 0:359

2:947
]2 sin�

The cone-sphere is 27.127 inches long or about 10.33� at 4.5 GHz. The parametric

patch model of the cone-sphere is shown in Figure 5.21. There are two symmetric

planes which are the XY and XZ planes. To reduce the memory and CPU time, we

could only grid a quarter of the cone-sphere surface. The quarter of the cone-sphere

surface is gridded into a set of 2520 curved triangles with 3884 edges and 1365 nodes.

The maximum edge length is �
8
.

The monostatic RCS for both HH and VV polarizations are plotted in dBSM,

as functions of the azimuthal angle in Figures 5.22 and 5.23. The elevation angle is

zero. There are 360 RHS vectors for this problem. This problem is run on a 64-node

partition of NAS Paragon. The memory required to run this problem on that system

is 11 Mbytes per node. The wall clock time is 6357 seconds to complete the run.

The metallic cone-sphere with gap target is the same as the cone-sphere target,

except for a gap next to the cone-sphere joint. The gap is 1
4
inch deep. The di�erence

between the cone-sphere with and without gap is only from 0 < x < 0:25 inch, where

it is de�ned by

y = 2:697 cos �

z = 2:697 sin �

where �� < � < �

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 115

Figure 5.21: The cone-sphere parametric geometry model

The discretized cone-sphere with gap surface is shown in Figure 5.24. As with

the cone-sphere without gap, only a quarter of the surface is modeled to compute the

radar cross section. The quarter of the surface is modeled by a set of 2576 curved

triangles with 3970 edges and 1395 nodes. The maximum edge length is �
8
.

The monostatic radar cross sections for both HH and VV polarizations are plotted

against azimuthal angle in Figures 5.25 and 5.26. The elevation angle is zero. There

are 360 RHS vectors for this problem. This problem is run on a 64-node partition of

NAS Paragon. The memory required to run this problem in the system is 11 Mbytes

per node. The wall clock time is 6639 second to complete the run.

The RCS of a metallic rectangular parallelpiped is computed for the purpose of

testing the accuracy of the ParaMoM-MPP code. The rectangular parallelpiped is

illuminated by incident waves with the frequency at 5GHz. The electrical size of the

rectangular parallelpiped is 1:25� � 1:25� � 1:87�. There are two symmetry planes

which are the XY and XZ planes. A quarter of the surface is gridded into a set of

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 116

-70

-60

-50

-40

-30

-20

-10

0

10

0 20 40 60 80 100 120 140 160 180

R
C
S
(
d
B
S
M
)

azimuth

HH Polarization

computed
measured

Figure 5.22: The RCS with HH polarization of a cone-sphere

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 117

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

0 20 40 60 80 100 120 140 160 180

R
C
S
(
d
B
S
M
)

azimuth

VV Polarization

computed
measured

Figure 5.23: The RCS with VV polarization of a cone-sphere

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 118

Figure 5.24: The cone-sphere with gap parametric geometry model

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 119

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

0 20 40 60 80 100 120 140 160 180

R
C
S
(
d
B
S
M
)

azimuth

HH Polarization

computed
measured

Figure 5.25: The RCS with HH polarization of a cone-sphere with gap

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 120

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

0 20 40 60 80 100 120 140 160 180

R
C
S
(
d
B
S
M
)

azimuth

VV Polarization

computed
measured

Figure 5.26: The RCS with VV polarization of a cone-sphere with gap

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 121

Figure 5.27: The quarter of rectangular parallelpiped parametric geometry model

1693 curved triangles with 2596 edges and 903 nodes. The maximum edge length is
�
8
. The quarter of the rectangular parallelpiped surface which is gridded is shown in

Figure 5.27.

The monostatic radar cross sections for both HH and VV polarizations are plotted

as functions of the azimuthal angle in Figures 5.28 and 5.29. There are 360 RHS

vectors for this problem. This problem is run on a 32-node partition of NAS Paragon.

The memory required to run this problem on that system is 9 Mbytes per node. The

wall clock time is 3813 seconds to complete the run.

A perfectly conducting sphere with radius 0.8 meter is covered by a dielectric

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 122

-20

-15

-10

-5

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160 180

R
C
S
(
d
B
S
M
)

azimuth

HH Polarization

computed
measured

Figure 5.28: The RCS with HH polarization of a rectangular parallelpiped

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 123

-20

-15

-10

-5

0

5

10

15

20

25

30

0 20 40 60 80 100 120 140 160 180

R
C
S
(
d
B
S
M
)

azimuth

VV Polarization

computed
measured

Figure 5.29: The RCS with VV polarization of a rectangular parallelpiped

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 124

-40

-35

-30

-25

-20

-15

-10

-5

0

5

10

0 20 40 60 80 100 120 140 160 180

R
C
S
(
d
B
S
M
)

azimuth

HH Polarization

ibc_para
ibc_serial

Mie

Figure 5.30: The RCS with HH polarization of a coated conducting sphere

material. Where the thickness of the coating is 0.2 meter with the permittivity 10�0

and the permeability�0, wh ere �0 and �0 are free space permittivity and permeability,

respectively. The incide nt plane wave has a frequency of 47.77 MHz with horizontal

polarization. The receiver's polarization is also horizonal. The parametric patch

model of the sph ere has 182 triangular patches with 104 nodes and 286 edges.

The bistatic radar cross section for the HH polarizations is ploted in dBSM as func-

tion of azimuthal angle in Figure 5.30. There are three results shown in Figure 5.30,

a Mie theory result, the modi�ed ParaMoM code result, and the ParaMoM-MPP

result. All the results are agreed. On a 32 nodes CM-5, the ParaMoM-MPP code

spent 11 seconds to �ll the matrix, 1.24 seconds to do the LU/Solve, and the wall

clock time 28 seconds. On a SUN 10 workstation, the modi�ed ParaMoM code spent

261 seconds to �ll the matrix, 22 seconds to do the LU/Solve, and the wall clock time

287 seconds.

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 125

5.3 Discussion of Two Parallel Moment Method

Codes

In this section, we discuss the parallel implementation of the PATCH code, which

was developed by Johnson, Wilton, and Sharp [15] to see the similarities and the

di�erences between the parallel PATCH code and the ParaMoM-MPP code. The

similarities are listed as below:

� Both are general purpose computer codes for electromagnetic scattering from

and radiation by objects of arbitrary shape. They are based on the method of

moments with a surface integral formulation in the frequency domain. They

use surface patches, which conform to surfaces and boundaries of general shape

and allow variable patch density over the surface of the object. The basis

functions for both codes are de�ned on pairs of adjacent patches and give a

current representation free of line and point charges.

� Both have the following capabilities: computation of scattering from multiple

bodies, treatment of multiple intersecting surfaces, use of symmetry planes to

reduce the number of unknowns, treatment of surfaces with lumped and dis-

tributed impedance loads, and the capability for plane wave or voltage source

excitation. The outcomes of these two codes are the currents on the bodies,

radiated �elds, far �elds, and radar cross section.

� Both codes are implemented on coarse-grained MIMD distributed memory sys-

tems. Message passing and a direct dense matrix equation solver are the main

tools for both codes. The main features of the parallel matrix �ll algorithm, are:

1) looping over patches rather than looping over edges; 2) no communication

takes place; 3) a good load balance is achieved. LU decomposition with partial

pivoting is applied to factorize the moment matrix.

The di�erences between the PATCH and ParaMoM-MPP code are listed below:

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 126

� PATCH uses the popular Rao-Wilton-Glisson [14] technique with
at facets.

ParaMoM-MPP uses Wilkes' and Cha's basis function which is de�ned in terms

of any (set of two) arbitrary curvilinear surface coordinates and conforms to the

exact surface curvature of the parametric surface at hand. Figure 5.31 shows the

comparison of performance on a 0.4� circumference (ka = 0:4) sphere, between

the popular RWG technique with
at facets and that using ParaMoM. The

improvement in accuracy with similar matrix size is impressive and that leads

to reduction in matrix size, for a speci�ed error tolerance. Cha's group provides

a bar chart in Figure 5.32 showing the matrix size comparison between the

RWG code and ParaMoM 1.0, for several textbook shapes, at a 0.5 dB average

error tolerance. A better than two-to-one reduction in matrix size is obtained

with the use of curved patches.

� PATCH only uses the electric �eld integral equation formulation. ParaMoM-

MPP has used not only the electric �eld integral equation formulation but the

magnetic �eld integral equation and the combined �eld integral equation as

well.

� In matrix �ll, PATCH has two redundant computations of the magnetic vec-

tor potential and electric scalar potential for each source-�eld patch pair, but

ParaMoM-MPP has only an average of one redundant computation of Green's

function for each source-�eld patch pair. PATCH does not precompute the ar-

rays required by the matrix �ll. They are computed along with the progress of

the �ll process. The ParaMoM-MPP matrix �ll algorithm is muchmore e�cient

than that of PATCH.

� Compared to PATCH, ParaMoM-MPP is implemented on more architectures,

so that it has better portability.

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 127

Bistatic RCS of Sphere with ka = 0:4, HH polarization

Figure 5.31: Comparison of accuracy on a small sphere

CHAPTER 5. PERFORMANCE AND NUMERICAL RESULTS 128

Figure 5.32: Comparison of matrix size for a speci�ed (0.5 dB) error tolerance

Chapter 6

Conclusion

In this thesis, we described Wilkes' and Cha's Parametric patch model and their basis

function which is de�ned on a typical patch. Each patch is a nonplanar surface, that is

a triangle in curvilinear coordinate space. The EFIE, MFIE, and CFIE formulations

are derived for calculating scattering by 3-D arbitrarily shaped conducting bodies

with and without dielectric material coating. A sequential computer program has

been written based on the formulation developed in Chapter 3. This code has been

merged into the ParaMoM code previously developed by Cha's group at SRC based

on the formulation described in Chapter 2. The ParaMoM program calculates the

Radar Cross Section (RCS) conducting bodies whose surfaces are arbitrarily shaped

with or without dielectric coating.

If the unmodi�ed ParaMoM code was parallelized, the large setup memory re-

quired would make it impractical for MIMD distributed computers. ParaMoM was

modi�ed to reduce the setup memory to a manageable level for a MIMD distributed

computer. The parallel implementation of the ParaMoM code is called ParaMoM-

MPP. ParaMoM-MPP is implemented on three di�erent MIMD distributed memory

architectures: the Thinking Machine's CM-5, Intel machines, and IBM SP-1. In order

to demonstrate the performance of the ParaMoM-MPP code, a series of tests were

run to obtain performance data. The performance data listed in the previous chapter

shows good performance of all three implementations. To demonstrate the accuracy

129

CHAPTER 6. CONCLUSION 130

of the formulation derived in the thesis, ParaMoM-MPP has been used to compute

the scattering for the EMCC testing cases. The ParaMoM-MPP RCS results agree

well with measured results.

From running EMCC test cases, we observe that exploiting the target's geometric

symmetry gives ParaMoM-MPP an advantage in RCS prediction applications. In

the EMCC test cases, we take this advantage to reduce problem size by a maximum

factor of eight. In a distributed MIMD system, there is only a �xed amount of RAM

for each node and no virtual memory in the system. The above-mentioned reduction

in setup memory requirement enables the given system to solve a bigger problem.

The parametric patch model requires fewer unknowns than the
at patch model

under the same error tolerance. This is demonstrated by Wilkes and Cha in Fig-

ures 5.31 and 5.32 in the previous chapter. To demonstrate this using ParaMoM-

MPP, we choose the EMCC single ogive target. First, three symmetry planes are

used so that only one eighth of the single ogive is modeled by 2088 curved triangular

patches. There are eight sub-problems to solve. The average number of equations in

each sub-problem is about 3150. Second, the single ogive is modeled without exploit-

ing any symmetry. The dimension of the moment matrix for the whole ogive is chosen

to be 7332. The total allocated memory to run this problem is 21 Mbytes per node.

The RCS with both HH and VV polarizations with and without symmetry plane

are shown in Figures 5.16 and 5.17. This result shows that the number of patches

could be much less. This result gives clear vision about the advantage of taking the

symmetry into consideration in terms of the memory per node requirement. It is very

important for a distributed memory MPP system.

In order to take advantage of state-of-the-art computer technology as much as we

could, we designed parallel algorithms for all the components of the ParaMoM code.

We implemented a coordinated parallelism algorithm which takes advantage of both

the message passing paradigm and data parallel paradigm on Thinking Machine's

CM-5. We implemented algorithms which used the NX message passing library [68]

or PVM [69] and ScaLAPACK libraries on the Intel computers. The PVM (Parallel

CHAPTER 6. CONCLUSION 131

virtual machine) and ScaLAPACK libraries are used to accomplish message pass-

ing and direct LU matrix solution, respectively. PVM automatically converts data

formats among computers from di�erent vendors, making it possible to run an ap-

plication over a collection of heterogeneous computers. To demonstrate portability,

the PVM Intel version of ParaMoM-MPP was ported to the IBM SP-1 with little

e�ort. We also ported the PVM Intel version of ParaMoM-MPP to a FDDI-based

Gigswitch-connected DEC alpha farm.

In general, high performance and good speed-up are achieved in these parallel

implementations. The performance is scaled well with the problem size and ma-

chine size. Highly portable code development across three parallel systems with

diverse con�gurations and hardware capabilities has been achieved by using the

BLACS/ScaLAPACK on the distributed system, which is eventually achieved by

using PVM message-passing programming interface. This code can further be eas-

ily ported to a heterogeneous computing environment. The systems which are used

to run ParaMoM-MPP represent most of the state-of-the-art architectures in today's

massively parallel processing technology. We may summarize the relative performance

of various parallel machines as follows.

The CM5 Implementation

The
exibility given to a user to choose among programming models is an important

feature of CM-5, since it lets users choose the technique that is best, not only for their

application, but for each part of their application. The ParaMoM-MPP implementa-

tion is a good example. The matrix �ll portion of ParaMoM-MPP is optimized by slab

data decomposition. Utilizing the edge numbering scheme to loop over patches rather

than basis functions minimizes the redundant computation to one Green's function

for each source-�eld patch pair. The matrix �ll algorithm has no internode commu-

nication and very good load balancing. The �ll algorithm is scalable as discussed in

Chapter 5. The data parallel program for factoring and solving the matrix equation

is written in CM Fortran interfaced with the CMSSL (Connection Machine Scalable

Scienti�c Library). The factor/solve implementation is optimized because: 1). It has

CHAPTER 6. CONCLUSION 132

good load balance (block cyclic data decomposition); 2). CM Fortran utilizes the

full power of four vector units within each CM-5 node; the peak performance for the

CM-5 scalar nodes is 5 M
ops but using the 4 vector units the peak performance

increases to 128 M
ops; 3) The CMSSL Library is a well-written and well-respected

piece of software. The performance of factor/solve is the best on the CM-5 among

the three platforms. The I/O performance is excellent to both SDA and Data Vault

systems. The CM-5 implementation can be ported to all CM-5 partitions without

change.

The drawback of the CM-5 implementation is that the matrix �ll is relatively

poor. Fortran 77 can not utilize the vector units in the CM-5 nodes, therefore the

performance is expected to be poor since CM-5 SPARC2 node has only 5 M
ops peak

performance. Although it is possible to utilize the vector units by implementing in

CM DPEAC (a CM assemble statements), this is not expected to improve the �ll

performance much. Because of its nature, the problem is very di�cult to vectorize

and pipeline e�ciently.

The Intel Paragon Implementation

Both PVM and NX (the Intel message passing library) are implemented on vari-

ous Intel machines, such as the iPSC/860, the Touchstone Delta, and the Paragon.

These implementations are very
exible. Users can con�gure virtually the architec-

ture. The BLACS gives good communication libraries and the ScaLAPACK provides

scalable factor/solve functions. Combining the above with powerful Paragon nodes,

the ParaMoM-MPP code gives good performance for both matrix �ll and factor/solve.

For matrix �ll, a slab data decomposition not only minimizes the amount of redun-

dant computation of Green's function for each source-�eld patch as with the CM-5

implementation but achieves good load balancing as well. However, the block scat-

tering data decomposition gives better load balancing for LU with partial pivoting.

Since our Intel implementation is in one piece, it is impossible to achieve load bal-

ancing for both matrix �ll and factor/solve without data reshu�ing. We not only

implemented ParaMoM-MPP to optimize matrix �ll (or slab data decomposition)

CHAPTER 6. CONCLUSION 133

but also implemented it to use I/O with a parallel �le system as a bu�er to reshu�e

data in each node. We observe that the same total wall clock time was used to run

the code for the same application. The number of factor/solve M
ops achieved after

data reshu�ing is almost double the number without reshu�ing. We note that the

I/O performance is relatively poor on the NAS Paragon, but that may be in part

due to the relatively low number of I/O nodes in the NAS Paragon con�guration.

Portability is achieved by the PVM library, which is available to many systems.

The IBM SP-1 Implementation

The IBM SP-1 has the best scalar node performance among these three platforms,

and as a result it gives the best matrix �ll performance per node for the platforms

tested. The SP-1 system is still a new machine and in the test stage; the system

software is not yet mature. It is believed that the IBM SP series can be very powerful

once the software is further developed.

The DEC Alpha Farm Implementation

For testing purposes, we also implementedParaMoM-MPP on a FDDI-based Gigswitch-

connected DEC Alpha workstation cluster. A distributed system provides higher

performance and larger memory per node than MPP systems. This makes the high

performance distributed computing (HPDC) approach to electromagnetic application

feasible and attractive to solve modest sized problems. However, the communication

bandwidth on a typical network does not scale with increased numbers of nodes.

Therefore the workstation cluster is probably not a practical solution for solution of

large problems since the LU factor performance will be limited by the communication

bottleneck.

Our contributions are summarized below:

� Using Wilkes' and Cha's [2] parametric surface patch model, an electromag-

netic scattering formulation for three-dimensional arbitrarily shaped conducting

bodes with or without dielectric material coating was derived.

CHAPTER 6. CONCLUSION 134

� The ParaMoM code was parallelized to run on three massively parallel archi-

tectures.

� The ParaMoM code was extended to treat dielectric coating.

Desirable features of the ParaMoM-MPP implementation are listed below:

Accuracy

The ParaMoM-MPP code is functionally identical to the mature, stable, and

well-validated ParaMoM code. Results that validate ParaMoM-MPP are presented

in Chapter 5.

E�cient Parallel Implementation

The overall performance of the parallel code is very good on the target architec-

tures. The solution time for relatively large problems is two orders of magnitude

shorter on typical MPPs than on the fastest state-of-the-art single-processor work-

station.

Portability

The parallel ParaMoM code was implemented on multiple MPP architectures.

Di�erences between the implementations are super�cial.

Scalability

Empirical and analytical results demonstrate that excellent e�ciency may be ob-

tained on very large problems and large MPP con�gurations.

Flexibility to Incorporate Future Developments

The matrix �lling algorithm utilizes a
exible data partitioning scheme that can

easily be interfaced to a variety of matrix solvers. The out-of-core �ll algorithm gives

the ability to �ll the matrix either in-core or out-of-core. This algorithm has been

incorporated and tested on the CM-5 code.

CHAPTER 6. CONCLUSION 135

Delivery of Useful MPP Codes on Multiple Platforms

The ParaMoM-MPP code has been fully tested on three basic con�gurations: In-

tel, CM-5, and IBM SP-1.

Future Work

Our work demonstrates that parallel computing and advanced solution techniques

are equally important to successfully achieve full-scale aircraft RCS prediction. Our

work is a very successful example of combining state-of-the-art massively parallel pro-

cessing technology with state-of-the-art computational electromagnetic techniques.

This approach will lead the way to achieve RCS prediction of a full-scale aircraft.

To illustrate this, we examine the case of the VFY218. The full-scale VFY218 has a

total surface area, including engine ducts and exhaust, of approximately 200 m2. An

exact method of decomposition can be used to isolate the interior solutions (ducts,

exhaust) from the exterior solution (outside the aircraft). This will reduce the surface

area of the problem to 160 m2. One symmetry plane can be used to halve the 160 m2

to 80 m2. We now have 900 �2 at 1 GHz and 225 �2 at 500 MHz. At 500 MHz, a 10

points per wavelength sampling rate creates a moment matrix of dimension 45,000.

An out-of-core implementation on a state-of-the-art IBM 512 SP-2 system{which will

be installed at the Cornell Theory Center later in 1994{can handle this case. SRC

is developing an advanced method capable of accurate prediction at a sampling rate

around 6 points per wavelength. This method will be in ParaMoM 2.0. At 1 GHz,

this sampling rate leads to a matrix order of 65,000 for a VFY218. When ParaMoM

2.0 is developed, the parallel implementation will achieve the RCS prediction of a full-

scale VFY218. Practical RCS prediction using numerical methods is realistic with

massively parallel processing technology.

It is possible to combining the MoM with other numerical techiques to develop

a new algorithm. The new algorithm may reduce the computation from O(N3) to

CHAPTER 6. CONCLUSION 136

O(N logN).

Appendix A

A Normalized Local Area

Coordinate System

The integral considered in Chapters 2 and 3 is

I(x; y) =
Z
T
f(x; y; u; v)du dv (A.1)

where T is a
at triangle in the parametric (u; v) space with an area of A. The most

convenient way to evaluate the integral in the parametric (u; v) space is to transform

coordinates to a local system of area coordinates (Chapter 8 [49]) within triangle

T . The triangle T is divided into three regions of area A1, A2, and A3 which are

constrained to satisfy A1 + A2 + A3 = A shown in Figure (A.1). We de�ne the

nomalized area coordinates as

� =
A1

A

� =
A2

A

 =
A3

A
(A.2)

which, because of the area constraint, must satisfy

� + � +
 = 1 (A.3)

137

APPENDIX A. A NORMALIZED LOCAL AREA COORDINATE SYSTEM 138

(u,v)

(u2 ,v2)

(u1,v1)

A3A2

A1

u

v

ρ2

ρ

ρ1

3

(u3,v3)

ρ

→

→

→
→

Figure A.1: De�nitions of areas used in de�ning area coordinates.

Only two of the normalized area coordinates can be considered as independent

variables. Each point (u; v) within triangle T can be represented in terms of �, �, and

 and its vertices as

0
@ u

v

1
A = �

0
@ u1

v1

1
A+ �

0
@ u2

v2

1
A+

0
@ u3

v3

1
A (A.4)

where

0
@ u

v

1
A,
0
@ u1

v1

1
A,
0
@ u2

v2

1
A, and

0
@ u3

v3

1
A are points in vector form in the (u; v)

space. They are denoted by ~�, ~�1, ~�2, and ~�3 as shown in Figure A.1. Substituting

these into (A.4) and using (A.3) to eliminate
, we obtain

~� = �~�1 + �~�2 + (1� � � �)~�3 (A.5)

Di�erentiating ~� in (A.5) with respect to � and �, respectively, gives

@~�

@�
= ~�1 � ~�3 =j ~�1 � ~�3 j �̂

APPENDIX A. A NORMALIZED LOCAL AREA COORDINATE SYSTEM 139

(ξ,ζ)

(0,1)

(1,0)

(0,0)

A3A2

A1

^

ζ
^

ξ

Figure A.2: The local area system of coordinates.

@~�

@�
= ~�2 � ~�3 =j ~�2 � ~�3 j �̂ (A.6)

where �̂ and �̂ are the unit vectors of � and �, respectively, shown in Figure A.2.

The Jacobian for the local area coordinates is given by

J =j @~�
@�
� @~�

@�
j=j ~�1 � ~�3 j j ~�2 � ~�3 j j �̂ � �̂ j= 2A (A.7)

so that, it can easily be shown that the surface integral over T in (A.1) transforms

as follows:

I(x; y) =
Z
T
f(x; y; u; v)ds = 2A

Z 1

0

Z 1��

0
f(x; y; u(�; �); v(�; �))d�d�: (A.8)

where u(�; �) and v(�; �), given by (A.4), are linear functions of � and �.

Appendix B

De�nition of Scattering Angles

The azimuth angle and the elevation angle used in the RCS plots are de�ned in

Figure B.1, where AZ denotes the azimuth angle, El denotes the elevation angle, and

RLOS denotes the line of sight determined by AZ and EL.

In Figure B.2, T denotes the transmitter; R is the receiver; � denotes the �xed

bistatic angle; �1 is the initial bistatic angle; �2 is the �nal bistatic angle; AZ is the

initial azimuth angle; and EQLOS is the �xed equivalent line of sight.

140

APPENDIX B. DEFINITION OF SCATTERING ANGLES 141

Figure B.1: De�nition of azimuth, elevation, and RLOS angles

APPENDIX B. DEFINITION OF SCATTERING ANGLES 142

(a). Monostatic or �xed bistatic angle

(b). Bistatic angle with �xed transmitter

(c). Bistatic angle with �xed equivalent line of sight

Figure B.2: De�nition of monostatic and bistatic angles for di�erent RCS modes

Appendix C

Overview of Three MPP

Architectures

This appendix is a simple overview of three coarse-grained parallel architectures.

They are the Thinking Machine Corporation CM-5, Intel Supercomputing Division's

Paragon, and the IBM SP-1.

C.1 The CM-5 System Overview

This section gives a brief overview of the CM-5 system. A CM-5 system contains four

major parts:

� processing nodes

� control processors

� I/O nodes

� networks

The CM-5 is available in con�gurations of 32 to 1024 processing nodes, each

node being a RISC microprocessor with optional attached vector units. Current

143

APPENDIX C. OVERVIEW OF THREE MPP ARCHITECTURES 144

implementations use a SPARC microprocessor with 32M to 128M bytes of memory

and four optional vector units. Each processing node operates at 33 MHz and is rated

at 22 Mips and 5 MFlops. When equipped with vector units, each node is rated at

128 Mips (peak) and 128 MFlops (peak).

The processing nodes can be divided into several partitions and each partition

contains a control processor. The control processors run a UNIX-based operating

system. They can download programs into the processing nodes in their partition,

control the program execution on the processing nodes, and handle sequential I/O

for processing nodes. The control processors also participate in computation when

the program is executed in the host-node programming mode.

The I/O nodes, which also connect to the network, handle high performance

parallel I/O for processing nodes. Besides ordinary NFS �le systems, the I/O nodes

support all HIPPI (High Performance Parallel Interface), SDA (Scalable Disk Array)

and VME interfaces, thus allowing connections to a wide range of computers and I/O

devices. A CMIO interface supports mass storage devices such as the Data Vault.

The peak throughput is from 20 to 200 Mbyte/sec.

The CM-5 internal networks (Figure C.1) include two components, a data network

and a control network. The data network contains two channels, a left data network

and a right data network. The control network contains three di�erent networks,

a broadcast network, a combine network, and a global network. The CM-5 has a

separate diagnostics network, which is visible only to the system administrator, to

detect and isolate errors throughout the system.

The data network, which is a 32-bit-wide data path, provides high performance

data communications among all system components. The network has a peak band-

width of 5M bytes/sec for node-to-node communication. However, if the destination

is within the same cluster of 4 or 16, it can give a peak bandwidth of 20M bytes/sec

and 10M bytes/sec, respectively. The topology of the CM-5 data network is a fat tree

and the communication mechanism is worm-hole. Figure C.2 shows the data network

with 16 nodes. The fat tree topology allows more than one path to be used for data

transmission. The data path will not be blocked unless all links are occupied. Data

APPENDIX C. OVERVIEW OF THREE MPP ARCHITECTURES 145

Bus

Memory

Node
Processor

Network
Interface

Vector
Unit

Network
Data

Network
Control

Network
Left Data

Network
Right Data

Network
Broadcast

Network
Combine

Network
Global

Figure C.1: CM-5 network interface.

packets can choose any link that connects to its destination during data transmission,

which reduces the possibility of link contentions with other data packets. Each packet

is a size of 5 words long, which means that a large message must be divided into many

packets for transmission. Data packets from other nodes can be sent via the same link

interactively. Data packets from di�erent nodes can share the same link and thus will

not be blocked by the large message. Link contention will not be a problem on CM-5

unless the amount of data has exceeded the capacity of the data network. Since data

packets may be sent via di�erent links, the receiving order may be di�erent from the

sending order. A sequential mechanism is needed when transmitting data larger than

5 words.

The control network handles operations requiring the cooperation of many or all

processors. The broadcast network broadcasts messages to all nodes. The combine

network supports parallel pre�x, reduction operations, and network-done tests; it

accelerates the cooperative mathematical and logic operations. The global network

handles the synchronization for the nodes of CM-5; it supports both synchronous and

asynchronous interfaces to perform synchronization among processing nodes.

APPENDIX C. OVERVIEW OF THREE MPP ARCHITECTURES 146

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure C.2: CM-5 data network with 16 nodes.

CMMD, which provides a full range of message-passing facilities, is the standard

communication library of CM-5. CMMD provides both host-node and hostless pro-

grammingmodes. The front-end control processor acts as the host when the host-node

programming mode is used.

CMMD provides functions for

� \Cooperative" concurrent message passing, in which synchronization occurs

only between matched sending and receiving nodes and only during the act

of communication.

� Asynchronous, interrupt-driven, message passing.

� Global message passing, which involves and synchronizes all nodes within the

partition.

I/O operations can be done by each node independently or by all nodes working

globally.

The CM-5 also provides active message CMAML, which is an asynchronous com-

munication mechanism with the following underlying scheme: Each message header

contains the address of a user-level handler that is executed at the receiving node

upon message arrival with the message body as argument(s).

APPENDIX C. OVERVIEW OF THREE MPP ARCHITECTURES 147

C.2 The CM-5 at NAS

This section describes the hardware and software con�guration of the Thinking Ma-

chine Corporation (TMC) Connection Machine 5 (CM-5) system at NAS.

The CM-5 Hardware The CM-5 at NAS is a distributed-memory multiprocessor

computer. It has the following features.

� 128 compute nodes; each node consists of a SPARC processor and four vector

processors and can give a theoretical peak performance of 128 MFLOPS. The

theoretical total peak performance of the 128 node system is about 16 GFLOPS.

� Each node has 32 MegaBytes (MB) of local memory for a total of 4 GigaBytes

(GB) of memory.

� The nodes can be organized into a single partition or multiple partitions. A

partition can be as small as 32 nodes or as large as the entire computer.

� Each partition has a control processor called the Partition Manager (PM) that

governs the allocation of parallel resources, performs the inherently sequential

part of data-parallel programs, and acts as an interface to external networks.

Each partition manager is a SPARC processor without vector units.

� The CM-5 is connected to the outside world by ethernet and HiPPI. HiPPI

was recently installed (5/94) and is currently undergoing testing. It should be

available soon for fast �le transfer to long term storage.

The CM-5 Internal Communication Networks The CM-5 has two internal

networks that support interprocessor communication. They are:

� Control Network: The control network provides tightly coupled communica-

tions services. It is optimized for low latency and supports synchronization and

broadcast operations. It has latency of 2-5 microseconds.

APPENDIX C. OVERVIEW OF THREE MPP ARCHITECTURES 148

� Data Network: The data network provides loosely coupled communications

services. It is optimized for high bandwidth and supports point-to-point com-

munication. The data network interconnect is a fat tree. It has a peak band-

width of 20 MB/s between any two nodes (one direction).

Measured performance or point-to-point communication (which uses the data net-

work) has about 80 microseconds latency (startup time) and 8.7 MB/sec bandwidth.

Global operations generally use the control network and are extremely fast, as

long as they do not involve large arrays. Global synchronizations and integer re-

ductions take about 5 microseconds. Global
oating point reductions take about 25

microseconds. A broadcast of a single word to all nodes takes about 8 microseconds.

An all-to-all gather (CMMD concat with nodes()) takes 42 microseconds for a sin-

gle word on each node. The broadcast and concatenation operations take longer for

longer messages, reaching an aggregate bandwidth of 25 MB/sec and 34 MB/sec on

32 nodes, respectively. The preceding numbers were obtained with CMMD 3.1 �nal.

The CM-5 I/O System

� The CM-5 at NAS is a Scalable Disk Array (SDA) with 48 GB of fast parallel

disk space.

The SDA is a RAID 3 device. Multiple (up to 48) small disks operate together

as a unit and �les are distributed (striped) over the small disks. There is one

parity drive. From the software point of view, the SDA looks like an ordinary

UNIX device with enhancements for large (> 4 GB) �les and fast parallel I/O.

� The CM-5 has three HIPPI (High Performance Parallel Interface) interfaces to

link the CM-5 and its storage devices to other supercomputer systems such as

the CRAY Y-MP C90. The HIPPI interfaces will not be operational until mid

1994.

� The NAS CM-5 does not have Datavault.

The CM-5 Software and Programming Environment

APPENDIX C. OVERVIEW OF THREE MPP ARCHITECTURES 149

� CMOST: The CM-5 operating system, CMOST, is an enhanced version of the

UNIX operating system. It is binary-compatible with SunOS 4.1 (for scalar

programs). The enhancements provide support for parallel programming. The

partition manager runs a full version of CMOST; the processing nodes run a

CMOST microkernel.

� Prism: The Prism programming environment is an integrated-graphical envi-

ronment for program editing, debugging, data visualization and performance

analysis. Prism operates on workstations running the X window system. A

commands-only version is also available for users without access to X window.

� CM/AVS: CM/AVS is a graphical user interface that adopts and extends the

Application Visualization System (AVS) to the CM-5. A user can use CM/AVS

to build distributed-visualization applications that involve operations such as

�ltering, graphing, volume rendering, and animation. CM/AVS is not generally

available. If you need to use it, contact NAS User Services.

Data Parallel Languages

� CM Fortran: CM Fortran is a standard Fortran compiler supplemented with

the array-processing extensions of Fortran 90.

� C*: A version of standard C with extensions to support data parallel program-

ming.

� *Lisp: The data parallel version of Lisp. Currently only the *Lisp interpreter

is available for the CM-5.

� The CMAX translator is available to assist in converting serial Fortran 77 source

code into data parallel CM Fortran source code.

Data Parallel Processing: From the software perspective, an array object refers

to all the data elements of the array simultaneously. From the hardware perspective,

the separate operations on the array's elements are all performed simultaneously.

APPENDIX C. OVERVIEW OF THREE MPP ARCHITECTURES 150

CM Fortran: The CM Fortran language is an implementation of Fortran 77 sup-

plemented with array-processing extensions from the ANSI and ISO (draft) standard

Fortran 90. These array-processing features map naturally onto the data parallel

architecture of the Connection Machine (CM) system, which is designed for compu-

tations on large data sets. CM Fortran thus combines:

� The familiarity of Fortran 77, still the language of choice for scienti�c comput-

ing;

� The expressive power of Fortran 90, which o�ers a rich selection of operations

and intrinsic functions for manipulating arrays;

� The computational power of the CM system, which brings thousands of proces-

sors to bear on large arrays, processing all the elements in unison.

In Fortran 77, operations are de�ned only on individual scalars. Operating on

an array requires stepping through its elements, explicitly performing the operation

on each one. With Fortran 90 constructions, it is not necessary to reference array

elements separately by means of subscripts, and it is not necessary to write DO loops

or other such control constructs to have the operation repeated for each element. It

is su�cient simply to name the array as an operand or argument.

CM Fortran implements the array-processing features of Fortran 90. Features of

Fortran 90 in the major areas other than array processing | such as pointers, struc-

tures, modules, and precision control | are not part of CM Fortran.

CM Fortran Utility Library: The Utility Library provides convenient access from

CM Fortran to the capabilities of lower-level CM software. The purpose is typically

to achieve functionality or performance beyond what is currently available from the

compiler. CM Fortran programmers can use Utility Library procedures in situations

where one is normally tempted to make explicit calls to lower-level software. The CM

Utility Library provides parallel I/O which is compatible with the parallel I/O of the

APPENDIX C. OVERVIEW OF THREE MPP ARCHITECTURES 151

CMMD library and the CM Fortran timer.

Software Libraries

� CMSSL Scienti�c and Mathematical Library: The CM Scienti�c Software Li-

brary (CMSSL) provides routines for performing data parallel versions such as

numerical linear algebra, FFTs, ordinary di�erential equations, optimization,

random number generation, and statistical analysis. The library also provides

optimized communication functions important to structured- and unstructured-

grid computations for the numerical solution of partial di�erential equations

and optimization problems such as: communication compiling, partitioning,

polyshifting, gathering and scattering, and all-to-all broadcasting and reduc-

tion.

� CMMD Communication Library: The Connection Machine communication li-

brary, CMMD, supports node level programming (message passing) by provid-

ing routines for fast and e�cient communication between processing nodes.

� CMX11 Visualization Library: This library provides routines to transfer parallel

data between the CM-5 and any workstation running X11. The library can be

called from CM Fortran and C*.

C.3 The Intel Paragon System at NAS

This section describes the hardware and software con�guration of the Intel Paragon

at NAS.

The Paragon is a 227-node i860/XP-based distributed memory multiprocessor

with a mesh interconnection network. It supports the message-passing program-

ming model with the NX communication library. It will eventually replace the NAS

iPSC/860 (hypercube).

APPENDIX C. OVERVIEW OF THREE MPP ARCHITECTURES 152

Hardware: The NAS Paragon (grace) is a distributed-memorymultiprocessor. The

hardware con�guration is as follows:

� Nodes: 208 computing nodes have 32 MB memory per node used for running

parallel applications. 6 Service nodes have 32 MB memory per node for users

running interactive jobs. 8 I/O nodes have 32 MB memory per node connected

to RAID disks. 2 ethernet nodes have 16 MB memory per node connected to

an external ethernet network. 2 HiPPI nodes have 32 MB memory per node. 1

FDDI node has 16 MB memory connected to an external FDDI network.

� Networks: FDDI is currently the default, Ethernet is accessible as grace-ec, and

HIPPI is not yet available.

� Disk: 9 RAIDs are at 4.8 MB/RAID for 43 Gb total unformatted space. The

allocation is as follows:

{ System and Swap: 14 GB.

{ Users: Home Directories 4 GB and PFS 22 GB.

� Descriptions:

{ Each node has two i860/XP RISC processors. Currently only one processor

can be used. Peak performance of the i860/XP is 75 MFLOPS (double

precision), giving a theoretical peak performance of almost 16 GFLOPS for

the entire computer. Typical performance for real CFD codes is between

5 and 10 MFLOPS per node.

{ Each computing node has 32 MB of local memory. Of this, approximately

22 MB is available to user programs.

{ The Parallel File System (PFS) provides scratch space for fast parallel I/O.

It provides functionality equivalent to the hypercube CFS.

{ 6 nodes comprise the service partition and provide an interface to the

outside world, serving as a \front end" to the computer. These service

APPENDIX C. OVERVIEW OF THREE MPP ARCHITECTURES 153

nodes run interactive jobs, such as shells and editors. They appear as one

computer running Unix. Eventually (when the software is �xed) processes

will be migrated between processors for load balancing.

{ 208 nodes comprise the compute partition, and run parallel applications.

{ The nodes are connected by a network with the topology of a two-dimensional

mesh. Messages are packetized and routed using dimension-order routing.

Messages are automatically routed through intervening nodes without in-

terrupting the processor.

Performance: Under the current version of the operating system the la-

tency (startup time) for point-to-point messages is about 120 microseconds

and the bandwidth is about 35 MB/sec. These are roughly independent of

the source and destination nodes. Global operations are implemented us-

ing point-to-point communication and have correspondingly high latencies

which vary with partition size.

The capability of the hardware is about 5 times better than these numbers

and we expect to see them improve with subsequent operating system

releases and possible hardware upgrades.

{ The Paragon is known as \grace.nas.nasa.gov" and can be accessed via

telnet or rlogin.

Software

� OSF/1: The Paragon runs OSF/1 from the Open Software Foundation. OSF/1

is an emerging Unix standard which contains features from both System V and

Berkeley Unix.

OSF/1 runs on top of the Mach 3.0 kernel from Carnegie Mellon University.

OSF and Mach on the Paragon have both been been extended to support a

distributed memory environment.

Each node runs its own copy of OSF/1. This takes up about 10 megabytes per

node.

APPENDIX C. OVERVIEW OF THREE MPP ARCHITECTURES 154

� SUNMOS: NAS system developers are currently testing a second operating

system for the Paragon{SUNMOS. SUNMOS can run concurrently with OSF

but reduces the number of compute nodes available to OSF applications. It

is much less
exible than OSF but provides better performance for message

passing. SUNMOS does not run during regularly scheduled time, but may be

requested during dedicated time. For more information on SUNMOS, see the

nasgopher �le \sunmos".

� NX: NX is a library of routines for message passing and management of parallel

jobs. It is nearly identical to the NX message passing library on the Intel

iPSC/860 (hypercube).

� NQS: NQS is used for submitting batch jobs that run at night.

� ipd: ipd is a debugger which handles parallel applications.

� PVM: Parallel Virtual Machine 3.2 is available.

C.4 The IBM SP-1 System at ANL

The IBM SP-1 is a new parallel computer designed to make the best use of IBM's

powerful RISC technology combined with a high-speed switch. Special features of

this SP-1 are:

� large memory per node (128 MBytes),

� local disks on each node (1 GByte),

� full Unix on each node (IBM AIX 3.2.4),

� high-performance nodes,

� high-performance switch,

� high I/O bandwidth of nodes.

APPENDIX C. OVERVIEW OF THREE MPP ARCHITECTURES 155

The hardware con�guration of the IBM SP-1 at Argonne National Labortroy (or the

Argonne SP-1) consists of 128 nodes and two compile servers. Each node is essentially

an RS/6000 model 370. This model has a 62.5 MHz clock speed, a 32-KB data cache,

and a 32-KB instruction cache. Key features of this system are:

1. 128 Mbytes of memory per node

2. GBytes local disk on each node (400 Mbytes available to users, the rest for

paging)

3. Full Unix on each node (IBM AIX 3.2.4)

4. Each node accessible by Ethernet from the internet

5. High-performance Omega switch (50 � sec latency, 8.5 Mbytes/sec bandwidth

when using EUI-H)

In addition, the ANL SP-1 will soon have a large high-performance �ll system (220

Gbytes of RAID disk and a 6-T Byte automated tape library).

The peak performance of each node is 125 M
ops (1674-bit
oating point add

and 1
oating point multiply in each clock cycle). In practice, each node can achieve

between 15 and 70 M
ops on Fortran code. Higher performance can be reached by

using BLACS or ESSL routines.

Each SP-1 node is running a full Unix; most of the usual Unix tools are available.

Users may log directly into any SP-1 node using telnet, rlogin, or rsh. The software

of the ANL SP-1 includes multiple parallel programming environments, IBM's ESSL

library, and performance debugging tools.

Communication between nodes can be carried out by many ways which one can

choose. Most users will not use these directly; rather they will use one of the portable

programming libraries. However, as the programming libraries use these transport

layers to actually accomplish the communication, it is important to understand them

so that the proper transport layer can be chosen.

APPENDIX C. OVERVIEW OF THREE MPP ARCHITECTURES 156

The available transport layers are Ethernet, IP, Switch/IP, and EUI-H. Only the

�rst two support multiple parallel jobs on the same node. Both versions of EUI can

only run one process per node. In addition, EUI-H is incompatible with EUI and

Switch/IP on the same nodes (though the SP-1 can be con�gured so that EUI-H runs

on some nodes and EUI and Switch/IP run on the others; this is a common daytime

con�guration at ANL.

Using the Ethernet transport layer with all nodes connected by Ethernet, the SP-1

looks just like a collection of workstations. This method does su�er from the same

drawbacks as any Ethernet-connected system: high latency (about 1 �sec) and low

bandwidth (1 MByte/sec is shared among all processors). The IP transport layer

provides enhanced performance to code written using Unix sockets for interprocessor

communication.

EUI is IBM's message-passing interface to the high-performance switch. There

are two versions: one that works with the Parallel Operating Environment (POE)

and one that does not. EUI refers to the POE version. POE supports a parallel

symbolic debugger (xpdbx) and a performance visualization tool (vt). However, its

performance is inferior to EUI-H (latency is about 405 �sec). In addition, at most 64

nodes are available to EUI. EUI-H is an experimental, low-overhead implementation

of the EUI interface. It does not support either xpdbx or vt. It is di�cult to provide

standard input to EUI-H programs. Also, it is not possible to produce gprof-style

pro�ling information from EUI-H programs. All 128 nodes may be accessed using

EUI-H when the machine is con�gured for that. Note that this version of EUI-H is

the version of IBM Research; it contains only the Fortran bindings for EUI.

IP and EUI applications may share the switch; multiple IP applications may share

both nodes and the switch. IP and EUI run under the \Parallel Operating Environ-

ment," or POE. POE includes a number of tools, such as a parallel debugger and

ParaGraph-like visualization tool (vt). These two transport layers share a common

interface to the switch known as lightspeed.

Parallel Libraries:

APPENDIX C. OVERVIEW OF THREE MPP ARCHITECTURES 157

� Chameleon: Chameleon is a lightweight, portable message-passing system. It

provides access to a wide range of transport layers, including EUI, EUI-H, PVM,

and P4. Chameleon provides a common startup model that simpli�es choosing

a transport layer.

� Fortran M: Fortran M is a small set of extensions to Fortran that supports

a modular approach to the construction of sequential and parallel programs.

Fortran M programs use channels to connect processes which may be written

in Fortran M or Fortran 77. Processors communicate by sending and receiving

messages on channels. Channels and processes can be created dynamically, but

programs remain deterministic unless specialized nondeterministic constructs

are used.

� MPI: MPI (Message-Passing Interface) is a new message-passing system \stan-

dard" that has recently been de�ned by a broadly based group of parallel com-

puting vendors, library writers, and users. The current draft is now in the

public-comment stage.

Bibliography

[1] Roger F. Harrington, Matrix Methods for Field Problems, Proc. IEEE, Vol. 55,

No. 2, pp. 136{149, Feb. 1967.

[2] Debra L. Wilkes and Chung-Chi Cha, Method of Moments Solution with Para-

metric Curved Triangular Patches, IEEE Antennas and Propagation Interna-

tional Symposium Digest, pp. 1512{1515, 1991.

[3] Roger F. Harrington, Field Computation by Moment Methods, Macmillan, New

York, Reprinted by IEEE Press, Piscataway, NJ, 1993.

[4] J. H. Richmond, A wire-grid model for scattering by conducting bodies, IEEE

Trans. Antennas Propagat., Vol. AP-14, No. 6, pp. 782{786, Nov. 1966.

[5] D. C. Kuo, H. H. Chao, J. R. Mautz, B. J. Strait, and R. F. Harrington, Analysis

of Radiation and Scattering by Arbitrary Con�gurations of Thin Wires, IEEE

Trans. Antennas Propagat., Vol. AP-20, pp. 814{815, Nov. 1972.

[6] X. C. Yuan, Electromagnetic Coupling into Slotted TE and TM Cylindrical Con-

ductors by the Pseudo-Image Method, Ph.D. Dissertation, Syracuse University,

Syracuse, NY, 1987.

[7] J. R. Mautz and R. F. Harrington, Radiation and Scattering from Bodies of

Revolution, Appl. Sci. Res., Vol. 20, pp. 405{435, June 1969.

[8] R. F. Harrington and J. R. Mautz, Radiation and Scattering from Loaded Bodies

of Revolution, Appl. Sci. Res., Vol. 26, pp. 209{217, June 1971.

158

BIBLIOGRAPHY 159

[9] G. J. Burke and A. J. Poggio, Numerical Electromagnetics Code (NEC)|Method

of Moments, Technical Document 116, AFWL-TR-76-320, Naval Ocean Systems

Center, San Diego, CA, July 1977.

[10] E. K. Miller, and F. J. Deadrick, Some computational aspects of thin-wire model-

ing, in Numerical and Asymptotic Techniques in Electromagnetics, R. Mittra, Ed.,

New York: Springer-Verlag, 1975, Chapt. 4.

[11] K. S. H. Lee, L. Marin, and J. P. Castillo, Limitations of wire-grid modeling of

a closed surface, IEEE Trans. Electromagn. Compat., Vol. EMC-18, No. 3, pp.

123{129, Aug. 1976.

[12] A. W. Glisson and D. R. Wilton, Simple and e�cient numerical Methods for

Problems of Electromagnetic Radiation and Scattering from Surfaces, IEEE

Trans. Antennas Propagat., Vol. AP-28, No. 5, pp. 593{603, Sept. 1980.

[13] A. W. Glisson, On the development of numerical techniques for treating

arbitrarily-shaped surfaces, Ph.D. dissertation, Univ. of Mississippi, 1978.

[14] S.M. Rao, D. R. Wilton and A. W. Glisson, Electromagnetic Scattering by Sur-

faces of Arbitrary Shape, IEEE Trans. Antennas Propagat., Vol. AP-30, pp.

409{418, May 1982.

[15] W. A. Johnson, D. R. Wilton, and R. M. Sharpe, Modeling scattering from

and radiation by arbitrary shaped objects with the electric �eld integral equation

triangular surface PATCH code, Electromagnetics, Vol. 10, Nos. 1{2, pp. 41{63,

Jan.-June 1990.

[16] S. M. Rao, Electromagnetic Scattering and Radiation of Arbitrarily-Shaped Sur-

faces by Triangular patch Modeling, Ph.D. dissertation, Univ. of Mississippi,

1980.

BIBLIOGRAPHY 160

[17] S. M. Rao, and D. R. Wilton, E-Field, H-Field, and Combined Field Solution for

Arbitrarily Shaped Three-Dimensional Dielectric Bodies, Electromagnetics, Vol.

10, pp. 407{421, 1990.

[18] Roberto D. Graglia, The Use of Parametric Elements in the Moment Method So-

lution of Static and Dynamic Volume Integral Equations, IEEE Trans. Antennas

Propagat., Vol. 36, No. 5, pp. 636{646, May 1988.

[19] Roberto D. Graglia, P. L. E. Uslenghi, and R. S. Zich, Moment Method with

Isoparametric Elements for Three-Dimensional Anisotropic Scatterers, Proc.

IEEE, Vol. 77, No. 5, pp. 750{760, May 1989.

[20] M. I. Sancer, R. L. McClary, and K. J. Glover, Electromagnetic Computation

Using Parametric Geomatry, Electromagnetics, Vol. 10, pp. 85{103, 1990.

[21] Stephen Wandzura, Electric Current Basis Functions for Curved Surfaces, Elec-

tromagnetics, Vol. 12, pp. 77{91, 1992.

[22] Nathan J. Champagne II, Je�ery T. Williams, and Donald R. Wilton, The use

of curved segments for numerically modeling thin wire antennas and scatterers,

IEEE Trans. Antennas Propagat., Vol. 40, pp. 682{689, No. 6, June 1992.

[23] J. R. Mautz and R. F. Harrington, H-�eld, E-�eld, and Combined-�eld Solutions

for Conducting Bodies of Revolution, AE�U, Vol. 32, pp. 157{164, April 1978.

[24] J. R. Mautz and R. F. Harrington, Electromagnetic Scattering from a Homoge-

neous Material Body of Revolution, AE�U, Vol. 33, pp. 71-80, Feb. 1979.

[25] R. F. Harrington, Boundary Integral Formulations for Homogeneous Material

Bodies, J. Electro. Waves Applic., Vol. 3, No. 1, pp. 1{15, 1989.

[26] Q. Chen, Electromagnetic Modeling of three-Dimensional Piecewise Homoge-

neous Material Bodies of Arbitrary Composition and Geometry, Ph.D. disser-

tation, Univ. Houston, Houston, TX, May 1990.

BIBLIOGRAPHY 161

[27] J. R. Mautz and R. F. Harrington, Generalized Network Parameters, Radia-

tion, and Scattering by Conducting Bodies of Revolution, (Computer Program

Description), IEEE Trans. Antennas Propagat., Vol. AP-22, pp. 630{631, July

1974.

[28] J. R. Mautz and R. F. Harrington, Radiation and Scattering from Loaded Bodies

of Revolution, (Computer Program Description), IEEE Trans. Antennas Propa-

gat., Vol. AP-23, p. 594, July 1975.

[29] J. R. Mautz and R. F. Harrington, An Improved E-Field Solution for a Conduct-

ing Body of Revolution, AE�U, Vol. 36, pp. 198{206, May 1982.

[30] J. R. Mautz and R. F. Harrington, Electromagnetic Coupling to a Conducting

Body of Revolution with a Homogeneous Material Region, Electromagnetics, Vol.

2, pp. 257{308, Oct.-Dec. 1982.

[31] G. C. Fox and Ian G. Angus, Solving Problems on Concurrent Processors, Prentice

Hall, New Jersey, 1988.

[32] G. C. Fox, and A. Frey, High performance parallel supercomputing application,

hardware, and software issues for a tera
op computer, Caltech Concurrent Com-

putation Program Paper, C3P-451C, Nov. 1988.

[33] G. C. Fox, 1989 - The �rst year of the parallel supercomputer, Caltech Concurrent

Computation Program Paper, C3P-769, June 1990.

[34] T. Cwik, Robert van de Geijn, and J. Patterson, Application of massivly parallel

computation to integral equation models of electromagnetic scattering, J. Opt.

Soc. Am. A, Vol. 11, No. 4, pp. 1538{1545, April 1994.

[35] Tom Cwik, Parallel Decomposition Methods for the Solution of Electromagnetic

Scattering Problems, Electromagnetics, Vol. 12, pp. 343{357, 1992.

BIBLIOGRAPHY 162

[36] Tom Cwik, Jonathan Partee, and Jean Patterson, Method of Moment Solutions

to Scattering Problems in a Parallel Processing Environment, IEEE Trans. Mag-

netics, Vol. 27, No. 5, pp. 3837{3840, Sept. 1991.

[37] Tom Cwik, Jean Patterson and David Scott, Electromagnetic Scattering Calcu-

lations on the Intel Touchstone, IEEE 1992.

[38] Jean E. Patterson, Tom Cwik, Robert D. Ferraro, Nathan Jacobi, Paulett C.

Liewer, Thomas G. Lockhart, Gregory A. Lyzenga, Jay W. Parker, and Diglio

A. Simoni, Parallel Computation Applied to Electromagnetic Scattering and Ra-

diation Analysis, Electromagnetics, Vol. 10, pp. 21{39, 1990.

[39] Ruel H. Calalo, William A. Imbriale, Nathan Jacobi, Paulett C. Liewer, Thomas

G. Lockhart, Gregory A. Lyzenga, James R. Lyons, Farzin Manshadi and Jean

E. Patterson, Hypercube Matrix Computation Task Report for 1986-1988, JPL

Publication 88-31, August 1, 1988.

[40] Ruel H. Calalo, Tom Cwik, Robert D. Ferraro, William A. Imbriale, Nathan

Jacobi, Paulett C. Liewer, Thomas G. Lockhart, Gregory A. Lyzenga, Stephanie

Mulligan, Jay W. Parker, Jean E. Patterson, Hypercube Matrix Computation

Task Research in Parallel Computational Electromagnetics, Report for 1988-

1989, JPL Nov. 1, 1989.

[41] Ruel H. Calalo, Tom Cwik, Robert D. Ferraro, William A. Imbriale, Nathan

Jacobi, Paulett C. Liewer, Thomas G. Lockhart, Gregory A. Lyzenga, Stephanie

Mulligan, Jay W. Parker, Jean E. Patterson, Research in Parallel Computational

Electromagnetics Hypercube Matrix Computation Task, Quarterly Review, JPL,

Nov. 29, 1989.

[42] Ruel H. Calalo, Tom Cwik, Robert D. Ferraro, William A. Imbriale, Nathan

Jacobi, Paulett C. Liewer, Thomas G. Lockhart, Gregory A. Lyzenga, Stephanie

Mulligan, Jay W. Parker, Jean E. Patterson, Research in Parallel Computational

BIBLIOGRAPHY 163

Electromagnetics Hypercube Matrix Computation Task, Quarterly Review, JPL,

April 6, 1990.

[43] T. Cwik, J. Partee, and J. patterson, Integral Equation Solutions to Radiation

and Scattering Problems Using Coarse-Grained Parallel Processor, PIER Vol. 7,

pp. 157-195, T. Cwik and J. Patterson ed. (EWM Publishing, Cambridge, MA.

1993.

[44] S.D. Gedney, A. F. Peterson, and R. Mittra, The Moment Method Solution of

Electromagnetic Scattering Problems on MIMD and SIMD Hypercube Supercom-

puters, PIER Vol. 7, pp. 197-246, T. Cwik and J. Patterson ed. (EWM Publish-

ing, Cambridge, MA. 1993.

[45] S. D. Gedney and R. Mittra, The use of the FFT for the e�cient solution of

the problem of electromagnetic scattering by a body of revolution, IEEE Trans.

Antennas Propagat., Vol. 38, pp. 313{322, 1990.

[46] A. W. Glisson and D. R. Wilton, Simple and e�cient numerical techniques for

treating bodies of revolution, University of Mississippi Engineering Experiment

Station Technical Report No. 105, 1979.

[47] Roger F. Harrington, Time-Harmonic Electromagnetic Fields, McGraw-Hill, 1961.

[48] J. Van Bladel, Electromagnetic Fields, McGraw-Hill, 1964.

[49] O. C. Zienkiewicz, The Finite Element Method (The third, expanded and revised

edition of the Finite Element Method in Engineering Science), Chapter 8, McGraw-

Hill, 1977.

[50] Debra L. Wilkes, The Treatment of Singularity in MoM, Private Communication,

1993.

[51] N. Morita, N. Kumagai, and J. R. Mautz, Integral Equation Methods for Electro-

magnetics, Artech House, 1990.

BIBLIOGRAPHY 164

[52] Donald R. Wilton, Review of Current Status and Trends in the Use of Inte-

gral Equations in Computational Electromagnetics, Electromagnetics, Vol.12, pp.

287{341, 1992.

[53] J. R. Mautz and R. F. Harrington, H-Field, E-Field, and combined-�eld solutions

for conducting bodies of revolution, Technical Report TR-77-2, Dept. of Electrical

and Computer Engineering, Syracuse University, Syracuse, NY 13244, Feb. 1977.

[54] J. J. H Wang, V. K. Tripp, and J. E. Tehan, The Magnetically Coated Conducting

Surface as a Dual Conductor and Its Application to Antennas and Microwaves,

IEEE Trans. Antennas Propagat., Vol. 38, No. 7, pp. 1069{1077, July 1990.

[55] H. A. Ragheb, L. Shafai, and M. Hamid, Plane Wave Scattering by a Conduct-

ing Elliptic Cylinder Coated by a Nonconfocal Dielectric, IEEE Trans. Antennas

Propagat., Vol. 39, No. 2, pp. 218{223, Feb. 1991.

[56] Xiaoyi Min, Wiemin Sun, Wang-jie Gesang, and Kun-Mu Chen, An E�cient

Formulation to Determine the Scattering Characteristics of a Conducting Body

with Thin Magnetic Coatings, IEEE Trans. Antennas Propagat., Vol. 39, No. 4,

pp. 448{454, April 1991.

[57] S. M. Rao, C. C. Cha, R. L. Cravey and D. L. Wilkes, Electromagnetic Scattering

from Arbitrary Shaped Conducting Bodies Coated with Lossy Materials of Arbi-

trary Thickness, IEEE Trans. Antennas Propagat., Vol. 39, No. 5, pp. 627{631,

May 1991.

[58] M. A. Leontovich, Investigations on Radiowave Propagation, Part II, Moscow:

Academy of Sciences, 1948.

[59] T. B. A. Senior, Impedance Boundary Conditions for Imperfectly Conducting

Surfaces, Appl. Sci. Res., Vol. 8(B), pp. 418{436, 1960.

[60] T. B. A. Senior, A Note on Impedance Boundary Conditions, Can. J. Phys., Vol.

40, pp. 663{665, 1962.

BIBLIOGRAPHY 165

[61] T. B. A. Senior, Approximate Boundary Conditions, IEEE Trans. Antennas Prop-

agat., Vol. AP-29, No. 5, pp. 826{829, Sept. 1981.

[62] K. M. Mitzner, An Integral Equation Approach to Scattering from a Body of

Finite Conductivity, Radio Science, Vol. 2, No. 12, pp. 1459-1470, Dec. 1967.

[63] Louis N. Medgyesi-Mitschang and John M. Putnam, Integral Equation Formu-

lations for Imperfectly Conducting Scatterers, IEEE Trans. Antennas Propagat.,

Vol. AP-33, No. 2, pp. 206{214, February 1985.

[64] M. J. Flynn, Some computer organizations and their e�ectiveness, IEEE Trans.

Comput., Vol. C-21, pp. 948{960, 1972.

[65] G. M. Amdahl, Validity of Single-Processor Approach to Achieving Large-Scale

Computing Capability, Proc. AFIPS Conf., pp. 483{485, Reston, VA., 1967.

[66] Syracuse Research Corporation, Parametric Method of Moments (ParaMoM) RCS

Prediction Package User's Manual, Version 1.0, SRC Technical Report TD 92-1321,

October 1992.

[67] Thinking Machines Corporation, CMSSL for CM Fortran, Version 3.1, June 1993.

[68] Intel Corporation, iPSC/2 and iPSC/860 User's Guide, April 1991.

[69] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek, and

Vaidy Sunderam, PVM 3 User's Guide and Reference Manual, Oak Ridge National

Laboratories report ORNL/TM-12187, May 1993.

[70] J. Choi, J. J. Dongarra, R. Pozo, and D. W. Walker, Scalapack: A scalable linear

algebra library for distributed memory concurrent computers, In Proceedings of

the Fourth Symposium on the Frontiers of Massively Parallel Computation, pp.

120{127. IEEE Computer Society Press, 1992.

[71] J. J. Dongarra and R. A. van de Geijn. Two-dimensional basic linear alge-

bra communication subprograms, Technical Report LAPACK working note 37,

BIBLIOGRAPHY 166

Computer Science Department, University of Tennessee, Knoxville, TN, October

1991.

[72] Jack J. Dongarra, Robert A. van de Geijn, and David W. Walker, A Look at

Scalable Dense Linear Algebra Libraries, Oak Ridge National Laboratories report

ORNL/TM-12126, July 1992.

[73] Thinking Machines Corporation, CM-5 I/O System Programming Guide, Version

7.2, September 1993.

[74] Thinking Machines Corporation, CMMD ReferenceManual Version 3.0, May 1993.

[75] Thinking Machines Corporation, CM Fortran Language Reference Manual, Version

2.1, January 1994.

[76] Thinking Machines Corporation, CM Fortran User's Guide Version 2.1, January

1994.

[77] Thinking Machines Corporation, CMMD User's Guide, Version 3.0, May 1993.

[78] Thinking Machines Corporation, CM-5 Technical Summary November 1993.

[79] Thinking Machines Corporation, CM-5 User's Guide Version 7.2, August 1993.

[80] Intel Corporation, ParagonTM ProSolverTM -DES Manual, December 1993.

[81] Alex C. Woo, Helen T. G. Wang, Michael J. Schuh, and Michael L. Sanders,

Benchmark Plate Radar Targets for the Validation of Computational Electro-

magnetics Programs, IEEE Antennas Propagat. Magazine, Vol. 34, No. 6, pp.

52{56, Dec. 1992.

[82] Alex C. Woo, Helen T. G. Wang, Michael J. Schuh, and Michael L. Sanders,

Benchmark Plate Radar Targets for the Validation of Computational Electro-

magnetics Programs, IEEE Antennas Propagat. Magazine, Vol. 35, No. 1, pp.

84{89, Feb. 1993.

BIBLIOGRAPHY 167

[83] Jack J. Dongarra, Robert A. van de Geijn, and R. Clint Whaley, A Users' Guide

to the BLACS, September 1993.

Biographical Data

Name: Xianneng Shen

Date and Place of Birth: January 1958, Jinhua, China

Degrees Awarded: M.S. in Computer Engineering, 1993

Syracuse University, Syracuse, NY, USA

M.S. in Electrical Engineering, 1985

Chengdu Institute of Radio Engineering,

Chengdu, China

B.S. in Electrical Engineering, 1982

Chengdu Institute of Radio Engineering,

Chengdu, China

168

BIBLIOGRAPHY 169

Professional Experience: Graduate Assistant, Jan. 1993 - May 1994

NPAC at Syracuse University

Graduate Assistant, Sept. 1987 - May 1992

ECE Department at Syracuse University

Visiting Researcher, Oct. 1986 - Aug. 1987

ECE Department at Syracuse University

Lecturer, July 1985 - Sept. 1986

Chengdu Institute of Radio Engineering,

Chengdu, China

