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Abstract

In this paper we study the problem of mapping a large class of irregular and loosely synchronous

data-parallel applications in a nonuniform and adaptive computational environment. The compu-

tational structure of these applications can be described in terms of a computational graph, where

nodes of the graph represent computational tasks and edges describe the communication between

tasks.

Parallelization of these applications on nonuniform computational environments requires par-

titioning the graph among the processors in such fashion that the computation load on each node

is proportional to its computational power, while communication is minimized. We discuss the

applicability of current methods for graph partitioning for such environments. For an adaptive

computational environment, the partitioning of the graph needs to be updated as the environment

adapts, hence most algorithms described in the literature are computationally prohibitive. We

discuss novel strategies that allow for fast remapping.

Keywords: Graph Partitioning, Nonuniform machines, Heterogeneous computing, Irregular

Problems, Network of Workstations



1 Introduction

Heterogeneity has become commonplace in high-performance computing environments. In the fu-

ture most computing environments will consist of a cluster of nodes connected by a high-speed

interconnection network. Node architectures will include high-performance SIMD and MIMD par-

allel computers as well as numerous high-performance workstations. By pooling together as many

resources as possible, a heterogeneous environment represents the largest machine to which a re-

searcher has access. This pool of resources may change over the lifetime of the computation due to

machine failures or di�ering usage patterns. It should be possible to add or remove computational

resources without signi�cantly a�ecting the other machines and without changing the existing soft-

ware. In such an environment an individual machine could be either dedicated to a single user's

computation or shared among users. The former has the advantage of having static computing

capability for each machine, while the latter has the advantage of a higher rate of utilization. The

resources available to the user could be classi�ed as:

1. Static: Computational resources are �xed throughout the completion of all tasks.

2. Dynamic: Computational resources vary dynamically throughout the computation because

of sharing among users.

3. Adaptive: Computational resources remain �xed for a reasonable interval of time followed by

a change.

In this paper we study the mapping requirements for the parallelization of a large class of irreg-

ular and loosely synchronous data-parallel applications on a nonuniform and potentially adaptive

computational environment. The computational structure for these irregular and loosely syn-

chronous problems can be described in terms of a computational graph, where nodes of the graph

represent computational tasks and edges describe the communication between tasks. Parallelization

of these applications requires partitioning the graph among the processors in such fashion that the

computation load on each node is balanced, while communication is minimized. Optimal partition-

ing would allow optimal parallelization of the computations with the load balanced over various

processors and with minimal communication time. Obtaining suboptimal solutions is possible and

often satisfactory.

There are several algorithms available in the literature for partitioning and mapping this compu-

tational graph. Important heuristics include simulated annealing [12], neural networks [10], genetic

algorithms [12], and spectral bisection [13]. For many applications, the computational graph is such

that the vertices correspond to two- and three-dimensional coordinates, and the interaction between

computations is limited to physically proximate vertices. For these applications, partitioning can

be achieved by exploiting the above property. Essentially proximate points are clustered together

to form a partition such that the numbers of vertices attached to every partition are equal. Many

such algorithms are available in the literature, including coordinate bisection [17], inertial bisection

[14], and index-based mapping schemes [2].
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All of the above methods have been studied for mapping graphs onto uniform parallel machines.

In this paper we evaluate the performance of these methods for partitioning computational graphs

for a cluster of machines having a nonuniform and adaptive computational environment. The algo-

rithms assume that all the processors are connected by an interconnection network in which the cost

of unit communication is the same between all the processors (e.g., a bus). A good decomposition

should minimize interprocessor communication while making sure that each processor is assigned

work proportional to its computational power. While the algorithms are speci�cally targeted to-

wards a cluster of workstations connected by a network, the issues are similar for parallelizing such

applications on a network of machines.

For an adaptive environment, the partitioning of the graph needs to be updated as the compu-

tational resources change over time. This could be due to a change in the computational load of

one or more machines and/or the addition or deletion of one or more machines. Ideally, a solution

of the previous graph-partitioning problem should be utilized to partition the graph for the new

environment, and the time required for such repartitioning should be much less than the time re-

quired to reapply a partitioning algorithm from scratch. If the graph is not repartitioned, it may

lead to imbalance in the time required for computation on each node, which will cause considerable

deterioration in the overall performance. We develop simple strategies for such an environment

by mapping the vertices of a graph onto a one-dimensional space. This conversion allows us to

provide an extremely fast remapping when the computational environment changes. The quality of

partitioning achieved by this simple remapping is an acceptable deterioration over mapping from

scratch.

Let a1; a2; a3 : : : ; ap be the relative speed of nodes in a heterogeneous environment such that

a1 + a2 + a3 : : : ap = 1. The problem can then be stated as follows:

Decompose a graph into p partitions such that the weight of each partition is in the

ratio a1 : a2 : a3 : a4 : : : ap; and the total number of edges between the p partitions

(cross edges) is minimized.

Another important way to evaluate the quality of partitioning is by the number of edges gener-

ated in the supergraph representing the connectivity of di�erent partitions produced. Each node of

this graph represents a partition. An edge in the supergraph is present whenever there are any cross

edges from a node of one partition to a node of another partition. The number of edges in the super-

graph represents the number of communication messages generated. For current message-passing

software, a startup overhead (setup cost) is required for every message generated. Minimizing this

overhead requires the minimization of the number of edges in the super graph. However, there ex-

ists message-passing software for broadcast networks such as Ethernet which support multicast [3].

In such cases the software overhead of sending multiple messages can be reduced by multicasting

one message together with the combined data for all the destination processors.

The rest of the paper is organized as follows. In Section 2 we describe di�erent graph-

partitioning heuristics for a nonuniform but static environment and their performance on rep-

resentative computational grids derived from real applications. Section 3 presents a new approach
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for mapping and remapping for an adaptive computational environment.

2 Partitioning for nonuniformity

In this section we present several methods for mapping graphs into nonuniform machines. These

methods are of two distinct types:

1. The �rst type uses coordinate information to partition a graph.

2. The second type uses edge information to partition a graph.

Many of these methods perform mapping by recursively partitioning a graph into two parts. When

partitioning a graph among a cluster of machines with nonuniform computational powers, the

way in which the computational powers of the processors are grouped will a�ect the quality of

the partitioning. We have evaluated two ways for grouping the weights of the processors, which

we shall refer to as \Simple" and \Binpacking." The former partitions the graph at each level

according to the �rst y weights available such that the sum of the weights is approximately half

of the total. The latter divides the available weights into two groups such that the sum of the

two groups is approximately equal and then partitions the graph according to the two groups. For

example, consider the case of four weights with sizes 0.4, 0.4, 0.1, and 0.1. In this case Simple will

partition the graph into two parts with one partition having 80% of the total size, while Binpacking

will partition the graph into two equal parts.

The following partitioners were used for partitioning the graphs:

1. Recursive coordinate bisection (RCB): This method [17] uses only coordinate information and

recursively bisects along the longest dimension by �nding a hyperplane such that the the sizes

of the two partitions are proportional to their weights (see Figures 5 (a) through (e)).

(a) (c)(b)

Figure 1: (a) Z-curve for (a) 4, (b) 16, and (c) 64 squares

2. Index-Based Algorithms: These methods map the vertices of the graph frommulti-dimensional

space into a one-dimensional space such that the proximate vertices have proximate indices.

One way to achieve such a mapping is by bit-interleaving [2, 6]. Consider a vertex with

coordinate (13,4) in two dimensions. The corresponding binary representation is (1101, 0100).

The result of interleaving bits is 10110010. Thus (13,4) is mapped to 178 in a one-dimensional
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space. This approach produces a space-�lling curve which traverses the space recursively in

a \Z" fashion (Figure 1). We shall refer to the above indexing algorithm as (ZCI). Another

way to achieve indexing is based on Hilbert curves [11] (see Figure 2). Hilbert curves, unlike

Z-curves, do not have large \jumps." The algorithm for indexing using the Hilbert curve

(HCI) is described in Figure 3. When mapping a computational graph using this approach,

the co-ordinate information of the vertex is used to calculate its index (either based on the

Z-curve or on the Hilbert curve). This list can then be sorted to rearrange the vertices [2],

and can then be partitioned into appropriate sizes of contiguous sublists.

(a) (c)(b)

Figure 2: Hilbert curve for (a) 4, (b) 16, and (c) 64 squares

Initial conditions:

1. Rotation Table[4] := f3,0,0,1g.

2. Sense Table[4] := f-1,1,1,-1g.

3. Quad Table[4][2][2] := f ff0,1g,f3,2gg,ff1,2g,f0,3gg,

ff2,3g,f1,0gg,ff3,0g,f2,1gg g;

procedure HCI(x; y)

Rotation := 0; Sense := 1; Num := 0;

for (k := side=2; k > 0;k := k=2)

Xbit := x=k;

Y bit := y=k;

x := x� k �Xbit;

y := y � k � Y bit;

Quad := Quad Table[Rotation][Xbit][Y bit];

if (Sense == �1)

Num := Num+ (k � k � (3� Quad));

else

Num := Num+ (k � k �Quad);

Rotation := Rotation+Rotation Table[quad];

Rotation := Rotation modulo 4;

Sense := Sense � Sense Table[quad];

end.

Figure 3: Hilbert curve based indexing algorithm for two dimensions

3. Recursive spectral bisection (RSB): These methods recursively partition the graph based on

the second eigenvector calculation of the Laplacian matrix of the given graph [13]. These

methods use edge information explicitly and have been empirically shown to perform very
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well for uniform computational environments. Recently several extensions have been proposed

to improve on the quality and time requirements [15][4].

2.1 Simulation results

Figure 4: Graph 1 (4720 vertices, 13722 edges), Graph 2 (1200 vertices, 3191 edges)

In this section we present the performance of the algorithms described in the previous section.

The quality of partitioning produced by the di�erent methods was measured for the following

parameters:

1. Number of partitions (Par): We performed our simulation for 4, 5, 10, 15 and 20 partitions.

We decided upon a limit of 20 partitions, because we believe that the use of such environments

for data-parallel computing will tend to be limited to this number.

2. Ratio of Maximum Weight/Minimum Weight: We varied this ratio from 1 to 8 in order to

study the e�ects of nonuniformity between computational units. We limited ourselves to

a ratio of 8 because our experimental results (to be presented) suggest that this ratio has

limited impact on the relative performance of di�erent partitioning stratagies.

3. Strategies used for grouping processors: We considered two di�erent ways for grouping parti-

tion weights (Simple and Binpacking).

4. Computational grids: We performed experiments on several irregular graphs. We decided to

present results for two representative graphs (Figure 4); the performance measures of other

graphs have similar behaviour. Graph 1 has 4720 vertices and 13722 edges. Graph 2 has 1200

vertices and 3191 edges.

For each value of the above parameters, 20 samples were generated randomly with di�erent

computational powers. Based on our preliminary experiments, we concluded that ZCI and HCI

had comparable performances. In most cases HCI performed slightly better than ZCI, hence the
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results are presented for HCI only. Table 1 shows a comparison between HCI and ZCI for Graph 1

and Graph 2 for the di�erent number of partitions when all the processors have equal computational

power. It shows average total edges crossing the partitions (Edges) and average number of edges

produced in the supergraph (Setups).

Table 2 presents the performances of RSB, RCB, and HCI for the di�erent computational ratios

of 10 partitions. Each entry represents an average of the 20 randomly generated samples. These

results are typical of other partitions size and show that the relative values of cross edges and

setups do not have much variation or many patterns for the di�erent computational ratios of a

given partitioner.

Graph 1 Graph 2

Par HCI ZCI HCI ZCI

Edges Setups Edges Setup Edges Setups Edges Setup

4 620 5 687 5 170 5 164 5

5 604 9 748 9 198 7 235 8

10 868 23 1090 25 307 18 355 22

15 1157 36 1479 40 427 31 471 33

20 1346 50 1566 61 487 40 486 50

Table 1: Performance of HCI and ZCI using Simple for grouping partitions (Ratio=1)

Table 3 presents the performances of RSB, RCB, and HCI for a di�erent number of partitions.

Each entry represents an average of the samples for di�erent computational ratios (i.e., it represents

the average over 100 samples). Table 4 shows the average time spent by the algorithms for Graph

1 and Graph 2. The following observations can be made:

1. RSB performs much better than the methods that use only coordinate information, but is

computationally more expensive. This extends the corresponding empirical evidence in the

literature [17] for uniformly sized partitions.

2. For methods that use only coordinate information, the performance of HCI is much better

than RCB in most cases. The method based on HCI seems to be able to provide better

clustering of points because the indexing is based on using all the dimensions simultaneously.

The computational cost of HCI is higher because it requires sorting. However, this cost is

independent of the number of partitions. The cost of RCB increases with the number of

partitions but is cheaper, as at each stage it requires �nding only the median.

3. The method of grouping processors does not play a major role in the quality of partitioning.

This is not surprising, as none of the methods have a particular bias towards particular

partition sizes.
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Graph 1

Ratio RSB RCB HCI

Binpacking Simple Binpacking Simple Binpacking Simple

Edges Setups Edges Setups Edges Setups Edges Setups Edges Setups Edges Setups

1 514 19 514 19 1143 38 1143 38 868 23 868 23

2 560 18 564 18 1143 38 1143 38 994 22 1025 22

3 552 18 521 19 1143 38 1143 38 1003 22 1005 23

4 551 18 518 19 1143 38 1143 38 1001 22 947 23

8 543 18 534 19 1174 40 1143 38 977 22 964 22

Graph 2

Ratio RSB RCB HCI

Binpacking Simple Binpacking Simple Binpacking Simple

Edges Setups Edges Setups Edges Setups Edges Setups Edges Setups Edges Setups

1 86 9 87 9 429 28 429 28 307 18 307 18

2 93 9 88 9 429 28 429 28 317 18 321 18

3 89 9 84 9 429 28 429 28 316 18 322 18

4 90 9 87 9 429 28 429 28 315 19 325 18

8 92 9 88 9 445 30 429 28 312 19 321 18

Table 2: Performance of RSB, RCB, and HCI (Partitions = 10)
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Graph 1

Par RSB RCB HCI

Binpacking Simple Binpacking Simple Binpacking Simple

Edges Setups Edges Setups Edges Setups Edges Setups Edges Setups Edges Setups

4 269 5 269 5 423 6 413 5 590 5 569 5

5 313 8 343 7 736 16 736 16 664 8 661 8

10 544 18 530 19 1149 38 1143 38 969 22 962 23

15 724 29 726 30 1662 73 1544 64 1227 39 1200 37

20 880 40 861 40 1960 105 1876 96 1396 52 1395 51

Graph 2

Par RSB RCB HCI

Binpacking Simple Binpacking Simple Binpacking Simple

Edges Setups Edges Setups Edges Setups Edges Setups Edges Setups Edges Setups

4 30 3 30 3 145 5 143 5 173 5 165 5

5 43 4 40 4 231 12 231 12 188 7 196 7

10 90 9 87 9 432 28 429 28 313 18 319 18

15 140 14 137 14 678 52 615 54 424 29 405 30

20 186 19 187 19 865 80 823 72 480 40 484 40

Table 3: Performance of RSB, RCB, and HCI for di�erent numbers of partitions

Graph 1 Graph 2

Par RSB RCB HCI RSB RCB HCI

4 22.73 0.08 0.94 5.66 0.04 0.06

10 33.74 0.10 0.94 7.33 0.08 0.24

20 37.93 0.13 0.94 7.79 0.10 0.25

Table 4: Execution time of RSB, RCB, and HCI for Graph 1 and Graph 2 (in seconds)
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The above conclusions are true independent of the number of partitions or ratio of maximum/minimum

weight of the partitions.

3 Partitioning for adaptivity

For an adiabatic environment there is a need to remap the graph according to the changed com-

putational power of the machines as available computational resources change. The graph could

be remapped from scratch by using the best algorithm described above (RSB). However, the high

computational cost may make it prohibitive if the computational graph adapts frequently. Index-

based algorithms are an attractive partitioning method for adiabatic environments. They map the

vertices of a graph into a one-dimensional space. After the initial mapping it is inexpensive to

partition the one-dimensional list among the machines according to their computational powers,

since partitioning is equivalent to assigning contiguous blocks of vertices to each partition. The

size of each block is proportional to the weight of the partition. When the available computational

resources change, the graph can be remapped by repartitioning the one-dimensional list.

RSB and RCB can be extended to map the vertices of a graph to one-dimensional space. We

shall refer to them as RSBI and RCBI, respectively. Let the number of vertices in the graph be

given by N . To obtain the appropriate indices for all the vertices, both algorithms bisect the graph

into two equal subgraphs. For the �rst stage, the index set assigned to the �rst partition is from

1 to N=2, while for the second partition it is N=2 + 1 to N (assuming N is even). The number

of recursive steps is equal to blogNc. Figure 5 describes the application of recursive coordinate

bisection for mapping to a one-dimensional space (from 1 to N).
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Figure 5: (a) through (e) describe the steps for 32 partitions using recursive coordinate bisection;

(f) describes the curve corresponding to RCBI

3.1 Simulation results
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Graph 1 Graph 2

Par Binpacking Simple Binpacking Simple

Edges Setups Edges Setups Edges Setups Edges Setups

4 364 5 388 5 61 3 70 3

5 485 7 489 7 91 4 96 4

10 764 22 798 21 177 11 175 11

15 1017 37 1059 37 256 17 257 17

20 1211 51 1244 51 323 25 334 24

Table 5: Performance of RSBI

Par Graph 1 Graph 2

Binpacking Simple Binpacking Simple

4 26 29 45 49

5 36 30 56 55

10 27 34 51 48

15 28 31 46 47

20 27 31 42 44

Table 6: Percentage gain of RSB (from scratch) over RSBI

Graph Time

Graph 1 53.58

Graph 2 9.68

Table 7: The execution time of RSBI for Graph 1 and Graph 2 (in seconds)
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The quality of partitioning produced by the di�erent algorithms was measured for the param-

eters described in Section 2.1. Our preliminary experiments showed that the quality of RCBI was

much lower than that of HCI. This was expected, as even the quality of RCB for a given set of

partitions was generally worse than the quality of HCI.

Tables 5 and 6 present the performance of RSBI. For achieving indexing using RSBI, the graph

was partitioned into 1024 partitions. The indices within each of the 1024 partitions were assigned

randomly.1 These results show that the quality of partitioning produced by RSBI is better than

that of HCI and RCB (from scratch). The quality of partitioning produced by using Binpacking

is better than that of Simple grouping, because RSBI maps the vertices of the graph to a one-

dimensional space by recursively partitioning the graph into two equal parts at each level. Table 7

shows the average time spent by RSBI for Graph 1 and Graph 2.

Table 6 presents the percentage gain of using RSB from scratch over RSBI. This improvement

varies between 26%{56%. This is expected, because the former was speci�cally optimized for a

given set of partitions. RSBI is a reasonable algorithm to use when the environment is adaptive

and if the initial cost of mapping is not prohibitive. HCI produces slightly worse partitioning than

RSBI, but at a relatively much smaller initial cost.

The above discussion shows that methods using coordinate or edge information can be employed

to map a computational graph into a one-dimensional space such that good quality repartitionings

can be achieved at a negligible cost. The former methods are useful when the cost of initial mapping

is not important, while the latter methods are useful when the cost of initial mapping cannot be

ignored.

4 Conclusions

Initial mapping Computational Environments

cost Adaptive Static

Critical HCI HCI

Not critical RSBI RSB

Table 8: Comparison of the algorithms based on environments and initial mapping cost

We have presented several algorithms for mapping computational graphs on adaptive and

nonuniform computational environments. Table 8 gives the best algorithm, depending on whether

the computational environment is adaptive and if the initial cost of partitioning is critical.

The major contribution of the paper is that it shows that index-based algorithms (based on

coordinate information or on edge information) provide solutions of reasonable quality at a very

low cost (at the time of execution). We believe this strategy would be extremely important for the

1This is due to the memory limitations of our current software. Also, further decompositions are not expected to

provide any signi�cant (if any) improvements.
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parallelization of irregular applications on adaptive and nonuniform environments. Such a mapping

has been shown to be extremely important for the parallelization of unstructured mesh using the

STANCE (Software Techniques for Adaptive and Nonuniform Computational Environments) [9].
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