
Software and Hardware Requirements for Some Applications of

Parallel Computing to Industrial Problems

Geo�rey C. Fox

gcf@npac.syr.edu

http://www.npac.syr.edu

Northeast Parallel Architectures Center

111 College Place

Syracuse University

Syracuse, New York 13244-4100

Abstract

We discuss the hardware and software requirements that appear rel-

evant for a set of industrial applications of parallel computing. these

are divided into 33 separate categories, and come from a recent sur-

vey of industry in New York State. The software discussions includes

data parallel languages, message passing, databases, and high-level in-

tegration systems. The analysis is based on a general classi�cation of

problem architectures originally developed for academic applications

of parallel computing. Suitable hardware architectures are suggested

for each application. The general discussion is crystalized with three

case studies: computational chemistry, computational uid dynamics,

including manufacturing, and Monte Carlo Methods.

1 Introduction

This paper combines a recent survey of industrial applications with a prob-

lem classi�cation developed for largely academic applications. We show how

this allows one to isolate the parallel computing hardware and software char-

acteristics needed for each problem. The industrial applications come from

a survey undertaken of New York State industry in 1991 and 1992. Fur-

ther details of the survey will be found in [Fox:92e], [Fox:94b], [Fox:94h],

[Fox:94c], [Fox:94i], [Mills:93a]. Here, we summarize relevant features of it

in Section 2. Section 3 reviews and extends a classi�cation of problem ar-

chitectures originally developed in 1988 from a rather complete survey of

parallel applications at the time [Fox:88b], [Fox:88tt], [Fox:91g], [Fox:94a].

1

In Section 4, we show how the di�erent problem categories or architec-

tures are addressed by parallel software systems with di�erent capabilities.

We give illustrative examples, but not an exhaustive list of existing software

systems with these characteristics. We consider High Performance Fortran

and its extensions as a data parallel language; message passing systems, such

as those supplied with commercial multicomputers; as well as approaches to

software integration. In Section 3, we point that our old classi�cation of

problems omitted what we can call metaproblems|problems built up from

several components|each of which could have its own parallelization issues.

In Section 5, we combine the previous three sections and describe infor-

mally the problem architecture, and possible software and hardware needs

for a selection of industrial applications. We have grouped our discussion

into three broad case studies; computational chemistry; computational uid

dynamics and manufacturing; Monte Carlo methods. Each case study cov-

ers several of the 33 industrial areas identi�ed in Section 2. Further, in each

case study, we �nd good examples of the di�erent problem architectures

and show that each application area requires a rich software and hardware

architecture support.

2 Industrial Applications

In 1991{92, New York State funded a survey of the industrial opportuni-

ties for parallel computing. This was part of a project, ACTION (Advanced

Computing Technology is an Innovative Opportunity Now), at Syracuse Uni-

versity. ACTION's goal was to accelerate the use of parallel computing into

the industry of New York State. The purpose of the survey was to isolate

some initial projects and, more generally, to provide information on which

to develop a long-term plan for ACTION. Relevant information included

the basic parallel computing software and algorithm technologies needed for

particular industry sectors. In this paper, we concentrate on the software

capabilities needed for these applications, and also the appropriate parallel

machine architectures. Further discussion of the survey technique, particu-

lar companies interviewed, and the detailed nature of the applications will

be found in [Fox:92e], [Fox:94a], and papers cited earlier. The survey has

inevitable limitations. There are many important applications|oil explo-

ration is a good example|that are not well represented in New York State.

Further, the survey was not complete within its limited geographic region,

and is still being extended.

2

Tables 1{4 summarizes the industrial opportunities for parallel comput-

ing in the form we will use them. Some 50 di�erent applications used in the

survey have been broken up into 17 distinct areas. This is certainly some-

what arbitrary, and there are many overlaps (and omissions as discussed).

The importance, di�culty of implementation, and degree of risk also di�er

from case to case. However, these issues will not be discussed here.

3

Table 1: Guidelines used in Developing Categories of

Industrial and Government Applications of HPCC

shown in Tables 3{4

� De�ne information generally to include both CNN headline

news and the insights on QCD gotten from lattice gauge theo-

ries. There are four broad categories.

� Information Production (e.g., Simulation)

� Major concentration of MPP and HPCC at present

� Information Analysis (e.g., Extraction of location of oil from

seismic data, Extraction of customer preferences from purchase

data)

� Growing area of importance and Short term major MPP op-

portunity in decision support combined with parallel databases

� Information Access and Dissemination|InfoVision (e.g.,

Transaction Processing, Video-On-Demand)

� Enabled by National Information Infrastructure

� Very promising medium term market for MPP but need the

NII to be reasonably pervasive before area \takes o�"

� MPPs used as high performance, high capacity, multi-media

servers

� Information Integration

� Integrates Information Production, Analysis and Access, e.g.,

{ Decision support in business

{ Command and Control for Military

{ Concurrent Engineering and Agile Manufacturing

� Largest Long Term Market for MPP

4

Table 2: Abbreviations used in Tables 3{4 of

Industrial Applications of HPCC

Adaptive Software for Irregular Loosely Synchronous Problems

handled by pC++, HPF extensions, Message Passing

(Table 6)

Asyncsoft Parallel Software System for (particular) class of asyn-

chronous problems (Table 6)

CFD Computational Fluid Dynamics

ED Event Driven Simulation

FD Finite Di�erence Method

FEM Finite Element Method

HPF High Performance Fortran [HPF:93a], [HPFF:95a]

HPF+ Natural Extensions of HPF [Choudhary:92d], [HPF:94a],

[HPFapp:95a]

Integration Software to integrate components of metaproblems (Ta-

ble 6)

MPF Fortran plus message passing for loosely synchronous pro-

gramming support

PDE Partial Di�erential Equation

TS Time Stepped Simulation

VR Virtual Reality

Note on Language: HPF, MPF use Fortran for illustration,

one can use parallel C, C++ or any similar extensions of data parallel or

message passing languages

5

Table 3: Five Categories of Problems

Problem Architecture Overall Software

Issue

Synchronous: Data Parallel

Tightly coupled and software needs to ex-

ploit features of problem structure to get good

performance. Comparatively easy as di�erent

data elements are essentially identical.

Data Parallel

Loosely Synchronous: Data Parallel

As above, but data elements, and/or their

linkage, are not identical. Still parallelizes due

to macroscopic time synchronization.

Data Parallel

Asynchronous:

Functional (or data) parallelism that is ir-

regular in space and time. Often loosely cou-

pled and so need not worry about optimal

decompositions to minimize communication.

Hard to parallelize (massively) unless : : :

Di�cult Task

parallel

Embarrassingly parallel:

Essentially independent execution of discon-

nected components (can involve reductions).

Possible in most

software

Metaproblems

Asynchronous collection of (loosely) syn-

chronous components where these programs

themselves can be parallelized

Coarse grain task

parallelism|each

component data

parallel

6

Table 4: Industrial HPCC Applications 1 to 5: SIMULATION

Application Area Problem Machine

Item and Examples Comments and Software

1 Computational � PDE, FEM � SIMD, MIMD for

Fluid Dynamics � Turbulence irregular adaptive

� Aerospace � Mesh Generation � HPF(+) but

� Military, Civilian � Unclear for

Vehicles adaptive irregular

� Propulsion mesh

2 Structural � PDE, FEM � MIMD as complex

Dynamics � Dominated by geometry

Vendor Codes such � HPF(+)

as NASTRAN

3 Electromagnetic � PDE solved by

Simulation moment method SIMD

� Antenna Design � Matrix solve HPF

� Stealth Vehicles dominates

� Noise in high � Newer FEM and SIMD, MIMD

frequency circuits FD Methods? HPF(+)

� Mobile Phones � Also fast multipole

4 Scheduling Expert Systems MIMD

� Manufacturing and/or (unclear Speedup)

� Transportation AsyncSoft

(Dairy delivery to Neural Networks SIMD

Military deployment) Simulated annealing HPF

� University Classes Linear Programming MIMD

� Airline Scheduling (hard sparse matrix) HPF+?

of crews, planes

in static or dynamic

(Syracuse snow

storm) cases

5 Environmental � PDE, FD, FEM � SIMD but

Modeling| � Sensitivity to � MIMD for

Earth/Ocean/Atmos- Data irregular adaptive

pheric Simulation mesh

� HPF(+) except

this unclear

for adaptive

irregular mesh

7

Table 4: Industrial HPCC Applications 6 to 10: SIMULATION

Application Area Problem Machine

Item and Examples Comments and Software

6 Environmental � Empirical Models � Some SIMD but

Phenomenology � Monte Carlo and � MIMD more

|Complex Systems, Histograms natural

(Lead Concentration � HPF

in blood)

7 Basic Chemistry � Calculate Matrix � Probably SIMD

� Chemical Potentials Elements with perhaps

� Elemental Reaction � Matrix Eigenvalue SIMD possible

Dynamics determination, � HPF

Inversion,

Multiplication

8 Molecular Dynamics � Particle Dynamics � HPF(+) except

in Physics & Chemistry with irregular � need MPF for

� Biochemistry cuto� forces fast multipole

� Discrete Simulation � Fast Multipole

Monte Carlo for Methods

CFD (DSMC) � Mix of PDE and

� Particle in the Cell Particle methods

(PIC) in PIC and DSMC

9 Economic Modelling Single �nancial

� Real Time instrument by SIMD, HPF

Optimization Monte Carlo

� Mortgaged backed Full Simulations MIMD or SIMD

Securities of complete with Integration

� Option Pricing portfolios Software

10 Network Simulations � Sparse matrices MIMD

� Electrical Circuit � Zero structure HPF for matrix

� Microwave and VLSI de�ned by elements

� Biological (neural) connectivity MPF or library

Circuit for matrix solve

8

Table 4: Industrial HPCC Applications 11 to 13: SIMULATION

Application Area Problem Machine

Item and Examples Comments and Software

11 Particle Transport Monte Carlo Methods

Problems as in neutron MIMD

transport for (nuclear) HPF

explosion simulations

12 Graphics (rendering) HPF for simple ray

� Hollywood � Several Operational tracing but MPF

� Virtual Reality Parallel Ray tracers for best algorithms

� Distributed model MIMD & Asyncsoft

hard for distributed

database

13 Integrated Complex � Event Driven Timewarp or other

System Simulations (ED) and Event Driven

� Defense (SIMNET, � Time stepped Simulation needs

Flight Simulators) (TS) simulations Appropriate

� Education � Virtual Reality Asyncsoft

(SIMCITY) Interfaces Integration

� Multimedia/VR in � Database backends Software

Entertainment � Interactive Database

� Multiuser Virtual HPF+ for TS

Worlds Simulation

� Chemical and

Nuclear Plants

9

Table 4: Industrial HPCC Applications 14 to 18: Information

Analysis|\DataMining"

Application Area Problem Machine

Item and Examples Comments and Software

14 Seismic and � Parallel Computers � SIMD useful but

Environmental already important MIMD might be

Data Analysis but necessary

� No oil in New � HPF

York State

15 Image Processing � Many commercial Metacomputer

� Medical Applications of Low Level

Instruments Defense Technology Vision is

� EOS (mission to � Component of many SIMD and HPF

Planet Earth) \metaproblems" Medium/High

� Defense (Information Level Vision is

Surveillance Integration category) MIMD and HPF(+)

� Computer Vision � e.g., Computer Software Integration

Vision in Robotics needs Asyncsoft

and Database

16 Statistical Analysis � Optimization HPF+ and especially

Packages and � Histograms C++ analogues is

Libraries � See application excellent for many

area 4 libraries

17 Healthcare Fraud Linkage Analysis of � SIMD or MIMD

� Ine�ciencies Data records � Parallel Relational

� Securities Fraud for correlations and Database access

� Credit Card outlier detection plus application

Fraud area 16

18 Market Sort and classify � Some cases are

Segmentation records to determine SIMD

� Mail Order customer preference � Parallel Database

� Retail by region from city to plus application

� Banking even individual home area 16

10

Table 4: Industrial HPCC Applications 19 to 22 for Information

Access InfoVision|Information, Video, Imagery and Simulation

on Demand

Application Problem Machine &

Item Area Comments Structure Software

19 Transaction Database-most Embarrassingly MIMD

Processing transactions short. Parallel Database

� ATM As add \value"

(automatic this becomes

teller machine) Information

integration

20 Collaboration Research Center or Asynchronous High Speed

� Telemedicine doctor(s)|patient Network

� Collaboratory interaction without

for Research regard to physical

� Education location

� Business

21 Text on Multimedia Embarrassingly MIMD

Demand database Parallel Database

� Digital (existing) (see areas 22, 23)

libraries Full text search

� ERIC Education

database,

� United Nations-

Worldwide

newspapers

22 Video on Multimedia Embarrassingly MIMD

Demand Database Parallel for Database

� Movies, News Interactive VCR, multiple Users Video Editing

(CNN Newsource Video Browsing, Software

& Newsroom), Link of Interesting

� Current cable, video and text parallel

� United Nations- database compression SIMD

Policy Support compression

11

Table 4: Industrial HPCC Applications 23 to 24 for Information

Access InfoVision|Information, Video, Imagery and Simulation

on Demand

Application Problem Machine &

Item Area Comments Structure Software

23 Imagery on Multimedia Metaproblem MIMD but

Demand database Embarrassingly much SIMD

� Kodak GIODE Image Parallel plus image

� \clip art" on Understanding for Loosely analysis

demand Content searching Synchronous

� Medical images and (terrain) Image

� Satellite images medical feature Understanding

identi�cation

24 Simulation on Multimedia map Synchronous SIMD terrain

Demand database terrain engine (parallel

� Education, Generalized rendering with rendering)

Tourism, City ight simulator Asynchronous MIMD

planning, Geographical Hypermedia database

� Defense Information Integration

mission planning System software

12

Table 4: Information Integration Applications 25 to 28

� These involve combinations of Information Production, analysis, Access and

Dissemination and thus need the Integration of the various Software and

Machines Architecture Issues discussed under previous application areas.

� Sometimes Called System of Systems

� 25: Military and Civilian Command and Control (C2, C3, C4I : : :)

� Battle Management, Command, Control, Communication, Intelligence

and Surveillance (BMC3IS)

� Military Decision Support

� Crisis Management|Police and other Government Operations

� SIMNET simulates this and with people and computers in the loop has

many of same issues

� 26 to 28: Applications of InfoVision Services

� Generalize Compuserve, Prodigy, America Online, Dialog and Other In-

formation Services

�26: Decision Support for Society

� Community Information Systems

� Travel and Generalized Yellow Page Services

�27: Business Decision Support|One example is:

� Health Care with Image and Video databases supporting telemedicine

�28: Public Administration and Political Decision Support

� Government Information Systems

� Maxwell School at Syracuse University teaches use of realtime video to

aid world wide decisions (United Nations)

13

Table 4: Information Integration Applications 29 to 33

� 29: Real-Time Control Systems

� Robotics uses Imagery to make decisions (control vehicles)

� Energy management controls power use and generation

� 30: Electronic Banking

� Requires Security, Privacy, Electronic Cash, etc.

� 31: Electronic Shopping

� 32: Agile Manufacturing|Multidisciplinary Design

and Concurrent Engineering

� Combines CAD with Applications 1 to 3

� Requires major changes to Manufacturing Infrastructure

and Approach

� 33: Education

� InfoMall Living Textbook|6 Schools on ATM network

linked to HPCC InfoVision Servers at NPAC [Mills:95a]

Table 1 describes the general guidelines used in organizing Table 4. Note

that we did not directly cover academic areas, and a more complete list

(which included our industrial table) was produced by the Petaops meeting

[Peta:94a]. Notice that Tables 1{4 are organized around the concept of

\information." This corresponded to an early realization from the survey

that the major industrial opportunities for HPCC in New York State were

information related. Thus, for instance, simulation is subtitled \Information

Production" with say, computational uid dynamics simulations providing

information to be used in either manufacturing (application 32) or education

(application 33). It is not directly relevant to this paper, but the results of

this survey caused the ACTION program to refocus its e�orts and evolve into

InfoMall [Fox:93c], [Fox:94f], [Fox:94h], [Fox:95b], [Infourl:95a], [Mills:94a].

Here, \Info" refers to the information based application focus and \Mall"

to the use of a virtual corporation (groups of \storeholders") to produce the

complex integrated applications enabled by HPCC.

The �rst column of Table 4 contains the area label and some sample

applications. Algorithmic and other comments are in column two. The

third and fourth columns describe, respectively, the problem architecture

14

and an estimate of appropriate parallel software approach. The background

for these two columns is described in the following two sections.

This paper is not intended to advocate a particular parallel software en-

vironment or language. Rather, we want to describe the broad capabilities

in the parallel programming paradigm needed for the applications of Table 4.

We believe that the programming functionality needed by a particular appli-

cation is broadly determined by the problem architecture described in the

following section. In discussing software needs, we do not discuss all the

components of the parallel software environment and just those relevant for

expressing problems.

For this reason, we use broad software classi�cations using, for instance,

MPF (Fortran plus message passing) as typical of all similar explicit messag-

ing systems|one could substitute here C plus message passing, or Fortran M

programming environments. Again, PVM, MPI, or any such message pass-

ing system could be used without changing the signi�cance of the tables.

High Performance Fortran is used as a typical data parallel language, al-

though this has an evolving de�nition and similar C++ environments could

well be more attractive, and can be substituted in the table.

3 Problem Architectures

We have described our classi�cation of problem architectures several times

before, but here we just summarize it.

This classi�cation [Angus:90a], [Denning:90a], [Fox:88b;90p;91g;94a], was

deduced from our experience at Caltech combined with a literature sur-

vey that was reasonably complete up to the middle of 1989. At Caltech,

we developed some 50 applications on parallel machines, 25 of which led

to publications in the scienti�c literature, describing the results of simula-

tions performed on our parallel computers [Fox:87d] [Fox:88a], [Fox:88oo],

[Fox:89n]. Our Caltech work was mainly on the hypercube, but the total of

300 references used in original classi�cation covered work on the Buttery,

transputers, the SIMD Connection Machine, and DAP. We originally iden-

ti�ed three temporal structures and one especially important (as it was so

simple) spatial structure, which are the �rst four entries in Table 4. Chap-

ter 3 of [Fox:94a] describes a \complex systems" approach to computation

and introduces the spatial and temporal structure of problems and comput-

ers. We studied software as a mapping (Figure 1) of problems to computers

with the software structure determined by the structure (architecture) of

15

Idea

Brilliant

Nature Theory Model

High Level

Software

Low Level

Software

Virtual Computer or Virtual Problem

Real Computer

Numerical Method

Figure 1: Computation and Simulation as a Series of Maps

both the individual complex systems|computers and problems|and their

interrelation. In Figure 2, we summarize issues in the spatial-temporal plane.

\Space" here refers to data (problem) or nodes and their linkage (computer).

\Time" is iteration number and simulation time (problem) or counts clock

cycles (computer).

The three general temporal structures are called synchronous, loosely

synchronous, and asynchronous. The temporal structure of a problem is

analogous to the hardware classi�cation into SIMD and MIMD. Further

detail is contained in the spatial structure or computational graph of Fig-

ure 3a describing the problem at a given instant of simulation time [Fox:88tt].

This is important in determing the performance, as shown in Chapter 3 of

[Fox:94a] of an implementation, but it does not a�ect the broad software

issues discussed here. In Table 4, we only single out one special spatial

structure, \embarrassingly parallel," where there is little or no connection

between the individual parallel program components. For embarrassingly

parallel problems, illustrated in Figure 4, the synchronization (both soft-

ware and hardware) issues are greatly simpli�ed.

Synchronous problems are data parallel in the language of Hillis [Hillis:87a]

with the restriction that the time dependence of each data point is governed

by the same algorithm. Both algorithmically and in the natural SIMD im-

16

No Connection High Dimension
Connectivity

Space (Data Domain) Increasing
Connectivity

Problem

T
im

e
(C

o
m

p
u

ta
ti
o

n
a

l
L

a
b

e
l)

In
c
re

a
s
in

g
ly

Ir
re

g
u

la
ri
ty

SPACIALLY DISCONNECTED
(Asynchronous, Synchronous,

Loosely Synchronous)
SIMD and MIMD proven
SIMD - Homogeneous

MIMD - General

SYNCHRONOUS
SIMD + MIMD

Proven for large
problems

LOOSELY
SYNCHRONOUS

(and not synchronous)
MIMD proven for large

problems

ASYNCHRONOUS
(and not loosely
synchronous)

MIMD unproven
SIMD fails?

How far and with what

Performance will MIMD

Machines extend into

spacially connected

asynchronous class ?

How far and
with what
performance
will SIMD
machines
extend into
properly loosely
synchronous
class ?

Figure 2: Issues A�ecting Relation of Machine, Problem, and Software Ar-

chitecture

Static
fundamental element
of complex system
(process, grid point, pixel, matrix, element,
molecule, etc.)

A (Static)
String

Time

computational graph is spatial
structure at a given time slice

Space
(Data Domain)

Dynamic

Figure 3: (a) Synchronous, Loosely Synchronous (Static), and (b) Asyn-

chronous (Dynamic) Complex Systems with their Space-Time Structure

17

Space

Time

Essentially Independent Parallel Processes

Example: Divide large database among processors and independently

search each portion of database to answer query.

Figure 4: Embarrassingly Parallel Problem Class

plementation, the problem is synchronized microscopically at each computer

clock cycle. Such problems are particularly common in academic applica-

tions as they naturally arise in any description of some world in terms of

identical fundamental units. This is illustrated in Figure 5 by quantum

chromodynamics (QCD) simulations of the fundamental elementary parti-

cles that involve a set of gluon and quark �elds on a regular four-dimensional

lattice. These computations form one of the largest use of supercomputer

time in academic computing.

Loosely synchronous problems are also typically data parallel, but now

we allow di�erent data points to be evolved with distinct algorithms. Such

problems appear whever one describes the world macroscopically in terms

of the interactions between irregular inhomogeneous objects evolved in a

time synchronized fashion. Typical examples, as in Figure 6, are computer

or biological circuit simulations where di�erent components or neurons are

linked irregularly and modelled di�erently. Time driven simulations and it-

erative procedures are not synchronized at each microscopic computer clock

cycle, but rather only macroscopically \every now and then" at the end of

an iteration or a simulation time step.

Loosely synchronous problems are spatially irregular, but temporally

regular. The �nal asynchronous class is irregular in space and time, as in

Figure 3b. A good example is an event driven simulation, illustrated in Fig-

18

SYNCHRONOUS PROBLEMS

For example:

Microscopic Description of Fundamental Interactions

In Particular, QCD

x

x

x

x

x

x

x

x

x

x

xx

x

xx

x

xx

x

x

x

xx

x x

x

x

x x

xx

x

xx

x

x

x

x

x

x

x

x
x

x

x

x

� Computational structure (almost) identical for all elements

in the data domain

� Parallelize by regular partition of data domain

� Run well on SIMD machines

� Message Passing or High Performance Fortran implementa-

tion on MIMD machines

Figure 5: The Synchronous Problem Class

19

Loosely Synchronous Problems

For example: Macroscopic description of physical
system in terms of interactions between irregular
inhomogeneous objects evolved as a time
synchronized simulation. In particular - biological
neural network

1
2

4

6

3
5

2

2

1

Parallelize by irregular partition of data domain

Hardware:
In general will not run well on SIMD machine.

Software:
Initial version of High Performance Fortran cannot
describe.

Message passing or extensions of High Performance
Fortran on MIMD machines will describe.

Figure 6: The Loosely Synchronous Problem Class

20

ure 7, that can be used to describe the irregular circuits we discussed above,

but now the event paradigm replaces the regular time stepped simulation.

Other examples include computer chess [Felten:88i] and transaction analy-

sis. Asynchronous problems are hard to parallelize and some may not run

well on massively parallel machines. They require sophisticated software and

hardware support to properly synchronize the nodes of the parallel machine,

as is illustrated by time warp mechanism [Wieland:89a].

Both synchronous and loosely synchronous problems parallelize on sys-

tems with many nodes. The algorithm naturally synchronizes the parallel

components of the problem without any of the complex software or hard-

ware synchronization mentioned above for event driven simulations. In the

original survey, 90% of the surveyed applications fell into the classes that

parallelize well. This includes 14% from the embarrassingly parallel classes,

and roughly equal (38% each) amounts from synchronous or loosely syn-

chronous class. It is interesting that massively parallel distributed memory

MIMD machines that have an asynchronous hardware architecture are per-

haps most relevant for loosely synchronous scienti�c problems.

We have looked at many more applications since the detailed survey

in [Fox:88b], and the general picture described above remains valid. In-

dustrial applications have less synchronous and more loosely synchronous

problems than academic problems. We have recently recognized that many

complicated problems are mixtures of the basic classi�cations. The �rst ma-

jor example with which I was involved was a battle management simulation

implemented by my collaborators at JPL [Meier:89a]. This is formally asyn-

chronous with temporally and spatially irregular interconnections between

various modules, such as sensors for control platforms and input/output

tasks. However, each module uses a loosely synchronous algorithm, such as

the multi-target Kalman �lter [Gottschalk:90b] or the target-weapon pair-

ing system. Thus, the whole metaproblem consists of a few (� 10{50) large

grain asynchronous objects, each of which is a data parallel synchronous or

loosely synchronous algorithm. This type of asynchronous problem can be

implemented in a scaling fashion on massively parallel machines. We call

this a metaproblem or asynchronous combination of several synchronous

or loosely synchronous problems. A similar example of this asynchronous

or embarrassingly synchronous problem class is machine vision and signal

processing, where one �nds an asynchronous collection of data parallel mod-

ules to perform various image processing tasks, such as stereo matching and

edge detection. Figure 8 illustrates another example where we outline an

approach to designing a new airframe that involves aerodynamics, struc-

21

ASYNCHRONOUS PROBLEMS

For example:

The world looked at macroscopically in terms of interactions between irreg-

ular inhomogeneous objects evolved as an event-driven simulation

T
IM

E

SPACE

ouch

take
cover ouch

#1 division march

fire

think

hide

#2 division fire

Harold (and his men) archers pikemen the other guysTheir Commander

Battle of Hastings

� Parallelize by \data parallelism" over space of events but no automatic

algorithmic synchronization

� Need sophisticated software built on top of message passing between

events to ensure synchronization

� Speedup very problem-dependent

� MIMD architectures essential

Figure 7: The Asynchronous Problem Class

22

Manufacturing

Process

Simulation

Radar

SignatureAnalysis

StructuralCFD

Iterative Module

OptimizationAI

Control

Asynchronous Software Bus

Synchronous or Loosely Synchronous Asynchronous

Work

Station

B096 node

Hypercube

Hypercube

2048 node
Vector

Supercomputer

SIMD

Work

Station

SIMD

Loosely
Synchronous or
Asynchronous

Work

Station

Work

Station

OR OR

Synchronous Asynchronous

....

Figure 8: The Mapping of Heterogeneous Metaproblems onto Heterogeneous

Metacomputer Systems

tures, radar signature, and the optimization discussed later in Section 5.2.

This �gure also points out the interesting analogy between heterogeneous

metaproblems of class and a heterogeneous computer network.

In the above cases, the asynchronous components of the problems were

large grain modules with modest parallelism. This can be contrasted with

Otto and Felten's MIMD computer chess algorithm, where the asynchornous

evaluation of the pruned tree is \massively parallel" [Felten:88i]. Here, one

can break the problem up into many loosely coupled but asynchronous par-

allel components, which give excellent and scalable parallel performance.

Each asynchronous task is now a synchronous or loosely synchronous mod-

estly parallel evaluation of a given chess position.

There were a few examples mentioned above of metaproblems in our orig-

inal survey, but a major part of Table 4, from our New York State activity,

23

is the Information Integration classi�cation, including manufacturing and

the applications 25{33 are essentially all metaproblems. As stated boldly

in Table 1, this class is the most important long-term area for HPCC. Fur-

ther, as in battle management case, many problems that formerly appear

asynchronous and were classi�ed in this way in our original survey, are in

fact metaproblems. Thus, the parallelism does not come from the di�cult

(impossible?) asynchronous structure, but the synchronous or loosely syn-

chronous components buried inside the asynchronous shell. Thus, we believe

metaproblems and their software support very important.

4 Some Software and Machine Issues

Naturally parallel implementations work \best" if the machine architecture

is \similar" to that of the problem. This is summarized in Table 5 where

to be precise, success requires that the machine architecture \contains" (is

a superset of) the problem architecture. Thus, both SIMD and MIMD

machines express synchronous problems, but SIMD machines are typically

unsuitable for loosely synchronous problems.

Table 5: What is the \Correct" Machine Architecture for each

Problem Class?

Problem Class Machine

Synchronous SIMD, MIMD

Loosely Synchronous MIMD, maybe SIMD

Asynchronous MIMD, but may not perform well

without special hardware features

Compound Heterogeneous network

(Metaproblems) (including World Wide Web)

Embarrassingly Parallel Network of workstations

MIMD, World Wide Web,

sometimes SIMD

Software systems need to be designed so that they can express problems

well, and be targeted to relevant machines. Software should not be designed

24

for a particular machine model|it expresses problem and not machine char-

acteristics.

Table 6: Candidate Software Paradigms for Each Problem

Architectures

� Synchronous: High Performance

Fortran (HPF) [Foster:95a], [HPFCSep:95a], [Koelbel:94a];

Fortran 77D [Bozkus:93a], [Fox:91e], [Hiranandani:92c]; Vi-

enna Fortran [Chapman:92b]; C* [Hatcher:91a;91b]; Crystal

[Chen:88b]; APL; Fortran for SIMD parallel computers

� Loosely Synchronous: Extensions of the above, espe-

cially HPF [Chapman:94b], [Choudhary:92d], [HPF:94a]; and

parallel C++ [Bodin:91a], [Chandy:93a], [Grimshaw:93b],

[Lemke:92a]; Fortran or C plus message passing [Fox:91m],

[McBryan:94a]

� Asynchronous: Linda [Factor:90a;90b], [Gelertner:89a];

CC++ [Chandy:93a]; Time Warp [Wieland:89a]; PCN

[Chandy:90a]; WebWork [Fox:95a]

� Compound Metaproblems: AVS [Mills:92a;92b],

[Cheng:93a]; PCN, Linda (or Trellis built on Linda); Web-

work; Fortran-M [Foster:95a]. Generally, extensions of ADA,

Fortran, C, or C++ controlling modules written in synchro-

nous or loosely synchronous approach

� Embarrassingly Parallel: Several approaches work?

� PCN, Linda, WebWork, PVM [Sunderam:90a], Network

Express [Parasoft:88a], ISIS [Birman:87a;87b;91a]

We have described those issues at length in [Fox:90p;91g;94a], and here

we will just present a simple table (Table 6) mapping the �ve problem archi-

tectures into possible software environments. This is presented in a di�erent

fashion for HPF and HPC++ in Figure 9 and Table 7, which also points

out the distinct runtime support needed for each problem class. One always

has a tradeo� between performance and exibility. Systems listed under

25

\asynchronous" in Table 6 can typically also be used for synchronous and

loosely synchronous problems. As shown in Figure 10, the \asynchronous"

software used on loosely synchronous problems will probably provide greater

exibility, but lower performance than software systems explicitly designed

for this problem class.

Table 7: Imprecise Mapping of Problem Classes into Runtime

and Language Terms

� STATIC Runtime

� Synchronous and Embarrassingly Parallel Problems|

current HPF

� ADAPTIVE Runtime

� Loosely Synchronous but not Synchronous|future capabil-

ities of High Performance Fortran (HPF+) but can be sup-

ported well in message passing

� ASYNCHRONOUS Runtime

� Asynchronous Problems

� INTEGRATION Runtime and Programming

Environments

� Metaproblems

� AVS works well but also can be integrated into languages

such as HPC++, Fortran-M

Loosely synchronous problems are in some sense the hardest as they have

di�cult irregularities which must be expressed with high e�ciency by the un-

derlying compiler and runtime systems. We, and others, have discussed this

at length, both in general [Choudhary:92d;92e], [Fox:90p], [Goil:94a;95a],

, and in case of High Performance Fortran [Bogucz:94a], [Chapman:94b],

[Cheng:94e], [Choudhary:92g;94c], [Fox:94g], [Hawick:95a;95c], [HPF:94a],

[HPFapp:95a], [Joubert:95a], [Muller:95a], [Robinson:95a], [Sturler:95a].

Note that Figure 9 refers to \HPF+"|this is some extension, called o�-

cially HPF2 (and later 3 perhaps) of HPF [HPF:93a], [HPFF:95a] to �ll gaps

in the original language. The current HPF1 handles most synchronous and

embarrassingly applications, but requires extension to handle the adaptive

irregular data structures typical of loosely synchronous problems.

26

Regular Data
Parallel or
Embarrassingly
Parallel

i.e., static
(compile time
identified)
analysis

e.g., finite
difference

Irregular
Adaptive
Data Parallel

e.g., data
mining,
multigrid

i.e., collective
(correlated)
irregularity

Expert systems,

Asynchronous

e.g., Event
driven
simulations,

Transaction
processing

i.e., no
exploitable
correlation in
adaptive
structure

Metaproblems
Integrating Static,
Adaptive, and
Asynchronous
modules

Integrated climate

e.g., Command
& Control,
Ocean -
Atmosphere

models,
multidsiciplinary
analysis & design

Nearly ALL scientific and
engineering simulations

Gives massive parallelism in
many metaproblems

Includes Many NII Applications

HPC++

HPF

HPF+, pC++

HPF+ plus Fortran M plus WebWork plus AVS plus ?

for performance)
(invoking HPF+ modules supporting higher level

systems

used in
metaproblems

modules

Static Adaptive Asynchronous Integration

Figure 9: General Applicability of HPF, HPF+, HPC++ Classi�ed by Prob-

lem Architecture and type of Runtime Support needed

27

Definitly
MIMD

MIMD or
maybe
SIMD

SIMD
or

MIMD

Machine ProblemSoftware

Asynchronous

Loosely
Synchronous

Synchronous

Asynchronous

Loosely
Synchronous

SynchronousPerformance

Performance

Convenience

Convenience

Figure 10: Mapping of Asynchronous, Loosely Synchronous, and Synchro-

nous Levels or Components of Machine, Software and Problem. Each is

pictured hierarchically with the asynchronous level at the top and synchro-

nous components at lowest level. Any one of the components may be absent.

We now quantify these remarks with three case studies, which will link

the material of Sections 2,3, and 4.

5 Machine and Problem Architectures and Ap-

propriate Programming Paradigms in Three Case

Studies

We now illustrate the di�erent machine, problem, and software issues with

three case studies. These are each broad application areas where there is

no one approach. Rather, several very distinct application subclasses are

present in each case for which di�erent programming paradigms and machine

architectures are appropriate.

5.1 Computational Chemistry and Electromagnetics

(Applications 3, 7, and 8)

Many chemistry problems are formulated in terms of states of a chemical

system, which can be labelled by an index corresponding to species, choice

of wave function, or internal excitation (see Chapter 8 of [Fox:94a]). The

28

calculation of energy levels, potential or transition probability can often be

related to a matrixMij whose rows and columns are just the possible system

states. M is often an approximation to the Hamiltonian of the system or

it could represent overlap between the states. There are two key stages in

such problems

a) �rstly, calculate the matrix elements Mij

b) secondly, perform one or more of a set of matrix operations

{ Matrix Multiplication as in change of basis

{ Matrix Eigenvalue determination as in energy level computations

{ Matrix Equation solution as in solving multichannel scattering

problems

This structure has been elegantly exploited within the \Global Array"

programming model built at Paci�c Northwest Laboratory [Nicplocha:94a]

with a set of tools (libraries) designed for this class of computational chem-

istry problem.

These two steps have very di�erent characteristics. The matrix element

computations a), is of the embarrassingly parallel case as each Mij can

essentially be calculated independently even though subexpressions may be

shared between two or more distinct Mij . Each Mij is a multi-dimensional

integral with the computation depending on the details of the states i and

j. Thus, this computation is very time consuming and is not suited for

SIMD machines. The natural parallel algorithm associates sets of (i; j) with

each node of a parallel computer. There are some relatively straightforward

load balancing issues and essentially no internode communication. Thus, a

MIMD cluster of workstations with modest networking is su�cient for this

step a). The �nal matrix manipulations have quite a di�erent character.

These synchronous problem components are suitable for SIMD machine and

often required substantial communication so that a workstation cluster will

not be e�ective. Matrix multiplication could be exception as it is insensitive

to latency and communication bandwidth for large matrices and so suitable

for workstation clusters.

One of the standard approaches to computational electromagnetics (CEM)

is the method of moments [Harrington:61a;67a;68a], [Jordon:69a]. This is a

spectral method, which rather than solving the underlying partial di�erential

equation (Maxwell's), expands the desired solution in a set of \moments".

29

This leads to a similar situation to that described above for computational

chemistry where i and j label moments for CEM and not the chemical state

[Cheng:94a;94c]. Note that in both cases, the matrix M is treated as full

[Cheng:94c], and is quite di�erent from the familiar sparse matrices gotten

from discretizing a partial di�erential equation. We note in passing that

such spatial discretization is a quite viable approach to CEM and leads

to a totally di�erent computational problem architecture from the spectral

moment formulation.

HPF can handle both stages of the matrix based CEM or chemistry

problems [Robinson:95a]. The matrix solution stage exploits fully the For-

tran 90 array manipulation and clearly requires good compiler support for

matrix and vector manipulation primitives. NPAC's experience with a pro-

duction CEM code PARAMOM from the Syracuse Research Corporation is

illuminating [Cheng:94c]. Both stages could be implemented on IBM SP-2

with specialized Fortran code for the matrix element generation joined to

SCALAPACK based matrix solution [Choi:92c]. However, the CM-5 im-

plementation was not so simple. The CMSSL library provided exceptional

matrix solution with good use being made of the CM-5's vector nodes. How-

ever, the matrix element computation was not so straightforward. Perfor-

mance on the CM-5 nodes was poor and required conversion of the origi-

nal Fortran 77 to Fortran 90 to both exploit the vector nodes and link to

CMSSL. However, whereas the Fortran 90 notation was very suitable for

matrix manipulation, it is quite irrelevant for the matrix element generation

stage|as already explained, this exploits the INDEPENDENT DO and not the

array notation for explicit parallelism. Thus, we split the PARAMOM code

into a metaproblem with two sub-problems corresponding to the two stages

discussed above. Now we implemented each stage on the most appropriate

architecture. The \embarrassingly parallel" Fortran 77 matrix element gen-

eration stage was run on a network of workstations, the equation solution

stage used the optimized libraries on the CM-5 or SP-2. The linkage of

these stages used AVS, but one could alternatively use many other coordi-

nation software approaches. We expect to test our use of World Wide Web

technology WebWork [Fox:95a] on this example.

This simple example illustrates three problem classes: embarrassingly

parallel, synchronous and metaproblems, and associated machine and soft-

ware architecture. There is an interesting software engineering issue. Typ-

ically, one would develop a single Fortran program for such a computa-

tional chemistry or electromagnetics problem. However, better is separate

modules|in this case, one for each of two stages|for each part of prob-

30

lem needing di�erent parallel computer treatment. In this way, we see the

breakup of metaproblems into components, and use of systems such as AVS

as helpful software engineering strategies [Cheng:92a;94d]. We have success-

fully used such an approach to produce an e�ective parallel version of the

public domain molecular orbital chemistry code MOPAC [MOPAC:95a].

Not all chemistry computations have this structure. For instance, there

is a set of applications such as AMBER and CHARMM that are based on

molecular dynamics simulations, as described in Chapter 16 of [Fox:94a],

[Ranka:92a]. These are typically loosely synchronous problems with each

particle linked to a dynamic set of \nearest neighbors" combined with long-

range nonbonded force computations. The latter can either use the synchro-

nous O(N2
particle) algorithm or the faster, but complex loosely synchronous

fast multiple O(Nparticle) or O(Nparticle logNparticle) approaches [Barnes:86a],

[Edelsohn:91b], [Goil:94a], [Goil:95a], [Greengard:87b], [Salmon:90a], [Singh:93a],

[Sunderam:93a], [Warren:92b], [Warren:93a].

5.2 Computational Fluid Dynamics and Manufacturing (Ap-

plications 1, 2, 3, 4, and 32)

CFD (Computational Fluid Dynamics) has been a major motivator for much

algorithm and software work in HPCC, and indeed extensions of HPF have

largely been based on CFD (or similar partial di�erential equation based

applications) and molecular dynamics [Bogucz:94a], [Choudhary:92d;94c],

[Dincer:95b], [Goil:94a;95a], [Hawick:95a;95b], , [HPF:94a]. Partial di�er-

ential equations can be quite straightforward on parallel machines if one

uses regular grids, such as those coming from the simplest �nite di�erence

equations. However, modern numerical methods use either �nite elements

or a re�nement strategy for �nite elements, which gives rise to irregular

meshes. Approaches, such as domain decomposition and multigrid, also

give use to complex data structures. From a Fortran programmer's point

of view, simple �nite di�erences can be well described by Fortran array

data structures. Corresponding parallelization of such applications is well

suited to the current HPF language, which is centered in decomposing ar-

rays. All the more advanced partial di�erential equation schemes naturally

need somewhat more sophisticated (than simple arrays) data structures, in-

cluding arrays of pointers, linked lists, nested arrays, and complex trees.

The latter are also seen in fast multipole particle dynamics problems, as

well as fully adaptive PDE's [Edelsohn:91b]. Some excellent methods, such

as the Berger-Oliger adaptive mesh re�nement [Berger:84a] require modest

31

HPF extensions as we have shown in our Grand Challenge work on col-

liding black holes [Haupt:95a]. However, as Saltz's group has shown in a

set of pioneering projects [HPF:94a], many important PDE methods re-

quire nontrivial HPF language extensions, as well as sophisticated runtime

support, such as the PARTI [Saltz:91b] and CHAOS systems [Edjali:95a],

[Hwang:94a], [Ponnusamy:93c;94b]. The needed language support can be

thought of as expressing the problem architecture (computational graph as

in Figure 3(a), which is only implicitly de�ned by the standard (Fortran)

code. Correctly written, this vanilla Fortran implies all needed information

for e�cient parallelism. However, this information is realized in terms of the

values of pointers and cannot be recognized at compile time for either sta-

tic or compiler generated dynamic runtime parallelism. This fundamental

problem is of course why Fortran is a more successful parallel language than

C as latter naturally uses pointer constructs that obscure the problem archi-

tecture even more. The runtime support for PDE's must cope with irregular

and hierarchical meshes and provide the dynamic alignment decomposition

and communications optimization that HPF1 provides for arrays.

Now, let us consider manufacturing as a major industrial application

of PDE's. Here, HPCC o�ers an important opportunity to build futuristic

manufacturing systems allowing customizable products with integrated de-

sign (conceptual and detailed), manufacturing process, sales and support.

This scenario|sometimes called agile manufacturing|implies other ma-

jor thrusts including concurrent engineering and multidisciplinary analysis

and design. Here, we can use an example where NPAC is working un-

der NASA sponsorship with the MADIC (Multidisciplinary Analysis and

Design Industry Consortium) collaboration involving Rockwell, Northrop

Grumman Vought, McDonnell Douglas, General Electric, General Motors

and Georgia Tech. We are in particular involved in establishing for this

NASA project, the NII requirements for a future concurrent engineering con-

cept called ASOP (A�ordable Systems Optimization Process). Aircraft are

now built by multi-company collaborations with international scope which

virtual corporation needs collaborative and networked software engineering

and workow support. Con�guration management is a critical need. ASOP

links a range of disciplines (from manufacturing process simulation, electro-

magnetic signature, aeronautics and propulsion computation linked to CAD

databases and virtual reality visualization) using MDO|multidisciplinary

optimization|techniques. The integration of conceptual (initial) and de-

tailed design with the manufacturing and life cycle support phases naturally

requires the integration of information and computing in the support sys-

32

tem. WebWork [Fox:95a] has been designed for this. Further, we see this

problem is a heterogeneous metaproblem with perhaps up to 10,000 (For-

tran) programs linked together in the full optimization process. This is

basically an embarrassingly parallel meta-architecture with only a few of

the programs linked together at each stage. The program complexity varies

from a full PDE simulation to an expert system to optimize location of an

inspection port to minimize support costs. So e�cient parallel solution of

PDEs is part, but not all of the support needed for manufacturing. HPCC

will only have major impact on manufacturing when it can support such

heterogeneous metaproblems, including large scale database integration.

5.3 Monte Carlo Methods (Applications 4, 6, 7, 9, 11)

We have already mentioned in Section 3, Quantum Chromodynamics Simu-

lations as a classic example of large scale Monte Carlo simulations suitable

for parallel machines. As described in Chapter 4 of [Fox:94a], this applica-

tion is straightforward to parallelize and very suitable for HPF as the basic

data structure is an array. The array represents a regular structure in space

time as seen in the simplest �nite di�erent problems. The Monte Carlo oc-

curs at each grid point and is typically local (nearest neighbor) so that the

overall problem architecture is just like that of a PDE. This speci�c compu-

tation is from an academic �eld, but is typical in structure of some practical

material science problems. Further, just as many PDEs have irregular data

structures, the same is true of many Monte Carlos. QCD is typical of sim-

ulations of crystalline substances with a regular array of atoms. However,

many substances|in particular gases and liquids|have irregular particle

distributions and many of issues discussed briey in Section 5.2 for �nite

element methods. As described in Chapter 14 of [Fox:94a], there is a subtle

point that distinguishes Monte Carlo and PDE algorithms as one cannot

simultaneously update in Monte Carlo, sites with overlapping neighbors.

This complicates the loosely synchronous structure and can make problem

architecture look like that of a synchronous event driven simulations|here

events are individual Monte Carlo updates. \Detailed balance" requires

that such events be sequentially (if arbitrarily) ordered. In the example

of [Johnson:86c] described in [Fox:94a], a clever implementation gave good

parallel performance.

Monte Carlo methods can be implemented quite di�erently|above we

decomposed the underlying physical data. One can also use \data paral-

lelism" on the random number set used in the simulation. This is not possi-

33

ble for QCD for two reasons. Firstly, the physical dataset is so large it would

not �t in the memory of a single node|we need to decompose the physical

dataset just to get enough total memory. More importantly, one can run

QCD with several di�erent starting points. However, all Monte Carlos|

using importance sampling of the Metropolis type employed by QCD|have

a \thermalization stage" where one must get \into equilibrium" before the

sampling is useful. Thermalization is very time consuming for QCD and

makes multiple starting points of limited value. However, there are many

cases where this is not true, and as show in Chapter 7 of [Fox:94a], one

can get an embarrassing parallel architecture for Monte Carlo problems.

Each instance of the problem has the full physical dataset, but can be run

independently with di�erent random number streams. Like many such em-

barrassingly parallel cases, the di�erent instances do need to accumulate

their data|in this case, Monte Carlo averages. One important examples

of this class of application is Quantum Monte Carlo used in many ab initio

chemistry problems [Kalos:85a].

Yet, a di�erent set of issues comes with a class of Monte Carlo problems

which are termed \clustered." In most physical system Monte Carlos, one

updates a single \entity" (grid point or particle) at a time. This is very

ine�ective when there is substantial correlation between neighboring points.

A simple example comes from ferromagnetic materials where domains form

where spins are locked in the same direction over large regions., Clustering

algorithms are quite hard to �nd for sequential systems, and their paral-

lelization is challenging and very di�erent from the earlier examples. As

discussed in Section 12.6 of [Fox:94a], the algorithm is similar to that used

in region �nding in image processing [Copty:93a;94a;95a]. Parallelism re-

quires consideration (as in domain decomposition for PDEs) of inter and

intra region issues.

5.4 Summary

Each of three case studies illustrates how di�erent applications and di�erent

numerical approaches to a given problem, lead to very di�erent problem

architectures and correspondingly the needed software support. Although

our discussion is not complete, we do think that it is quite typical, and

that a similar situation is seen in the other applications of Table 4, and

summarized in the last two columns.

34

References

[Angus:90a] Angus, I. G., Fox, G. C., Kim, J. S., and Walker, D. W. Solving

Problems on Concurrent Processors: Software for Concurrent Proces-

sors, volume 2. Prentice-Hall, Inc., Englewood Cli�s, NJ, 1990.

[Barnes:86a] Barnes, J., and Hut, P. \A hierarchical O(N logN) force cal-

culation algorithm," Nature, 324:446{449, 1986.

[Berger:84a] Berger, M. J., and Oliger, J. \Adaptive mesh re�nement for

hyperbolic partial di�erential equations," Journal of Computational

Physics, 53:484, 1984.

[Birman:87a] Birman, K. P., and Joseph, T. \Reliable communication in

the presence of failures," ACM Trans. on Computer Systems, 5:47{76,

February 1987.

[Birman:87b] Birman, K. P., and Joseph, T. \Exploiting virtual synchrony

in distributed systems," in Proceedings of the Eleventh Symposium on

Operating Systems Principles, pages 123{138. ACM, November 1987.

[Birman:91a] Birman, K., and Cooper, R. \The ISIS project: Real experi-

ence with a fault tolerant programming system," Operating Systems

Review, pages 103{107, April 1991. ACM/SIGOPS European Work-

shop on Fault-Tolerance Techniques in Operating Systems, held in

Bologna, Italy (1990).

[Bodin:91a] Bodin, F., Beckman, P., Gannon, D., Narayana, S., and Shelby,

Y. \Distributed pC++: Basic ideas for an object parallel language," in

Proceedings of Supercomputing '91, pages 273{282. (IEEE) Computer

Society and (ACM) (SIGARCH), November 1991.

[Bogucz:94a] Bogucz, E., Fox, G., Haupt, T., Hawick, K., and Ranka, S.

\Preliminary evaluation of high-performance Fortran as a language

for computational uid dynamics." Technical Report SCCS-625, Syra-

cuse University, NPAC, Syracuse, NY, June 1994. Proc. AIAA 25th

Computational Fluid Dynamics Conference, Colorado Springs, AIAA

94-2262.

[Bozkus:93a] Bozkus, Z., Choudhary, A., Fox, G. C., Haupt, T., and Ranka,

S. \Fortran 90D/HPF compiler for distributed memory MIMD com-

puters: Design, implementation, and performance results." Technical

35

Report SCCS-498, Syracuse University, NPAC, Syracuse, NY, 1993.

Proceedings of Supercomputing '93, Portland, OR, November 1993.

[Chandy:90a] Chandy, K., and Taylor, S. \A primer for program composi-

tion notation." Technical Report CRPC-TR90056, California Institute

of Technology, Pasadena, CA, June 1990.

[Chandy:93a] Chandy, K. M., and Kesselman, C. CC++: A Declarative

Concurrent Object-Oriented Programming Notation. Research Direc-

tions in Concurrent Object-Oriented Programming. MIT Press, 1993.

[Chapman:92b] Chapman, B., Mehrotra, P., and Zima, H. \Programming

in Vienna Fortran," Scienti�c Programming, 1(1):31{50, 1992.

[Chapman:94b] Chapman, B., Mehrotra, P., and Zima, H. \Extending HPF

for advanced data-parallel applications," IEEE Parallel and Distrib-

uted Technology, 2(3):15{27, 1994.

[Chen:88b] Chen, M., Li, J., and Choo, Y. \Compiling parallel programs

by optimizing performance," Journal of Supercomputing, 2:171{207,

1988.

[Cheng:92a] Cheng, G., Faigle, C., Fox, G. C., Furmanski, W., Li, B., and

Mills, K. \Exploring AVS for HPDC software integration: Case stud-

ies towards parallel support for GIS." Technical Report SCCS-473,

Syracuse University, NPAC, Syracuse, NY, March 1992. Paper pre-

sented at the 2nd Annual International AVS Conference The Magic of

Science: AVS '93, Lake Buena Vista, Florida, May 24{26, 1993.

[Cheng:93a] Cheng, G., Lu, Y., Fox, G. C., Mills, K., and Haupt, T. \An

interactive remote visualization environment for an electromagnetic

scattering simulation on a high performance computing system." Tech-

nical Report SCCS-467, Syracuse University, NPAC, Syracuse, NY,

March 1993. Proceedings of Supercomputing '93, Portland, Oregon,

November 15{19.

[Cheng:94a] Cheng, G., Fox, G., Mills, K., and Podgorny, M. \Developing

interactive PVM-based parallel programs on distributed computing

systems within AVS framework." Technical Report SCCS-611, Syra-

cuse University, NPAC, Syracuse, NY, January 1994. Proceedings of

the 3rd Annual International AVS Conference, JOIN THE REVOLU-

TION: AVS'94, Boston, MA, May 2{4.

36

[Cheng:94c] Cheng, G., Hawick, K., Mortensen, G., and Fox, G. \Dis-

tributed computational electromagnetics systems." Technical Report

SCCS-635, Syracuse University, NPAC, Syracuse, NY, August 1994.

Proceedings of the 7th SIAM Conference on Parallel Processing for

Scienti�c Computing, February 15{17, 1995.

[Cheng:94d] Cheng, G., Fox, G., and Mills, K. \Integrating multiple pro-

gramming paradigms on Connection Machine CM5 in a dataow-based

software environment (draft)." Technical Report SCCS-548, Syracuse

University, NPAC, Syracuse, NY, October 1994.

[Cheng:94e] Cheng, G., Fox, G. C., and Hawick, K. A Scalable Parallel Par-

adigm for E�ectively-Dense Matrix Formulated Applications, volume

797 of Lecture Notes in Computer Science, pages 202{210. Springer-

Verlag, April 1994. Proceedings of the European Conference and Exhi-

bition on High-Performance Computing and Networking (HPCN Eu-

rope) 1994, Munich, Germany; Syracuse University Technical Report

SCCS-580.

[Choi:92c] Choi, J., Dongarra, J. J., Pozo, R., and Walker, D. W. \Scala-

pack: A scalable linear algebra library for distributed memory con-

current computers," in Proceedings of the Fourth Symposium on the

Frontiers of Massively Parallel Computation, pages 120{127. IEEE

Computer Society Press, 1992.

[Choudhary:92d] Choudhary, A., Fox, G., Hiranandani, S., Kennedy, K.,

Koelbel, C., Ranka, S., and Saltz, J. \A classi�cation of irregular

loosely synchronous problems and their support in scalable parallel

software systems," in DARPA Software Technology Conference 1992

Proceedings, pages 138{149, April 1992. Syracuse Technical Report

SCCS-255.

[Choudhary:92e] Choudhary, A., Fox, G., Ranka, S., Hiranandani, S.,

Kennedy, K., Koelbel, C., and Saltz, J. \Software support for ir-

regular and loosely synchronous problems," Computing Systems in

Engineering, 3(1{4):43{52, 1992. CSE-MS 118, CRPC-TR92258.

[Choudhary:92g] Choudhary, A., Fox, G., Haupt, T., and Ranka, S. \Which

applications can use high performance Fortran and FortranD|

industry standard data parallel languages?," in Proceedings of Fifth

37

Australian Supercomputing Conference, December 1992. CRPC-

TR92264.

[Choudhary:94c] Choudhary, A., Dincer, K., Fox, G., and Hawick, K. \Con-

jugate gradient algorithms implemented in high performance Fortran."

Technical Report SCCS-639, Syracuse University, NPAC, Syracuse,

NY, October 1994.

[Copty:93a] Copty, N., Ranka, S., Fox, G., and Shankar, R. \Solving the

region growing problem on the Connection Machine," in Proceedings of

the 22nd International Conference on Parallel Processing, volume 3,

pages 102{105, 1993. Syracuse University, NPAC Technical Report

SCCS-397b.

[Copty:94a] Copty, N., ranka, S., Fox, G., and Shankar, R. \A data parallel

algorithm for solving the region growing problem on the Connection

Machine," Journal of Parallel and Distributed Computing, 21(1), 1994.

Syracuse University, NPAC Technical Report SCCS-596.

[Copty:95a] Copty, N. Language and Runtime Support for the Execution of

Clustering Applications on Distributed Memory Machines. PhD thesis,

Syracuse University, 1995.

[Denning:90a] Denning, P. J., and Tichy, W. F. \Highly parallel computa-

tion," Science, 250:1217{1222, 1990.

[Dincer:95b] Dincer, K., Hawick, K., Choudhary, A., and Fox, G. \High

performance Fortran and possible extensions to support conjugate gra-

dient algorithms." Technical Report SCCS-703, Syracuse University,

NPAC, Syracuse, NY, March 1995. To appear in Proc. Supercomput-

ing '95, December 1995.

[Edelsohn:91b] Edelsohn, D., and Fox, G. C. \Hierarchical tree-structures as

adaptive meshes." Technical Report SCCS-193, Syracuse University,

NPAC, Syracuse, NY, November 1991. Published in the International

Journal of Modern Physics C, Vol. 4, No. 5, pp. 909{917; CRPC-

TR91186.

[Edjali:95a] Edjali, G., Agrawal, G., Sussman, A., and Saltz, J. \Data

parallel programming in an adaptive environment," in IPPS '95, pages

827{832, 1995. An extended version also available as University of

Maryland Technical Report CS-TR-3350 and UMIACS-TR-94-109.

38

[Factor:90a] Factor, M. \The process Trellis architecture for real time

monitors," in Proceedings of the Second ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming (PPOP), March

1990. Held in Seattle, Washington.

[Factor:90b] Factor, M., and Gelertner, D. G. \Experience with Trellis ar-

chitecture." Technical Report YALEU/DCS/RR-818, Yale University,

New Haven, CT, August 1990.

[Felten:88i] Felten, E. W., and Otto, S. W. \A highly parallel chess pro-

gram," in Proceedings of International Conference on Fifth Generation

Computer Systems 1988, pages 1001{1009. ICOT, November 1988.

Tokyo, Japan, November 28 { December 2. Caltech Report C3P-579c.

[Foster:95a] Foster, I. Designing and Building Parallel Programs. Addison-

Wesley, 1995. http://www.mcs.acl.gov/dbpp/.

[Fox:87d] Fox, G. C. \Questions and unexpected answers in concurrent

computation," in J. J. Dongarra, editor, Experimental Parallel Com-

puting Architectures, pages 97{121. Elsevier Science Publishers B.V.,

North-Holland, Amsterdam, 1987. Caltech Report C3P-288.

[Fox:88a] Fox, G. C., Johnson, M. A., Lyzenga, G. A., Otto, S. W., Salmon,

J. K., and Walker, D. W. Solving Problems on Concurrent Processors,

volume 1. Prentice-Hall, Inc., Englewood Cli�s, NJ, 1988.

[Fox:88b] Fox, G. C. \What have we learnt from using real parallel machines

to solve real problems?," in G. C. Fox, editor, The Third Conference on

Hypercube Concurrent Computers and Applications, Volume 2, pages

897{955. ACM Press, New York, January 1988. Caltech Report C3P-

522.

[Fox:88oo] Fox, G. C. \The hypercube and the Caltech Concurrent Compu-

tation Program: A microcosm of parallel computing," in B. J. Alder,

editor, Special Purpose Computers, pages 1{40. Academic Press, Inc.,

Boston, 1988. Caltech Report C3P-422.

[Fox:88tt] Fox, G. C., and Furmanski, W. \The physical structure of concur-

rent problems and concurrent computers," Phil. Trans. R. Soc. Lond.

A, 326:411{444, 1988. Caltech Report C3P-493.

39

[Fox:89n] Fox, G. C. \Parallel computing comes of age: Supercomputer

level parallel computations at Caltech," Concurrency: Practice and

Experience, 1(1):63{103, September 1989. Caltech Report C3P-795.

[Fox:90p] Fox, G. C. \Hardware and software architectures for irregular

problem architectures," in P. Mehrotra, J. Saltz, and R. Voigt, ed-

itors, Unstructured Scienti�c Computation on Scalable Microproces-

sors, pages 125{160. The MIT Press, Cambridge, MA, 1992. Scienti�c

and Engineering Computation Series. Held by ICASE in Nags Head,

North Carolina. SCCS-111; CRPC-TR91164.

[Fox:91e] Fox, G. C., Hiranandani, S., Kennedy, K., Koelbel, C., Kremer,

U., Tseng, C.-W., and Wu, M.-Y. \Fortran D language speci�ca-

tion." Technical Report SCCS-42c, Syracuse University, Syracuse, NY,

April 1991. Rice Center for Research in Parallel Computation; CRPC-

TR90079.

[Fox:91g] Fox, G. C. \The architecture of problems and portable parallel

software systems." Technical Report SCCS-134, Syracuse University,

NPAC, Syracuse, NY, July 1991. Revised SCCS-78b.

[Fox:91m] Fox, G. C. \Lessons from massively parallel architectures on

message passing computers," in The 37th Annual IEEE Interna-

tional Computer Conference, COMPCON '92. IEEE Computer So-

ciety Press, Los Alamitos, CA, December 1991. Held February 24{28,

1992 San Francisco, California. CRPC-TR91192; SCCS-214.

[Fox:92e] Fox, G. C. \Parallel computing in industry|an initial survey," in

Proceedings of Fifth Australian Supercomputing Conference (supple-

ment), pages 1{10. Communications Services, Melbourne, December

1992. Held at World Congress Centre, Melbourne, Australia. Syracuse

University Technical Report SCCS-302b. CRPC-TR92219.

[Fox:93c] Fox, G., Bogucz, E., Jones, D., Mills, K., and Podgorny, M. \In-

foMall: a scalable organization for the development of HPCC soft-

ware and systems." Technical Report SCCS-531, Syracuse University,

NPAC, Syracuse, NY, September 1993. Unpublished.

[Fox:94a] Fox, G. C., Messina, P. C., and Williams, R. D., editors. Parallel

Computing Works! Morgan Kaufmann Publishers, San Francisco, CA,

1994. http://www.infomall.org/npac/pcw/.

40

[Fox:94b] Fox, G., and Mills, K. Information Processing and Opportunities

for HPCN Use in Industry, pages 1{14. Number 796 in Lecture Notes

in Computer Science. Springer-Verlag, New York, April 1994. Pro-

ceedings of HPCN Europe 1994, \High Performance Computing and

Networking.

[Fox:94c] Fox, G., and Mills, K. \Information processing and HPCC applica-

tions in industry," in Proceedings of Annual 1994 Dual-use Conference,

Utica, NY, May 1994. IEEE Mohawk Valley.

[Fox:94f] Fox, G., Furmanski, W., Hawick, K., and Leskiw, D. \Exploration

of the InfoMall concept." Technical Report SCCS-634, Syracuse Uni-

versity, NPAC, Syracuse, NY, August 1994.

[Fox:94g] Fox, G., and Hawick, K. \An applications perspective on high per-

formance Fortran." Technical Report SCCS-641, Syracuse University,

NPAC, Syracuse, NY, November 1994.

[Fox:94h] Fox, G., Hawick, K., Podgorny, M., and Mills, K. The Electronic

InfoMall|HPCN Enabling Industry and Commerce, volume 919 of

Lecture Notes in Computer Science, pages 360{365. Springer-Verlag,

November 1994. Syracuse University Technical Report SCCS-665.

[Fox:94i] Fox, G. C. \Involvement of industry in the national high perfor-

mance computing and communication enterprise." Technical Report

SCCS-716, Syracuse University, NPAC, Syracuse, NY, May 1994. De-

veloping a Computer Science Agenda for High Performance Comput-

ing, edited by U. Vishkin, ACM Press.

[Fox:95a] Fox, G. C., Furmanski, W., Chen, M., Rebbi, C., and Cowie,

J. H. \WebWork: integrated programming environment tools for na-

tional and grand challenges." Technical Report SCCS-715, Syracuse

University, NPAC, Syracuse, NY, June 1995. Joint Boston-CSC-NPAC

Project Plan to Develop WebWork.

[Fox:95b] Fox, G. C., Furmanski, W., Hawick, K., and Leskiw, D. \Explo-

ration of the InfoMall concept|building on the electronic InfoMall."

Technical Report SCCS-711, Syracuse University, NPAC, Syracuse,

NY, May 1995.

41

[Gelertner:89a] Gelertner, D. Multiple Tuple Spaces in Linda, volume 366 of

Lecture Notes in Computer Science, Proceedings of Parallel Architec-

tures and Languages, Europe, Volume 2, pages 20{27. Springer-Verlag,

Berlin/New York, June 1989.

[Goil:94a] Goil, S. \Primitives for problems using hierarchical algorithms on

distributed memory machines." Technical Report SCCS-687, Syracuse

University, NPAC, Syracuse, NY, December 1994. Proceedings of the

First International Workshop in Parallel Processing, Bangalore, India.

[Goil:95a] Goil, S., and Ranka, S. \Software support for parallelization of hi-

erarchically structured applications on distributed memory machines."

Technical Report SCCS-688, Syracuse University, NPAC, Syracuse,

NY, February 1995.

[Gottschalk:90b] Gottschalk, T. D. \Concurrent multi-target tracking," in

D. W. Walker and Q. F. Stout, editors, The Fifth Distributed Mem-

ory Computing Conference, Volume I, pages 85{88. IEEE Computer

Society Press, Los Alamitos, CA, 1990. Held April 9{12, Charleston,

SC. Caltech Report C3P-908.

[Greengard:87b] Greengard, L., and Rokhlin, V. \A fast algorithm for

particle simulations," Journal of Computational Physics, 73:325{

348, 1987. Yale University Computer Science Research Report

YALEU/DCS/RR-459.

[Grimshaw:93b] Grimshaw, A. S. \Easy to use object-oriented parallel pro-

gramming with Mentat," IEEE Computer, pages 39{51, May 1993.

[Harrington:61a] Harrington, R. F. Time-Harmonic Electromagnetic Fields.

McGraw Hill Book Company, New York, 1961.

[Harrington:67a] Harrington, R. F. \Matrix methods for �eld problems," in

Proc. IEEE, volume 55(2), pages 136{149, February 1967.

[Harrington:68a] Harrington, R. F. Field Computation by Moment Methods.

The Macmillan Company, New York, 1968. Reprinted by Krieger

Publishing Co., Malabar, FT. (1982).

[Hatcher:91a] Hatcher, P. J., and Quinn, M. J. Data-Parallel Programming

on MIMD Computers. MIT Press, Cambridge, Massachusetts, 1991.

42

[Hatcher:91b] Hatcher, P., Lapadula, A., Jones, R., Quinn, M., and Ander-

son, R. \A production-quality C* compiler for hypercube multicom-

puters," in Third ACM SIGPLAN Symposium on PPOPP, volume 26,

pages 73{82, July 1991.

[Haupt:95a] Haupt, T. http://www.npac.syr.edu/projects/bbh describes

use of High Performance Fortran for solving Einstein's equations for

the collision of two black holes.

[Hawick:95a] Hawick, K., Dincer, K., Robinson, G., and Fox, G. \Conju-

gate gradient algorithms in Fortran 90 and high performance Fortran."

Technical Report SCCS-691, Syracuse University, NPAC, Syracuse,

NY, February 1995.

[Hawick:95b] Hawick, K., and Fox, G. Exploiting High Performance For-

tran for Computational Fluid Dynamics, volume 919 of Lecture Notes

in Computer Science, pages 413{419. Springer-Verlag, May 1995. In-

ternational Conference on High Performance Computing and Network-

ing, HPCN Europe 1995, Milan; Syracuse University Technical Report

SCCS-661.

[Hawick:95c] Hawick, K., Bogucz, E. A., Degani, A. T., Fox, G. C., and

Robinson, G. \Computational uid dynamics algorithms in high per-

formance Fortran," in Proc. AIAA 26th Computational Fluid Dynam-

ics Conference, June 1995.

[Hillis:87a] Hillis, W. D. \The Connection Machine," Scienti�c American,

256:108{115, June 1987.

[Hiranandani:92c] Hiranandani, S., Kennedy, K., and Tseng, C. \Compiling

Fortran D for MIMD distributed-memory machines," Comm. ACM,

35(8):66{80, 1992.

[HPF:93a] High Performance Fortran Forum. \High performance Fortran

language speci�cation." Technical Report CRPC-TR92225, Center for

Research on Parallel Computation, Rice University, Houston, Texas,

1993.

[HPF:94a] HPF-2 Scope of Activities and Motivating Applications. Novem-

ber 1994. ftp://hpsl.cs.umd.edu/pub/hpfbench/index.html.

[HPFapp:95a] http//www.npac.syr.edu/hpfa/algorithms.html. A collection

of applications designed to test HPF, which is online at NPAC.

43

[HPFCSep:95a] \Fortran 90 and computational science." Online Computa-

tional Science Educational Project; http://csep1.phys.ornl/csep.html.

[HPFF:95a] High Performance Fortran Forum.

http://www.erc.msstate.edu/hp�/home.html.

[Hwang:94a] Hwang, Y.-S., Moon, B., Sharma, S., Das, R., and Saltz, J.

\Runtime support to parallelize adaptive irregular programs," in Pro-

ceedings of the Workshop on Environments and Tools for Parallel Sci-

enti�c Computing, 1994.

[Infourl:95a] The InfoMall Home Page http://www.infomall.org.

[Johnson:86c] Johnson, M. A. \The speci�cation of CrOS III." Technical

Report C3P-253, California Institute of Technology, Pasadena, CA,

February 1986.

[Jordon:69a] Jordon, E. C., and Balmain. Electromagnetic Waves and Ra-

diating Systems. Prentice-Hall, Inc., Englewood Cli�s, New Jersey,

1969. Second Edition.

[Joubert:95a] Joubert, A. \Financial applications and HPF." Technical re-

port, The London Parallel Applications Centre, London, UK, 1995.

[Kalos:85a] Kalos, M. The Basics of Monte Carlo Methods. John Wiley and

Sons, 1985.

[Koelbel:94a] Koelbel, C., Loveman, D., Schreiber, R., Steele, G., and Zosel,

M. The High Performance Fortran Handbook. MIT Press, 1994.

[Lemke:92a] Lemke, M., and Quinland, D. \P++, a parallel C++ ar-

ray class library for architecture-independent development of struc-

tured grid applications," in Proc. Workshop on Languages, Compil-

ers, and Runtime Environments for Distributed Memory Computers.

ACM, 1992.

[McBryan:94a] McBryan, O. \An overview of message passing environ-

ments," Parallel Computing, 20(4):417{444, 1994.

[Meier:89a] Meier, D. L., Cloud, K. C., Horvath, J. C., Allan, L. D., Ham-

mond, W. H., and Max�eld, H. A. \A general framework for complex

time-driven simulations on hypercubes." Technical Report C3P-761,

44

California Institute of Technology, Pasadena, CA, March 1989. Pa-

per presented at the Fourth Conference on Hypercubes, Concurrent

Computers and Applications.

[Mills:92a] Mills, K., Vinson, M., Cheng, G., and Thomas, F. \A large scale

comparison of option pricing models with historical market data," in

Proceedings of The 4th Symposium on the Frontiers of Massively Par-

allel Computing. IEEE Computer Society Press, October 1992. Held

in McLean, VA. SCCS-260.

[Mills:92b] Mills, K., Cheng, G., Vinson, M., Ranka, S., and Fox, G. \Soft-

ware issues and performance of a parallel model for stock option pric-

ing," in Proceedings of the Fifth Australian Supercomputing Confer-

ence, pages 125{134, December 1992. Held in Melbourne, Australia.

SCCS-273b.

[Mills:93a] Mills, K., and Fox, G. C. \HPCC applications development

and technology transfer to industry," in I. D. Scherson, editor, The

New Frontiers: A Workshop on Future Directions of Massively Par-

allel Processing, pages 58{65, Los Alamitos, CA, October 1993. IEEE

Computer Society Press.

[Mills:94a] Mills, K., and Fox, G. \InfoMall: an innovative strategy for

high-performance computing and communications applications devel-

opment," Internet Research, 4:31{45, 1994.

[Mills:95a] Mills, K., Fox, G., Coddington, P., Mihalas, B., Podgorny, M.,

Shelly, B.,

and Bossert, S., \The living textbook and the K{12 classroom of the

future." http://www.npac.syr.edu/projects/ltb/SC95/index.html.

[MOPAC:95a] See electronic description of NPAC's activities in this area at

http://www.npac.syr.edu/projects/mopac/mopac.html.

[Muller:95a] M�uller, A., and R�uhl, R. \Extending high performance For-

tran for the support of unstructured computations," in International

Conference on Supercomputing, July 1995. Barcelona, Spain.

[Nicplocha:94a] Nicplocha, J., Harrison, R. J., and Little�eld, R. J. \Global

Arrays: a portable `shared-memory' programming model for distrib-

uted memory computers," in Supercomputing '94, 1994. Paci�c North-

west Laboratory, http://www.emsl.pnl.gov.2080.

45

[Parasoft:88a] ParaSoft. EXPRESS: A Communication Environment for

Parallel Computers. ParaSoft, Inc., Pasadena, CA, 1988.

[Peta:94a] http://www.npac.syr.edu/roadmap/petaapps.html is

HTML version of application table. The full published proceedings

is T. Sterling, P. Messina, and P. H. Smith, Enabling Technologies for

Petaops Computing, MIT press, 1995.

[Ponnusamy:93c] Ponnusamy, R., Saltz, J., Choudhary, A., Hwang, Y.-

S., and Fox, G. \Runtime support and compilation methods for

user-speci�ed data distributions." Technical Report CS-TR-3194 and

UMIACS-TR-93-135, University of Maryland, Department of Com-

puter Science, 1993. To appear in IEEE Transaction on Parallel and

Distributed Memory Systems.

[Ponnusamy:94b] Ponnusamy, R., Hwang, Y.-S., Saltz, J., Choudhary,

A., and Fox, G. \Supporting irregular distributions in FORTRAN

90D/HPF compilers." Technical Report CR-TR-3268 and UMIACS-

TR-94-57, University of Maryland, Department of Computer Science,

1994. Also available in IEEE Parallel and Distributed Technology,

Spring 1995.

[Ranka:92a] Ranka, S., Fox, G. C., Saltz, J., and Das, R. \Parallelization of

CHARMM molecular dynamics code on multicomputers." Technical

Report SCCS-236, Syracuse University, NPAC, Syracuse, NY, January

1992.

[Robinson:95a] Robinson, G., Hawick, K. A., and Fox, G. C. \Fortran 90

and high performance Fortran for dense matrix-formulated applica-

tions." Technical Report SCCS-709, Syracuse University, NPAC, Syra-

cuse, NY, May 1995.

[Salmon:90a] Salmon, J. Parallel Hierarchical N-Body Methods. PhD thesis,

California Institute of Technology, December 1990. SCCS-52, CRPC-

TR90115. Caltech Report C3P-966.

[Saltz:91b] Saltz, J., Berryman, H., andWu, J. \Multiprocessor and runtime

compilation," Concurrency: Practice and Experience, 3(6):573{592,

December 1991. Special Issue: Practical Parallel Computing: Status

and Prospects. Guest Editors: Paul Messina and Almerico Murli.

46

[Singh:93a] Singh, J. P. Parallel Hierarchical N-body Methods and Their Im-

plications for Multiprocessors. PhD thesis, Stanford University, 1993.

[Sturler:95a] De Sturler, E., and Strumpen, V. \First experiences with high

performance Fortran on the Intel Paragon." Technical Report 95-10,

Interdisciplinary Project Center for Supercomputing, Swiss Federal

Institute of Technology Zurich, 1995.

[Sunderam:90a] Sunderam, V. S. \PVM: a framework for parallel distrib-

uted computing," Concurrency: Practice and Experience, 2(4):315{

340, 1990.

[Sunderam:93a] Sunderam, S. Fast Algorithms for N-body Simulations. PhD

thesis, Cornell University, 1993.

[Warren:92b] Warren, M. S., and Salmon, J. K. \Astrophysical N-Body

simulations using hierarchical tree data structures," in Supercomputing

'92. IEEE Comp. Soc., Los Alamitos, CA, 1992.

[Warren:93a] Warren, M. S., and Salmon, J. K. \A parallel hashed oct-tree

N-Body algorithm," in Supercomputing `93. IEEE Comp. Soc., Los

Alamitos, CA, 1993.

[Wieland:89a] Wieland, F., Hawley, L., Feinberg, A., DiLoreto, M., Blume,

L., Ru�es, J., Reiher, P., Beckman, B., Hontalas, P., Bellenot, S., and

Je�erson, D. \The performance of a distributed combat simulation

with the time warp operating system," Concurrency: Practice and

Experience, 1(1):35{50, 1989. Caltech Report C3P-798.

47

