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Abstract

Two-dimensional arrays are useful in a large variety of scienti�c and engineering applications.

Parallelization of these applications requires the decomposition of array elements among di�erent

machines. Several data-decomposition techniques have been studied in the literature for machines

with uniform computational power. In this paper we develop new methods for decomposing arrays

into a cluster of machines with nonuniform computational power. Simulation results show that our

methods provide superior decomposition over naive schemes.



1 Introduction

Data-parallel applications requires the partitioning of data among processors in a way that the

computation load on each node is proportional to its computational power, while minimizing com-

munication. Two-dimensional arrays are widely used in scienti�c and engineering problems such

as weather prediction and image processing. In this paper we discuss the decomposition of two-

dimensional arrays for a nonuniform computational environment (NUCE). This environment is

made up of machines with di�erent computational power, and the arrays must therefore be divided

unequally among processors.

Most previous work has been done on parallel machines with uniform computational power. For

these machines, decomposition of arrays is relatively simple. The array is partitioned equally along

one or more dimensions. This is re
ected in the BLOCK directive of High-Performance Fortran

[1]. Belkhale and Banerjee [5] have proposed methods for partitioning a nonuniform grid. Grid

problems with varying resource demands have been studied by Nicol and Saltz [13]. Nicol [12] has

described the decomposition of unstructured grids into perfectly rectilinear partitions.

There has been very little work done on decomposition of arrays for nonuniform machines.

Crandall and Quinn [10] have presented an algorithm for decomposing a two-dimensional data

array for a heterogeneous cluster of workstations. This algorithm uses an orthogonal recursive

bisection to perform the decomposition. Snyder and Socha [15] have developed a polynomial time

algorithm for allocating an I�J array of array points to aK�K array of processors. However, their

algorithm is restricted to uniform processors. Berger and Bokhari [6] have addressed the problem

of decomposing a domain into multiprocessors where subparts of the domain require di�erent

computational loads. The domain is divided into rectangles by recursively dividing the partitions

into subpartitions of equal computational load until each processor has been allocated its share of

the domain.

Although our work is speci�cally targeted towards a cluster of workstations, it can be general-

ized to a heterogeneous computing environment consisting of clusters of workstations, clusters of

supercomputers, or a hybrid of both. An example of such an environment is shown in Figure 1.

For such cases a multilevel decomposition may be required. An array may be decomposed among

several higher-level machines, followed by decomposition within each machine.

The algorithms developed in this paper assume that all the processors are connected by an

interconnection network in which the cost of unit communication is the same between all the

processors (e.g., a bus). We show that the number of possible decompositions is at least O(p!2p),

where p is the number of processors. Thus, trying all possible cases is not possible beyond a small

value of p. Our simulation results show that the total amount of communication produced by our

algorithms is smaller as compared to naive approaches.

The rest of this paper is organized as follows. Section 2 provides a formal description of the

problem. In Section 3 we discuss the decomposition of a two-dimensional m� n array into k (2 �

k � 4) partitions. Section 4 introduces a special class of decompositions. In Section 5 we discuss

the e�ect of latency on the algorithms described in Section 4. In Section 6, several decomposition

algorithms are presented and performance comparison of the algorithms is presented.
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2 Problem de�nition
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Figure 1: A nonuniform computing environment.

Figure 2: Examples of some decompositions that are not allowed.

NUCE's are made up of processors with di�erent computational power connected by a network.

A special case of a NUCE is a cluster of heterogeneous workstations that are connected by Eth-

ernet or Token Ring. An e�cient decomposition would minimize interprocessor communication

while simultaneously balancing the computational load among the processors in NUCE. We con-

sider only decompositions that assign to each processor a rectangular (or square) subarray, thus

decompositions such as are shown in Figure 2 those not allowed. This restriction is necessary for

two reasons:

1. The local data assigned to each node is an array, making storing and referencing of data on

a local processor e�cient.

2. The boundaries of the local subarray are parallel to the length and the width, which makes

�nding the owner of a particular element relatively simple.

Several ways of decomposing a 2-D array for a four-processor NUCE such that each partition

satis�es the above property are shown in Figure 3. Each decomposition can be looked at as a

planar graph with a number of nodes and edges. Edges can be classi�ed as internal edges or

external edges. Internal edges are shown by dotted lines in Figure 3. All other edges are external

edges. We would like to divide the array in such a fashion that the total communication cost is
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Figure 3: Di�erent decompositions for four processors in a NUCE.

minimized. Clearly, the total communication cost depends on the way data is accessed for a given

application. However, for most scienti�c applications the cost is minimized if the sum of the length

of internal edges (representing the communication) is minimized. We will use the term Acost to

represent this sum. It is worth noting that the minimization of Acost reduces the sum of the

perimeter of all the rectangles, thus a decomposition that provides the best partitioning would, on

the average, have each partition close to a square. In the above discussion we have assumed that

the cost of communication for a unit of data is the same across all machines.

In some cases the sum of internal edges, along with the external edges, is a better representation

of communication cost. This is required for cases in which interactions are wraparound along rows

and/or columns. If two parallel external edges belong to the same partition, then they are not

counted in the cost since they do not result in any communication. We will use the term Bcost to

represent this sum. In Figure 4 Acost is m+ n0 and Bcost is 2m+ 2n0.

m

    n
n

Figure 4: Acost = m+ n0, Bcost = 2m+ 2n0.

Let a1; a2; a3 : : : ; ap be the relative computational power of di�erent processors such that a1 +

a2 + a3 : : : ap = 1 and a1 � a2 � a3 � a4 : : : : � ap. The problem can then be stated formally as

follows:

Decompose the m� n array into p partitions such that the size of each partition is in

the ratio a1 : a2 : a3 : a4 : : :ap; and Acost (or Bcost) is minimized.

In practice the cost of communication on a local area network can be modeled as O(� + �B),

where � is the software overhead of sending a message (also known as the startup latency), � is the

transfer rate and B is the size of the message. The startup latency for communication is typically

large and can have an impact on the total cost of the communication. The cost measures studied

so far do not consider this setup time. We will discuss the e�ect of startup latency in Section 5.

3



3 Decomposition for a small number of partitions

In this section we present several ways of decomposing a two-dimensional m � n array into k

(2 � k � 4) partitions such that the size of each partition is aimn; 1 � i � k. Our basic intention

is to demonstrate some key ideas that could be used for the development of algorithms for large

values of k.

Two partitions

There are four possible ways to decompose an array into two partitions (Figure 5). The decompo-

sition in Figure 5 (a) has Acost equal to m and Bcost equal to 2m. For decomposition in Figure 5

(b) Acost is n and Bcost is 2n. Since m � n, decomposition in Figure 5 (a) is always better than

decomposition in Figure 5 (b) using either measure. The cost of decomposition in Figure 5 (c) and

Figure 5 (d) is equal to that of Figure 5 (a) and Figure 5 (b), respectively.

nn

         2

  m

  m

  2                                1

       1

  1                                2                                      m                                      1

2

(a)                                                                                       (b)

(c)                                                                                        (d)

Figure 5: Decomposing an array into two partitions (a) Acost = m, Bcost = 2m; (b) Acost = n,

Bcost = 2n:; (c) Acost = m, Bcost = 2m. (d) Acost = n, Bcost = 2n:

Three partitions

 (c)(a)                                                                                 (b)

     1                       2

   3

   1

     2                    3

    1                   2           3

Figure 6: Partitioning an array into three partitions (a) Acost = m + n(a2 + a3), Bcost = 2m +

2n(a2+ a3); (b) Acost = n+m(a2+ a3), Bcost = 2n+2m(a2+ a3); (c) Acost = 2m, Bcost = 3m:

There are 36 ways to decompose an array into three partitions. Three representative decompositions

are shown in Figure 6. The decomposition in Figure 6 (a) has Acost equal to m+ n(a2 + a3) and

Bcost equal to 2m + 2n(a2 + a3): Decomposition derived by interchanging a1 with a2 or a3 will
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increase the total cost. For example, if we interchange a1 with a2, then Acost is m + n(a1 + a3),

m+ n(a1 + a3) � m+ n(a2 + a3), because a1 � a2. Also, the decomposition achieved by rotating

(interchanging the orientation of internal edges by 90 degrees) the decomposition in Figure 6 (a)

will result in an increase of communication cost (Figure 6 (b)). For example, the decomposition in

Figure (b) has Acost equal to n +m(a2 + a3), n +m(a2 + a3) � m+ n(a2 + a3), because n � m.

Similarly, rotating the decomposition in Figure 6 (c) will lead to a larger communication cost.

Acost of decomposition in Figure 6 (a) is better than Acost of Figure 6 (c) if m � n(a2 + a3).

The following observations can be made for achieving the decomposition with the least cost:

1. Partitions should be considered in decreasing order of their size.

2. Partitioning should be done along the longer dimension.

To �nd the best possible decomposition for three partitions, we need to consider only cases (a)

and (c) and choose the better of the two. This is a signi�cant reduction from the 36 possible cases.

Four partitions

      4

 2

 4

 3

 1   

(a)                                                             (b)

         n                                                               n

 1                           2

3                           4

       (c)                                                            (d)

   n                                                                     n

      m            1               2          3        4           m            1               2              3 

    m                                                                m

Figure 7: Partitioning an array into four partitions (a) Acost = 3m, Bcost = 4m; (b) Acost

= 2m + n(a3 + a4), Bcost = 3m + 2n(a3 + a4); (c) Acost = m + 2n(a2 + a3 + a4), Bcost =

2m+ 3n(a2 + a3 + a4); (d) Acost = m+ n, Bcost = 2m+ 2n:

There are at least 384 possible ways to decompose an array into four partitions (Figure 7 shows

four of them). If we rotate these decompositions we will get another four decompositions. For each

of the eight decompositions, we can get 4! di�erent decompositions by interchanging a1; a2; a3; a4

with each other. Acost and Bcost for these cases are shown in Figure 7. Interchanging a's in any of

the decompositions shown will not reduce Acost or Bcost. For example, if we interchange a1 with
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a2 in Figure 7 (c), then Acost is m+3n(a1+a3+a4), m+3n(a1+a3+a4) � m+3n(a2+a3+a4),

because a1 � a2.

Another decomposition of an array into four partitions is shown in Figure 8. The structure of

the decomposition in Figure 8 is di�erent from the ones described in Figures 5 through 7, because

the latter can be derived by partitioning along X-axis (Y -axis), followed by partitioning each of

the subarrays along Y -axis (X-axis).

The Acost and Bcost of the decomposition in Figure 8 are m +m(a3 + a4)=(a2 + a3 + a4) +

n(a2 + a3 + a4), and 2m+m(a3 + a4)=(a2 + a3 + a4) + 2n(a2 + a3 + a4), respectively.

    3             4

   2

  1

  m

n

Figure 8: A di�erent decomposition of an array into 4 partitions.

We get the decomposition in Figure 8 by rotating the dotted subpart of Figure 7 (b) (see Figure

9). The Acost of decomposition in Figure 8 is better than Figure 7 (b) only when

m(1 � (a3 + a4)=(a2 + a3 + a4))� na2 > 0

, m(a2=(a2 + a3 + a4)) > na2

, m > (a2 + a3 + a4)n:

This corresponds to the fact that after the �rst division (removing a1), the length of the re-

maining rectangle is less than the width, and the decomposition for the subpart corresponds to

the best decomposition for k = 3 with a2, a3, and a4. This does not hold for Bcost, because a2

in Figure 7 (b) has a free communication edge along the width. For Bcost, the decomposition in

Figure 8 is thus better than Figure 7 (b) only when

m(1� (a3 + a4)=(a3+ a4 + a2)) > 2(a2)n

) m > 2(a2 + a3 + a4)n:

Discussion

From the special cases which we studied in this section we make the following observations:

1. A good method for minimizing Acost seems to be to look at all the decompositions of the

type given in Figure 7. These decompositions can be achieved by partitioning along the larger

dimension into several subarray, followed by partitioning each of the subarrays along the other

dimension.
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Figure 9: Decomposition in (b) can be achieved by rotating the dotted lines of decomposition

in (a).

2. To achieve the decomposition with a good cost, the partitions should be considered in de-

creasing order of their sizes.

3. The partitioning should be done along the longer dimension. Whenever the remaining length

is less than the remaining width, switching directions will generally, produce better decom-

position.

For most decompositions, especially for a large number of partitions, the di�erence between

Acost and Bcost will be equal to the perimeter of the array. Hence a good decomposition for one

of the cost measures will also be a good decomposition for the other cost measures. The exceptions

to the rule are the cases in which a given two parallel external edges belong to the same partition.

In the following we will limit our discussion and analysis to only one of the cost measures, Acost.

However, most of the discussion can potentially be extended to the other cost measure.

4 XY decompositions

Based on our observation in Section 3, we �nd that partitioning along the dimension with the larger

size, followed by partitioning along the smaller size, leads to good decomposition in most cases.

We will use the term XY decompositions to represent this class. Without loss of generality we will

assume that the X-axis is larger of the two array dimensions. An example of such a decomposition

for 9 partitions is given in Figure 10. We will use the term vertical subarrays to denote the

subarrays formed by partitioning along the X-axis, and the term horizontal subarrays to denote the

subarrays formed by partitioning each vertical subarray along the Y-axis. Each horizontal subarray

corresponds to one partition and we will use these terms interchangeably. We make the following

observations regarding XY decompositions. Let the number of vertical subarrays be v. We de�ne

counti; 1 � i � v to be the number of horizontal subarrays (partitions) assigned to the vertical

subarray i.

Lemma 1 Vertical subarrays can be interchanged so that they are in an increasing order of their

count values without increasing the cost.

Lemma 2 The partitions within vertical subarrays can be arranged in a decreasing order of their

size without increasing the cost.
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Figure 10: An XY decomposition of an array into 9 partitions
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Figure 11: A rearrangement of partitions of the decomposition in Figure 10.

We de�ne rearranging the decomposition as an operation in which partitions within a subset are

interchanged without changing the number of vertical subarrays and without changing the count

of each vertical subarray. For example, the decomposition in Figure 11 is a rearrangement of the

decomposition in Figure 10.

Theorem 1 Consider an XY decomposition of a two-dimensional array. The communication

cost cannot be increased by rearranging the decomposition such that vertical subarrays are sorted

according to their count values (number of partitions), and the partitions within and between the

vertical subarrays are sorted according to size from top to bottom and left to right, respectively.

Proof 1 Assume the vertical subarrays in the array are sorted according to the number of parti-

tions in each vertical subarray (e.g.; (1; 2); (3; 4; 5); (6; 7; 8; 9)). This can always be done without

increasing the cost (Lemma 1). Then

Acost = (v � 1)m+ n

vX

i=1

((counti � 1)

countiX

j=1

aKi+j)

where v is the number of vertical subarrays, counti is the number of partitions in the i-th vertical

subarray, and Ki =
P

i�1
x=1(counti).

To prove Theorem 1 we need only to prove the following two general cases:

1. k�(ax + ay + � � �) + k�(ai + aj + � � �) + � � �=k�(ay + ax + � � �) + k�(ai + aj + � � �) + � � �
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p pt(p) p!2p�1

4 5 192

5 7 1920

7 15 322560

10 42 1.857945e+09

20 627 1.275541e+24

Table 1: pt(p) and p!2p�1 for di�erent p.

2. k�(ax + ay + � � �) + k�(ai + aj + � � �) + � � � � k�(ai + ay + � � �) + k�(ax + aj + � � �) + � � �

such that k� � k�, ax � ai and ax � ay .

The �rst case is always true, since addition is commutative. To prove the second case we need

only to prove the following:

k�(ax + ay + � � �) + k�(ai + aj + � � �)� k�(ai + ay + � � �)� k�(ax + aj + � � �) � 0

, (k�ax + k�ai)� (k�ai + k�ax) � 0

, (k�ax � k�ai) + (k�ai � k�ax) � 0

, k�(ax � ai) + k�(ai � ax) � 0

, (k� � k�)(ai � ax) � 0;

which is always true since k� � k� and ax � ai. Thus, one can always move a horizontal subarray

with a high value of ai to the left by interchanging it with a horizontal subarray having a value

lower than ai without increasing the cost. 2

The number of potentially di�erent arrangements can be derived by �nding the number of ways

p can be partitioned into k parts, 1 � k � p such that x1 + x2 + x3 + � � �xk = p, where x1, x2,

x3, : : : , xk are integers. This can be shown to be 2p�1. For each such case there are p! ways of

arranging a1, a2, : : :, ap. Thus the total number of XY decompositions is O(p!2p�1). Let pt(p)

represent the number of cases in which x1 � x2 � x3 : : : � xk . For example, pt(5) is equal to 7,

namely, 5 = 4+1 = 3+2 = 3+1+1 = 2+2+1 = 2+1+1+1 = 1+1+1+1+1. Theorem 1 thus

reduces the possible cases to be considered for �nding the best XY decomposition from p!2p�1 to

pt(p), where p is the number of partitions. There is no closed-form expression for pt(p) [9]. Table

1 gives the comparison for small values of p.

Lemma 3 Let the communications cost of a decomposition produced by partitioning an m�n array

along an X-axis followed by partitioning it along a Y-axis be

Acost = dm+ kn:

Then the communication cost of the same array with the same decomposition rotated (partitioning

along the Y-axis followed by partitioning along the X-axis) will be better only if k > d.
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Lemma 4 If the partitions are equal, then Acost is given by:

min
1�l�p

f[(bp=lc(bp=lc� 1))(l� p mod l) + (dp=le(dp=le � 1))(pmod l)]nai + lmg:

5 Latency considerations

In the previous section latency was ignored in the communication cost. Latency in current im-

plementations of message-passing software is two to three orders of magnitude larger than the

transmission time required for sending a byte of information across the network. This can be sig-

ni�cantly reduced by decreasing the number of software layers which the message-passing software

is built upon. Several such e�orts are currently underway. In this section we discuss the e�ect of

latency on some of the results derived in the previous section.

On a broadcast network like Ethernet every message is received on all the nodes. The lower

layers ignore the messages not destined for the node. However, future message-passing software

should support a multicast. In such cases the software overhead of sending multiple messages over

a broadcast network could be reduced by multicasting one message with the combined data for all

the processors together. Each receiver would use the part for which it was the destination, which

would reduce the overhead cost without increasing the actual cost of transmission. For the above

scenario the latency overhead for each processor would be �xed independently of the number of

processors a given processor needs to send a message. Hence, the results discussed in Section 4

would still hold.
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   (a)                                                                                                     (b)

Figure 12: Two di�erent decompositions that are \rearrangements" of each other. The one on the

left has a larger number of internal edges.

When point-to-point communication is used there is a latency cost associated whenever two

partitions share a common boundary. Thus, the additional cost is equal to the number of internal

edges for a given decomposition multiplied by the latency cost. The number of internal edges can

be evaluated by using the well-known Euler Theorem for planar graphs,

V �E + F = 2;

where E is the number of edges, V is the number of vertices and F is the number of regions.

Assuming p partitions, F = p+ 1. Hence,

E = V + p+ 1� 2, E = V + p� 1: (1)

We de�ne any vertex to be a boundary vertex if it lies on the outside boundary of the array

to be decomposed. Otherwise, the vertex is de�ned to be an internal vertex. Similarly, any edge
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is de�ned to be a boundary edge if both endpoints of that edge are boundary vertices, else it is

de�ned as an internal edge. Let Vb, Vi, Eb, Ei be the number of boundary vertices, internal vertices,

boundary edge, and internal edges, respectively.

Since Eb = Vb, we can derive the following by using (1):

Ei = Vi + p� 1:

Thus the number of internal edges for a given decomposition can be derived by �nding the

unique corner points of partitions of a given decomposition, which can be done either by hashing

or sorting. In the latter case the time requirements are O(p log p) for each decomposition.

Consider the equivalence class derived by the \rearrangement" operation described in Section 4.

The number of internal edges for two di�erent decompositions from the same equivalence class need

not be equal. Consider the decompositions given in Figure 12 (a) and Figure 12 (b). Although they

belong to the same equivalence class, the number of internal edges of the decomposition in Figure

12 (a) is less than in Figure 12 (b). A decomposition has the sorted order property if the vertical

subarrays are sorted according to their count values (number of partitions) and the partitions within

and between the vertical subarrays are sorted according to their size from top to bottom and left to

right, respectively. A possible improvement is to consider all the rearrangements of a decomposition

satisfying the sorted order property by allowing interchanges between any two vertical subarrays

and/or interchanges of partitions within a vertical subarray and then choosing the decomposition

with the minimum number of edges. Unfortunately, the number of such decompositions, though

less than p!2p, would still be quite large.

One would expect the di�erence between the number of internal edges to be small within a given

equivalence class. Making this assumption, an algorithm that considers only pt(p) decompositions

as discussed in Section 4, should be able to �nd a close to optimal solution for all XY decompositions

when the cost of decomposition includes the e�ect of latency corresponding to every internal edge.

6 Algorithms

In this section we describe four algorithms for decomposing an array into nonuniform-sized parti-

tions. These are based on the ideas discussed in Sections 3, 4, and 5.

6.1 XY algorithm

A high-level algorithm that generates all the XY partitions is given in Figure 13. One can

improve the quality of partitioning produced by the algorithm by using Lemma 3. For each

decomposition considered, we compute the constant associated with each dimension separately

(i.e., Cost = d � m + k � n). If d < k, then rotating the decomposition will produce a cheaper

communication cost. We will call the new algorithm XY 2.

6.2 TILE algorithm

In Section 3 we observed that partitioning along the shorter dimension will reduce the commu-

nication cost. We can use this fact to improve the algorithm in the previous section. This new

11



Initial condition:

1. The dimensions of the array are such that m � n .

2. WeightList is the list of the weights of remaining partitions in nonincreasing order.

3. r is the current size of WeightList.

4. Sl (Sr) is equal to the left (right) subarray after partitioning the current array along dimensionM .

5. min is the least number of partitions allowed in a vertical subarray. It is initialized to 1.

procedure XY (WeightList; r;m; n;min)

while (min � r )

for (1 � i � min) WeightListLeft[i] := WeightList[i].

if (min 6= r)

for (1 � i � r �min) WeightListRight[i] := WeightList[min + i].

if (min � r �min)

Divide current array [m� n] into two parts Sl [mSl � nSl] and Sr [mSr � nSr ] such that:

mSl := m. nSl := n � (
P

WeightListLeft=

P
WeightList).

mSr := m. nSr := m� nSl.

if (min > 1)

divide Sl into min partitions along n.

if (r �min > 1)

XY (WeightListRight;r-min;mSr ; nSr ;min)

else

Divide current array [m� n] into r parts along n.

Exit while loop.

min := min+ 1:

endwhile.

end.

Figure 13: XY Algorithm.

Initial conditions:

1. The dimensions of the array are such that m � n .

2. WeightList is the list of the weights of remaining partitions in nonincreasing order.

3. r is the size of WeightList.

4. Sl (Sr) is equal to the left (right) subarray after partitioning the current array along dimensionM .

5. min is the least number of partitions allowed in a vertical subarray. It is initialized to 1.

procedure TILE(WeightList; r;m;n; min)

while (min � r)

for (1 � i � min) WeightListLeft[i] := WeightList[i].

if (min 6= r)

for (1 � i � r �min) WeightListRight[i] := WeightList[min + i].

if ((min � r �min)or(mSr > nSr))

Divide current array [m� n] into two parts Sl [mSl � nSl] and Sr [mSr � nSr ] such that:

mSl := m. nSl := n � (
P

WeightListLeft=

P
WeightList).

mSr := m. nSr := n� nSl.

if (min > 1)

divide Sl into min partitions along N .

if ((r�min > 1)and(mSr > nSr))

TILE(WeightListRight;r-min; nSr ;mSr ; 1)

else if ((r �min > 1)and(min � r�min))

TILE(WeightListRight;r-min;mSr ; nSr ;min)

min := min+ 1:

endwhile

end.

Figure 14: TILE Algorithm.
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Initial conditions:

1. The dimensions of the array are such that m � n .

2. WeightList is the list of the computational ratio of remaining partitions in nonincreasing order.

3. r is the current size of WeightList.

4. d refers to the two dimensions of the array. It is initialized to vertical.

procedure RecursiveBisection(WeightList;r;m; n; d)

x := dr=2e.

for (1 � i � x) WeightListLeft[i] := WeightList[i].

for (1 � i � r � x) WeightListRight[i] := WeightList[i+ x].

if (d = vertical)

Let y := (
Px

i=1
WeightListLefti)=(

Py

i=1
WeightListi):

Divide the current array into two subarrays along d according to y.

j := y � n:

c := n� j:

d := horizontal.

if (x > 1)

RecursiveBisection(WeightListLeft;x;m; j; d).

if ((r� x) > 1)

RecursiveBisection(WeightListRight;r � x;m; c; d):

else

Let y := (
Px

i=1
WeightListLefti)=(

Py

i=1
WeightListi):

Divide the current array into two subarrays along d according to y.

j := y �m:

c := m� j:

d := vertical.

if (x > 1)

RecursiveBisection(WeightListLeft;x; j; n; d).

if ((r� x) > 1)

RecursiveBisection(WeightListRight;r � x; c; n; d):

end.

Figure 15: Recursive Bisection Algorithm.

algorithm (described in Figure 14) is similar to XY , with one modi�cation: whenever the remain-

ing length of the current dimension along which the vertical subarrays are partitioned becomes less

than the other dimension, the order of the partitioning is switched, i.e, the XY algorithm is applied

with the other dimension as length and the current dimension as width. The lower bound on the

computational requirements of this new algorithm is 
(pt(p)). This happens when partitioning of

vertical subarrays continues along one dimension and the algorithms behaves as an XY algorithm.

The worst-case complexity of the algorithm is O(2p�1).

6.3 Recursive Bisection algorithm

A simple algorithm was proposed by Crandall and Quinn [10] for decomposing a two-dimensional

array for a NUCE (Figure 15). We shall refer to it as RecursiveBisection. RecursiveBisection

partitions the current array according to the �rst half of the partitions available. Two simple

variations are:

1. RecursiveBisection switches the dimension along which partitioning is performed indepen-

dently of the di�erence between the length and the width of the array. If the aspect ratio of

an array is large, the communication cost can be reduced by partitioning along the dimension

with the larger size. We shall refer to this variation as \RecursiveBisection2." This algorithm,
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also partitions the current array according to the y partitions available such that the sum of

their weights is approximately half of the total.

2. The way RecursiveBisection2 partitions the array may result in unbalanced total weights

being assigned to the two partitions. For example, consider the case of four partitions with

sizes 0.4, 0.4, 0.1, and 0.1, respectively. In this case the array would be partitioned into two

parts with one partition having 80% of the size. We wanted to study the e�ect of choosing

balanced partitions by using a binpacking algorithm to divide the list into two parts with

nearly equal total weight. We call this variation \RecursiveBisection3."

6.4 Simulation results

In this section we present the performance of the algorithms described in the previous sections.

The quality of partitioning produced by the di�erent algorithms was measured for the following

parameters:

1. Number of partitions: We performed our simulation for 4, 5, 7, 10, 15, and 20 partitions. We

decided upon a limit of 20 partitions because we believe that the use of such environments

for data-parallel computing would typically be limited to this number.

2. Ratio of Computational power of Maximum/Minimum: We varied this ratio from 1 to 8 to

study the e�ect of nonuniformity between the computational units.

3. Size of the arrays: We considered arrays of di�erent sizes and shapes ranging from 1K �1K

to 1K � 20K to study e�ects based on the aspect ratio of the array to be partitioned.

4. Latency Costs: We considered three di�erent latency costs: 0, 100, 1000. The �rst corresponds

to the case when latency e�ects are not relevant ( e.g., in the case of a multicast primitive as

described in Section 5). The latter two cases represent practical scenarios.

Based on our preliminary experiments, we concluded that RecursiveBisection had the worst

average communication cost, XY 2 produced the same as or marginally better results than XY ,

and RecursiveBisection3 had similar performance as RecursiveBisection2. Therefore, we will not

present the performance of RecursiveBisection, RecursiveBisection3 and XY .

We decided to present comparative rather than absolute results due to the large amount of

data generated by our simulation. All comparisons were made with RecursiveBisection2 because

it produces very good results at a relatively low cost. A comparative study is more useful for

determining the utility of a more expensive algorithm. The following summarizes the di�erent

results presented.

1. Tables 2 through 4 give the percentage improvement of the Tile algorithm over the Recur-

siveBisection2 for di�erent values of the parameters.

2. Tables 5 through 7 give the percentage improvement of the XY 2 algorithm over the Recur-

siveBisection2 for di�erent values of the parameters.

Each entry shows the percentage improvement for the average communication cost (using the

Acost measure) over 20 randomly generated samples. Table 8 presents the average time spent by
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the decomposition algorithms for di�erent numbers of partitions. The case when latency is nonzero

requires more time for each of the algorithms, because the number of internal edges needs to be

calculated for each decomposition.

Array Size = 1K � 1K. Array Size = 1K � 2K. Array Size = 1K � 3K.

Max/Min Processors Processors Processors

Ratio 4 5 7 10 15 20 4 5 7 10 15 20 4 5 7 10 15 20

1 0 0 0 4 1 3 0 0 0 0 4 4 0 0 0 5 0 3

2 0 4 0 5 2 3 0 3 1 1 3 5 0 2 2 5 2 4

3 0 2 2 6 4 2 0 5 3 1 3 5 0 0 1 5 4 3

4 0 1 3 6 4 3 0 6 3 2 3 4 0 3 0 3 4 3

8 0 0 2 5 4 3 1 5 3 2 4 4 1 4 1 3 4 3

Array Size = 1K � 5K. Array Size = 1K � 10K. Array Size = 1K � 20K.

Processors Processors Processors

4 5 7 10 15 20 4 5 7 10 15 20 4 5 7 10 15 20

1 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 1 3 4 0 0 0 0 0 2 0 0 0 0 0 0

3 0 0 0 3 3 2 0 0 0 0 0 2 0 0 0 0 0 0

4 0 0 0 4 3 3 0 0 0 0 1 1 0 0 0 0 0 0

8 0 0 1 3 2 3 0 0 0 0 2 1 0 0 0 0 0 1

Table 2: Percentage improvement of Tile over RecursiveBisection2 (Latency=0).

Array Size = 1K � 1K. Array Size = 1K � 2K. Array Size = 1K � 3K.

Max/Min Processors Processors Processors

Ratio 4 5 7 10 15 20 4 5 7 10 15 20 4 5 7 10 15 20

1 0 0 -2 0 -2 5 0 0 0 8 2 2 0 0 0 8 -1 4

2 0 1 0 2 0 2 0 1 0 3 2 4 0 0 2 3 2 2

3 0 1 1 4 2 2 0 3 0 1 2 4 0 2 1 3 3 2

4 0 -3 1 4 2 2 0 4 0 0 2 3 0 4 0 4 3 2

8 0 -3 1 3 2 2 3 3 1 2 2 2 1 3 1 2 2 3

Array Size = 1K � 5K. Array Size = 1K � 10K. Array Size = 1K � 20K.

Processors Processors Processors

4 5 7 10 15 20 4 5 7 10 15 20 4 5 7 10 15 20

1 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 1 0 4 0 0 0 0 0 2 0 0 0 0 0 0

3 0 0 0 3 2 2 0 0 0 0 0 2 0 0 0 0 0 0

4 0 0 0 3 2 2 0 0 0 0 1 1 0 0 0 0 0 0

8 0 0 0 2 2 2 0 0 0 0 1 1 0 0 0 0 0 1

Table 3: Percentage improvement of Tile over RecursiveBisection2 (Latency=100).

Array Size = 1K � 1K. Array Size = 1K � 2K. Array Size = 1K � 3K.

Max/Min Processors Processors Processors

Ratio 4 5 7 10 15 20 4 5 7 10 15 20 4 5 7 10 15 20

1 10 16 10 8 15 20 0 17 8 26 6 12 0 0 12 11 11 22

2 10 12 13 11 13 16 0 8 10 14 15 17 0 0 7 16 17 17

3 10 13 13 14 18 17 0 6 7 10 14 16 0 2 5 17 16 17

4 13 11 11 14 17 15 0 20 6 10 15 15 0 3 6 15 15 16

8 11 8 12 14 16 18 0 2 5 11 19 15 2 -2 5 10 15 19

Array Size = 1K � 5K. Array Size = 1K � 10K. Array Size = 1K � 20K.

Processors Processors Processors

4 5 7 10 15 20 4 5 7 10 15 20 4 5 7 10 15 20

1 0 0 0 0 12 26 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 10 21 22 0 0 0 0 2 13 0 0 0 0 0 0

3 0 0 0 10 19 22 0 0 0 0 7 10 0 0 0 0 0 0

4 0 0 0 6 18 21 0 0 0 -5 4 11 0 0 0 0 0 0

8 0 0 1 7 16 19 0 0 1 -1 5 10 0 0 0 0 0 2

Table 4: Percentage improvement of Tile over RecursiveBisection2 (Latency=1000).
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Array Size = 1K � 1K. Array Size = 1K � 2K. Array Size = 1K � 3K.

Max/Min Processors Processors Processors

4 5 7 10 15 20 4 5 7 10 15 20 4 5 7 10 15 20

1 0 0 0 4 1 3 0 0 2 3 5 5 0 0 0 5 1 3

2 0 4 2 6 2 3 0 3 4 3 3 5 0 2 2 5 2 4

3 0 2 3 7 4 2 0 5 5 1 4 6 0 2 1 5 5 3

4 0 1 3 7 4 2 0 6 5 1 4 4 0 4 0 4 5 3

8 0 1 2 5 4 3 0 5 5 2 4 3 1 4 1 4 4 3

Array Size = 1K � 5K. Array Size = 1K � 10K. Array Size = 1K � 20K.

Processors Processors Processors

4 5 7 10 15 20 4 5 7 10 15 20 4 5 7 10 15 20

1 0 0 0 0 1 5 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 1 4 4 0 0 0 0 0 2 0 0 0 0 0 0

3 0 0 0 3 3 3 0 0 0 0 1 2 0 0 0 0 0 0

4 0 0 0 4 3 3 0 0 0 0 1 1 0 0 0 0 0 0

8 1 0 0 3 2 4 0 0 0 1 2 1 0 0 0 0 0 1

Table 5: Percentage improvement of XY 2 over RecursiveBisection2 (Latency=0).

Array Size = 1K � 1K. Array Size = 1K � 2K. Array Size = 1K � 3K.

Max/Min Processors Processors Processors

4 5 7 10 15 20 4 5 7 10 15 20 4 5 7 10 15 20

1 0 0 0 2 4 10 0 0 1 9 5 4 0 0 0 8 0 6

2 0 3 1 3 1 2 0 2 2 4 2 4 0 1 2 3 3 3

3 0 2 2 5 3 2 0 3 3 1 3 5 0 2 1 4 4 2

4 0 0 3 5 3 2 0 5 3 1 3 4 0 4 0 4 4 2

8 0 0 2 3 3 2 1 4 2 2 4 3 1 3 1 3 3 4

Array Size = 1K � 5K. Array Size = 1K � 10K. Array Size = 1K � 20K.

Processors Processors Processors

4 5 7 10 15 20 4 5 7 10 15 20 4 5 7 10 15 20

1 0 0 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 2 1 4 0 0 0 0 0 2 0 0 0 0 0 0

3 0 0 0 3 2 3 0 0 0 0 0 2 0 0 0 0 0 0

4 0 0 0 3 2 3 0 0 0 0 0 1 0 0 0 0 0 0

8 0 0 0 3 2 3 0 0 0 0 2 1 0 0 0 0 0 1

Table 6: Percentage improvement of XY 2 over RecursiveBisection2 (Latency=100).

Array Size = 1K � 1K. Array Size = 1K � 2K. Array Size = 1K � 3K.

Max/Min Processors Processors Processors

4 5 7 10 15 20 4 5 7 10 15 20 4 5 7 10 15 20

1 0 17 11 8 15 20 0 17 18 26 14 12 0 0 18 26 11 22

2 14 17 16 17 21 23 12 17 21 25 25 27 0 5 21 24 25 25

3 14 16 17 30 22 23 12 17 19 22 25 27 4 11 17 25 25 25

4 14 16 17 30 29 23 11 17 18 23 26 26 4 11 16 26 25 25

8 14 15 17 19 21 23 11 16 18 23 25 26 11 10 16 24 24 27

Array Size = 1K � 5K. Array Size = 1K � 10K. Array Size = 1K � 20K.

Processors Processors Processors

4 5 7 10 15 20 4 5 7 10 15 20 4 5 7 10 15 20

1 0 0 0 0 14 26 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 14 26 27 0 0 0 0 3 15 0 0 0 0 0 0

3 0 0 6 15 24 28 0 0 0 0 5 14 0 0 0 0 0 0

4 0 0 6 13 24 28 0 0 0 1 7 15 0 0 0 0 0 2

8 0 2 7 14 23 26 0 0 0 3 10 15 0 0 0 0 2 4

Table 7: Percentage improvement of XY 2 over RecursiveBisection2 (Latency=1000).
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Processors Tile XY 2 RecursiveBisection2 RecursiveBisection3

NonZero Zero NonZero Zero NonZero Zero NonZero Zero

Latency Latency Latency Latency Latency Latency Latency Latency

4 0.00052 0.00014 0.00033 0.00011 0.00008 0.00003 0.00008 0.00004

5 0.00125 0.00030 0.00058 0.00018 0.00019 0.00004 0.00010 0.00005

7 0.00718 0.00112 0.00173 0.00047 0.00015 0.00005 0.00016 0.00008

10 0.07509 0.00664 0.00710 0.00192 0.00022 0.00008 0.00025 0.00012

15 3.83530 0.12115 0.05077 0.00906 0.00039 0.00012 0.00040 0.00020

20 11.81843 1.27512 0.23845 0.03935 0.00049 0.00017 0.00058 0.00028

Table 8: The average execution time of di�erent algorithms (in seconds).

Zero latency

This section compares the di�erent algorithms based on the total amount of communication gen-

erated. The following observations can be made from Tables 2 and 5:

1. The performances of Tile and XY 2 are better than that of RecursiveBisection2. The perfor-

mance improves with number of partitions when the aspect ratio is less than the number of

partitions.

2. The performances of Tile and XY 2 are comparable. However, the computational cost of XY 2

is considerably less.

3. When the aspect ratio of the array is larger than the number of partitions, the partitioning

is generally along one dimension and hence all algorithms perform equally well.

We conclude that XY 2 performs better than the other schemes when the number of partitions is

large and the aspect ratio is smaller than the number of partitions. In all other cases, Recursive-

Bisection2 produces reasonably good-quality solutions at a very small cost.

The decompositions produced by di�erent algorithms for partitioning an array of size 1000�3000

into 7 partitions (a1 = 0:5, a2 = 0:1, a3 = 0:1, a4 = 0:1, a5 = 0:1, a6 = 0:05 and a7 = 0:05) are

given in Figure 16. The communication costs are 5750, 4500, 4500, 4666, and 4700 by using

RecursiveBisection, XY 2, TILE, RecursiveBisection2, and RecursiveBisection3, respectively.

Nonzero latency

This section compares the di�erent algorithms when latency costs are important. From Tables 3,

4, 6 and 7, we observe the following:

1. The performances of Tile and XY 2 are better than that of RecursiveBisection2. The perfor-

mance improves with the number of partitions when the aspect ratio is less than the number

of partitions.

2. The performance of XY 2 is better than that of Tile as the latency increases. This suggests

that the number of internal edges produced by Tile is larger due to the change in direction

when partitioning is performed. The relative performance improvements of XY 2 are better

when the latency is higher, the number of partitions is larger, and the aspect ratio is not

larger than the number of partitions.
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Figure 16: The decompositions produced by di�erent algorithms for partitioning an array of size

1000� 3000 into 7 partitions (a1 = 0:5, a2 = 0:1, a3 = 0:1, a4 = 0:1, a5 = 0:1, a6 = 0:05 and a7 =

0:05); (a) RecursiveBisection, (b)XY 2, (c) TILE, (d) RecursiveBisection2, (e) RecursiveBisection3.

3. When the aspect ratio of the array is larger than the number of partitions, the partitioning

is generally along one dimension and hence all algorithms have a similar performance.

Based on the above observations, the XY 2 is the algorithm of choice when latency cost is an

important factor. It produces the best results at a reasonable cost.

Figure 17: Decomposition not considered by any of our algorithms.

7 Conclusions

In this paper we have presented several decomposition algorithms for decomposing two-dimensional

data array for a heterogeneous processors network. One important question that is relevant here is
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whether there are any decompositions that none of the algorithms described in this paper consider.

One such decomposition is given in Figure 17. When all the partitions are of equal size it is easy

to show that the communication generated by decomposition in Figure 17 (using both the commu-

nication cost and the latency overhead) is much larger then the decomposition produced by XY 2

partitioning. For di�erent-sized partitions, it is di�cult to evaluate the communication generated

by such decompositions. Hence it is di�cult to comment on the optimality of the decompositions

generated by our algorithms.

Our results indicate that XY -based partitioning produces the best cost decomposition at a

relatively small cost. The number of decompositions considered by XY partitioning is pt(p), where

p is the number of partitions. The growth of this function is reasonable (Table 1) for practical

values of p. Further, the time required for partitioning is not prohibitive for most applications

(Table 8). This makes the algorithm very important for practical considerations.

In an adaptive system the resources may change over a period of time and may require remapping

of data, thus these algorithms may have to be executed at runtime. If computational cost is at

a premium the simple recursive bisection algorithm, which always partitions along the smaller

dimension, works very well. One can also use a hybrid algorithm that uses RecursiveBisection for

the �rst few steps, followed by an XY partitioning.
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