Use of HPCC Software libraries in Industrial Applications

Kenneth A. Hawick

Northeast Parallel Architectures Center Syracuse University, USA

David W. Walker

Mathematical Sciences Section Computer Science and Mathematics Division Oak Ridge National Laboratory

Presented at: SPAA'95 — PPoPP'95 — UIWOPPS Santa Barbara, California, July 17 – 22, 1995

NPAC Technical Report SCCS 723

Overview:

- Acknowledgments
- HPCC Libraries
- Industrial Driving Forces
- Pre-requisites for Building Libraries
- Case Study: ScaLAPACK Library
- Industrial Application of ScaLAPACK
- Conclusions
- Online Internet Resources

Acknowledgments:

- ScaLAPACK Development Team (Univ Tennessee / ORNL): Jaeyoung Choi; Susan Ostrouchov; Antoine Petitet; Clint Whaley; Jack J. Dongarra; David W. Walker.
- Computational Electromagnetics Project Application Team (NPAC/Syracuse Research Corp): Gang Cheng; Ken Hawick; Xianneng Shen; Jay Mortensen; Jim Lauer; Debra Wilkes.
- Industrial Numerical and Simulations Group at the Edinburgh Parallel Computing Centre (EPCC): Ken Hawick; Brian Wylie; Simon Chapple; Evan Welsh; Mark Sawyer; Julian Parker; Hon Yau;.
- CHIMP/Parallel Utility Library (PUL) Group at EPCC: Lyndon Clarke; Shari Trwein; Bob Fletcher; Alasdair Bruce; James Mills.

HPCC Libraries:

- encapsulate expertise
- can be extensively tested independently
- can provide portability across different vendor platforms

Industrial Driving Forces:

- Software development for HPCC platforms often more expensive in terms of development and testing than the hardware, for industrial reliability requirements.
- Investment only makes sense if software reuse as libraries is possible.
- Libraries preferable to template/skeletons as greater encapsulation allows better testing.
- although trade-off of performance against reliability and reuse exists - high performance still highly desirable!

Industrial Examples (UKMO):

- UK Meteorological Office: Unified Model is 150k lines of Fortran
- Parallel coding effort easier if higher than raw message passing libraries exist for grid manipulations.
- Multiple algorithm paradigms (data parallel for dynamics; task parallel for precipitation model; scattered spatial decomposition for data assimilation) requires interoperable library components with standard library interfaces.
- Parallel Utility Library (PUL) set designed and built at Edinburgh as a result.

CHIMP/PUL Libraries:

- CHIMP (Common High Level Interface to Message Passing), predated MPI and was attempt to provide a message passing that would allow partitioning of message tag space for building software libraries on top of.
- PUL (Parallel Utility Library) is a collection of libraries and skeletal templates builton top CHIMP, and now MPI.
- PUL examples include: general grid decomposition (like BLACS in ScaLAPACK); Task farm paradigm; scattered spatial decomposition; generalised blocked distributed file I/O. (Clarke et al, Edinburgh Parallel Computing Center)

Industrial Examples (RR):

- Rolls Royce (Aerospace Engine Design)
- Turbofan Hypersonic CFD simulation code of circa 30k lines Fortran.
- Code required linear algebra library such as ScaLAPACK which was not then available in 1991.
- Prototype was built using customised solver, but not able to be introduced into production due to high degree of code maintainance that would have been required.
- Supported library module would have allowed use of parallel platform in production instead of vector machines only.

Industrial Examples (AEA):

- UK Atomic Energy Authority nuclear reactor simulations codes
- Large codes, need to be **very** reliable, and require extensive recurrency testing of all software modules - test/verification suite often larger than simulation code itself.
- Software libraries allow testing effort to be reused, as well as design verification/validation against other codes using the same library or a different library if on a vector platform.
- Use of CHIMP message passing library and Parallel Utility library for block decompositions allowed introduction of parallel computing into an otherwise 'vector' environment.

Industrial Examples (BAe):

- British Aerospace radar cross section analysis codes.
- customised codes using Occam and assembly language to exploit cheap parallel hardware. No reliable dense linear algebra library existed in 1990 for HPCC parallel platforms.
- ScaLAPACK would (now) allow improved portable implementation.

Pre-requisites for HPCC Libraries:

- library typically built on a reliable message passing system.
- message passing calls actually used must be reliable and widely available - either in a portable library or standard such as PVM, MPI or CHIMP, or in the proprietary package available on target platforms (eg Intel NX/2, IBM EUI,...)
- for ease of development of multiple library modules, message tag space needs to be sensibly partitioned - for example alphanumeric group tags plus numeric message ID allows each library module to restrict itself to its own tag-space and ensure non-interference of library modules.
- well defined purpose for library is important for user as well as software designer. (contrast with some proprietary libraries which are ad-hoc collection of software packages). Difficult to maintain with time, and hard for user to know what to expect.

Case Study: ScaLAPACK Library - Motivation

- On shared memory vector supercomputers large, optimized software libraries exist:
 - BLAS, EISPACK, LINPACK, LAPACK,...

- NAG, IMSL, ESSL,...

• Little such software runs efficiently on current and emerging parallel architectures

⇒ "Software Gap"

 Development of high-quality, portable software libraries for concurrent computers as a key enabling technology essential to more widespread use of HPCC platforms by industry as well as by academia.

Case Study: ScaLAPACK Library -Objectives

• Goal:

To develop a library of high-quality, portable software for performing linear algebra computations on NUMA supercomputers, specifically MIMD distributed memory concurrent computers.

- LAPACK has already done this for workstations and shared memory computers.
- ScaLAPACK extends the functionality of LAPACK to distributed memory machines.

ScaLAPACK=Scalable LAPACK

i.e., we want the performance/node to stay constant as the problem size scales with the number of nodes.

Case Study: ScaLAPACK Library -Basic Problems

- Basic problems addressed by ScaLAPACK include:
- Linear systems: Ax = b
- Least squares: $\min_{x} ||Ax b||_2$, $A = U\Sigma V^T$
- Eigenvalues and vectors: $Ax = \lambda x$, $Ax = \lambda Bx$
- ScaLAPACK and LAPACK use block-partitioned algorithms, so algorithm is expressed in terms of matrix-matrix operations performed using Level 3 BLAS. which maximizes data reuse in upper levels of memory, and reduces frequency of data movement between:
 - shared memory and cache for shared memory machines;
 - processors for distributed memory machines.

Case Study: ScaLAPACK Library -Building Blocks

- Basic Linear Algebra Communication Subprograms (BLACS) for communicating parts of a matrix. May be optimized for hardware.
- Parallel BLAS (PBLAS). Level 1, 2 and 3 BLAS routines for distributed matrices and vectors.
- Sequential BLAS. May be optimized for hardware.
- Matrix transpose routines.
- Data distribution transformation routines for dynamically changing data distribution.

Case Study: ScaLAPACK Library -BLACS

- Basic Linear Algebra Communication Subprograms communicate parts of: rectangular matrices; trapezoidal matrices.
- Processes are laid out on a 2D logical mesh
- Processes are referenced by location in topology
- Blocking point-to-point communication
- Collective communication over row, column or all of topology
 - broadcast
 - some reduction routines
- No message tags
- BLACS context is compatible with MPI communicator

Case Study: ScaLAPACK Library - PBLAS

- PBLAS perform Level 1, 2, and 3 BLAS operations on distributed matrices
- Matrices are global objects
- Matrices have a block cyclic data distribution
- PBLAS are a subset of the BLAS, but
 - no banded and packed storage schemes
 - no vector rotation routines
- Same calling sequence as BLAS except for each distributed matrix we have
 - global indices of start of matrix
 - descriptor array

Case Study: ScaLAPACK Library -Key Ideas

- Use block-partitioned algorithms to maximize data reuse in upper levels of memory
 - * reduce cache misses
 - * reduce frequency of communication
- Use Parallel BLAS (PBLAS) as main computational building blocks.
- Use Basic Linear Algebra Communication Subprograms (BLACS) to perform communication
- Hide parallelism within the PBLAS
- Fine-tune performance by adjusting data layout parameters
- **Important:** The PBLAS make use of the sequential BLAS for which assembly coded versions exist for many processors.

Case Study: ScaLAPACK Library - Data Decomposition

- We want a data decomposition scheme that:
- is practical,
- is general-purpose,
- gives good load balance,
- can reproduce all the most commonly-used data distributions.

\Rightarrow Block-Cyclic Distribution

- Partition matrix into blocks of $r \times s$ elements.
- Can regard processors as being arranged as a 2-D mesh, or template.

$$(m,n) \mapsto ((p,q),(b,d),(i,j))$$

Case Study: ScaLAPACK Library - Block Cyclic Example

p,q	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0,0	0,1	0,2	0,3	0,0	0,1	0,2	0,3	0,0	0,1	0,2	0,3	0,0	0,1	0,2	0,3
1	1,0	1,1	1,2	1,3	1,0	1,1	1,2	1,3	1,0	1,1	1,2	1,3	1,0	1,1	1,2	1,3
2	2,0	2,1	2,2	2,3	2,0	2,1	2,2	2,3	2,0	2,1	2,2	2,3	2,0	2,1	2,2	2,3
3	0,0	0,1	0,2	0,3	0,0	0,1	0,2	0,3	0,0	0,1	0,2	0,3	0,0	0,1	0,2	0,3
4	1,0	1,1	1,2	1,3	1,0	1,1	1,2	1,3	1,0	1,1	1,2	1,3	1,0	1,1	1,2	1,3
в5	2,0	2,1	2,2	2,3	2,0	2,1	2,2	2,3	2,0	2,1	2,2	2,3	2,0	2,1	2,2	2,3
6	0,0	0,1	0,2	0,3	0,0	0,1	0,2	0,3	0,0	0,1	0,2	0,3	0,0	0,1	0,2	0,3
7	1,0	1,1	1,2	1,3	1,0	1,1	1,2	1,3	1,0	1,1	1,2	1,3	1,0	1,1	1,2	1,3
8	2,0	2,1	2,2	2,3	2,0	2,1	2,2	2,3	2,0	2,1	2,2	2,3	2,0	2,1	2,2	2,3
9	0,0	0,1	0,2	0,3	0,0	0,1	0,2	0,3	0,0	0,1	0,2	0,3	0,0	0,1	0,2	0,3
10	1,0	1,1	1,2	1,3	1,0	1,1	1,2	1,3	1,0	1,1	1,2	1,3	1,0	1,1	1,2	1,3
11	2,0	2,1	2,2	2,3	2,0	2,1	2,2	2,3	2,0	2,1	2,2	2,3	2,0	2,1	2,2	2,3
B,D		()			1	1	C	1	2	2			3	3	
B,D	0,0	(0,4) 0,8	0,12	0,1	0,5	0,9	(0,13	0,2	0,6	2 0,10	0,14	0,3	0,7	3 0,11	0,15
	0,0 3,0			0,12 3,12	0,1 3,1							0,14 3,14	0,3 3,3			0,15 3,15
<u>В,</u> D 0		0,4	0,8			0,5	0,9	0,13	0,2	0,6	0,10			0,7	0,11	-
	3,0	0,4 3,4	0,8 3,8	3,12	3,1	0,5 3,5	0,9 3,9	0,13 3,13	0,2 3,2	0,6 3,6	0,10 3,10	3,14	3,3	0,7 3,7	0,11 3,11	3,15
	3,0 6,0	0,4 3,4 6,4	0,8 3,8 6,8	3,12 6,12	3,1 6,1	0,5 3,5 6,5	0,9 3,9 6,9	0,13 3,13 6,13	0,2 3,2 6,2	0,6 3,6 6,6	0,10 3,10 6,10	3,14 6,14	3,3 6,3	0,7 3,7 6,7	0,11 3,11 6,11	3,15 6,15
0	3,0 6,0 9,0	0,4 3,4 6,4 9,4	0,8 3,8 6,8 9,8	3,12 6,12 9,12	3,1 6,1 9,1	0,5 3,5 6,5 9,5	0,9 3,9 6,9 9,9	0,13 3,13 6,13 9,13	0,2 3,2 6,2 9,2	0,6 3,6 6,6 9,6	0,10 3,10 6,10 9,10	3,14 6,14 9,14	3,3 6,3 9,3	0,7 3,7 6,7 9,7	0,11 3,11 6,11 9,11	3,15 6,15 9,15
	3,0 6,0 9,0 1,0	0,4 3,4 6,4 9,4 1,4	0,8 3,8 6,8 9,8 1,8	3,12 6,12 9,12 1,12	3,1 6,1 9,1 1,1	0,5 3,5 6,5 9,5 1,5	0,9 3,9 6,9 9,9 1,9	0,13 3,13 6,13 9,13 1,13	0,2 3,2 6,2 9,2 1,2	0,6 3,6 6,6 9,6 1,6	0,10 3,10 6,10 9,10 1,10	3,14 6,14 9,14 1,14	3,3 6,3 9,3 1,3	0,7 3,7 6,7 9,7 1,7	0,11 3,11 6,11 9,11 1,11	3,15 6,15 9,15 1,15
0	3,0 6,0 9,0 1,0 4,0	0,4 3,4 6,4 9,4 1,4 4,4	0,8 3,8 6,8 9,8 1,8 4,8 7,8	3,12 6,12 9,12 1,12 4,12	3,1 6,1 9,1 1,1 4,1	0,5 3,5 6,5 9,5 1,5 4,5	0,9 3,9 6,9 9,9 1,9 4,9	0,13 3,13 6,13 9,13 1,13 4,13	0,2 3,2 6,2 9,2 1,2 4,2	0,6 3,6 6,6 9,6 1,6 4,6 7,6	0,10 3,10 6,10 9,10 1,10 4,10	3,14 6,14 9,14 1,14 4,14 7,14	3,3 6,3 9,3 1,3 4,3 7,3	0,7 3,7 6,7 9,7 1,7 4,7 7,7	0,11 3,11 6,11 9,11 1,11 4,11	3,15 6,15 9,15 1,15 4,15 7,15
0	3,0 6,0 9,0 1,0 4,0 7,0	0,4 3,4 6,4 9,4 1,4 4,4 7,4	0,8 3,8 6,8 9,8 1,8 4,8 7,8	3,12 6,12 9,12 1,12 4,12 7,12	3,1 6,1 9,1 1,1 4,1 7,1	0,5 3,5 6,5 9,5 1,5 4,5 7,5	0,9 3,9 6,9 9,9 1,9 4,9 7,9	0,13 3,13 6,13 9,13 1,13 4,13 7,13	0,2 3,2 6,2 9,2 1,2 4,2 7,2	0,6 3,6 6,6 9,6 1,6 4,6 7,6	0,10 3,10 6,10 9,10 1,10 4,10 7,10	3,14 6,14 9,14 1,14 4,14 7,14	3,3 6,3 9,3 1,3 4,3 7,3	0,7 3,7 6,7 9,7 1,7 4,7 7,7	0,11 3,11 6,11 9,11 1,11 4,11 7,11	3,15 6,15 9,15 1,15 4,15 7,15
0 p 1	3,0 6,0 9,0 1,0 4,0 7,0 10,0	0,4 3,4 6,4 9,4 1,4 4,4 7,4 10,4	0,8 3,8 6,8 9,8 1,8 4,8 7,8 10,8	3,12 6,12 9,12 1,12 4,12 7,12 10,12	3,1 6,1 9,1 1,1 4,1 7,1 10,1	0,5 3,5 6,5 9,5 1,5 4,5 7,5 10,5	0,9 3,9 6,9 1,9 4,9 7,9 10,9	0,13 3,13 6,13 9,13 1,13 4,13 7,13 10,13	0,2 3,2 6,2 9,2 1,2 4,2 7,2 10,2	0,6 3,6 6,6 9,6 1,6 4,6 7,6	0,10 3,10 6,10 9,10 1,10 4,10 7,10 10,10	3,14 6,14 9,14 1,14 4,14 7,14 10,14	3,3 6,3 9,3 1,3 4,3 7,3 10,3	0,7 3,7 6,7 9,7 1,7 4,7 7,7 10,7	0,11 3,11 6,11 9,11 1,11 4,11 7,11 10,11	3,15 6,15 9,15 1,15 4,15 7,15 10,15
0	3,0 6,0 9,0 1,0 4,0 7,0 10,0 2,0	0,4 3,4 6,4 9,4 1,4 4,4 7,4 10,4 2,4	0,8 3,8 6,8 9,8 1,8 4,8 7,8 10,8 2,8	3,12 6,12 9,12 1,12 4,12 7,12 10,12 2,12	3,1 6,1 9,1 1,1 4,1 7,1 10,1 2,1	0,5 3,5 6,5 9,5 1,5 4,5 7,5 10,5 2,5	0,9 3,9 6,9 1,9 4,9 7,9 10,9 2,9	0,13 3,13 6,13 9,13 1,13 4,13 7,13 10,13 2,13	0,2 3,2 6,2 9,2 1,2 4,2 7,2 10,2 2,2	0,6 3,6 9,6 1,6 4,6 7,6 10,6 2,6	0,10 3,10 6,10 9,10 1,10 4,10 7,10 10,10 2,10	3,14 6,14 9,14 1,14 4,14 7,14 10,14 2,14	3,3 6,3 9,3 1,3 4,3 7,3 10,3 2,3	0,7 3,7 6,7 9,7 1,7 4,7 7,7 10,7 2,7	0,11 3,11 6,11 1,11 4,11 7,11 10,11 2,11	3,15 6,15 9,15 1,15 4,15 7,15 10,15 2,15

Industrial Application of ScaLAPACK

- Large Scale industrial application employed by Syracuse Research Corporation (SRC) in defense simulations of radar cross sections for "flying objects"
- Serial code (used LINPACK) widely used by SRC's customers, but to allow simulation of new "flying objects" with a lot of mesh details necessary, HPCC was needed.
- Cost performance, portability across platforms was driving force. Code was sufficiently large that software investment effort porting to a single proprietary system was risky.
- Scalability also an issue for even larger problems in future.

SRC ParMoM Package

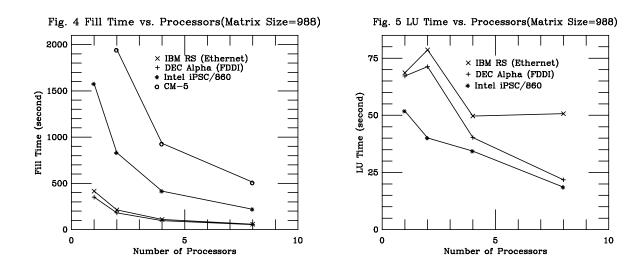
- Parametric Patch Method of Moments Code for radar cross section modeling of full airborne system.
- Problem can be summarised as assembly and solution of large dense matrix equation
- Matrix contains impedance coefficients
- RHS is (multiple) excitation vectors from different incoming radar signals
- solution vector is electric currents over surface of aircraft.

Design of Parallel ParaMoM

- Main component of the code is matrix L.U factorisation and solve (this is $O(N^3)$, where N is number of unknown or the points for this application.)
- although some proprietary systems have library for this (eg Thinking Machines' CMSSL, or Intel SSL) ScaLAPACK was only truly portable one.
- Matrix assembly is $O(N^2)$ and disassembly is O(N) which are still significant for very large N.
- ScaLAPACK is conveniently implemented on the BLACS layer, which was an appropriate communications library for the matrix assembly code. The interoperability of these two layers allowed a truly portable application code.

Parallel ParaMoM

- Successful ports to Intel (ScaLAPACK BLACS on NX/2); CM5 (using CMMD); IBM SP2 using EUI-H; various workstation clusters (Sun, DEC, IBM,...) using PVM as underlying layer, including use of underlying ATM hardware.
- tunable blocking parameters in ScaLPACK library were valuable in tuning different application problem (mesh sizes) to different architectures - in a portable way.


Selected Timing comparisons for N = 4889 (in seconds)

Platform	N_p	Fill	LU					
Alpha(FDDI)	8	1420	1120					
IBM RS(Ether)	8	1501	1805					
iPSC/860	64	526	281					
CM-5	32	3295	171					

Platform	N_p	Setup	RHS	Total
			+ Field	
Alpha(FDDI)	8	12.3	18.0	2570.2
IBM RS(Ether)	8	51.4	28.2	3385.0
iPSC/860	64	45.4	53.0	904.9
CM-5	32	21.1	4.3	3491.3

Portability and interoperability is greatest benefit.

Timing curves for various implementations:

HPCC Software libraries for Industry 26 July 1995

Conclusions/Summary:

- use of existing (tested) software always favored by industry
- cluster technology is viable for CEM applications of modest size
- use of portable (library based) software HPCC software allows straightforward move from application development on cluster to production run on MPP.
- good HPCC software libraries **can** be constructed - with careful design and high quality software engineering.
- - final thought software libraries may form major component of the runtime libraries for high level parallel languages such as HPF.

Online Internet Resources:

- http://www.npac.syr.edu/ The Northeast Parallel Architectures Center (NPAC) Main Server (containing documentation on CEM Application of ScaLAPACK)
- http://www.netlib.org/nse/home.html The National HPCC Software Exchange (containing ScaLAPACK software and documentation)
- Ken Hawick (hawick@npac.syr.edu); http://www.npac.syr.edu/users/hawick/homepage
- David Walker (walker@msr.epm.ornl.gov); http://www.epm.ornl.gov/ walker