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Abstract

In this paper we discuss the runtime support required for the parallelization of unstructured data-

parallel applications on nonuniform and adaptive environments. The approach presented is rea-

sonably general and is applicable to a wide variety of regular as well as irregular applications. We

present performance results for the solution of an unstructured mesh on a cluster of heterogeneous

workstations.



1 Introduction

Most computing environments consist of a cluster of nodes connected by a high-speed interconnec-

tion network. Node architectures include high-performance SIMD and MIMD parallel computers as

well as numerous high-performance workstations. By pooling as many resources as possible, these

environments represent the largest machine to which a researcher has access. This pool of resources

may change over the lifetime of the computation due to machine failures or di�ering usage patterns.

It should be possible to add or remove computational resources without signi�cantly a�ecting the

other machines and without changing the existing software. In such an environment an individual

machine can be dedicated to a single user's computation or shared by users. The former has the

advantage of providing static computing capability for each machine, while the latter has a higher

rate of utilization. The resources available to the user may be classi�ed as:

1. Static: Computational resources are �xed throughout the completion of all tasks.

2. Dynamic: Computational resources vary dynamically throughout the computation because

of sharing among users.

3. Adaptive: Computational resources remain �xed for a reasonable interval of time followed by

a change.

E�cient parallelization of data-parallel applications require careful attention to:

� Load Balance: The computational load on each processor should be proportional to the

processor's computational power.

� Data Partitioning: Data should be partitioned such that nonlocal data accesses are minimized.

This results in low communication costs.

Several methods of data partitioning to achieve e�cient parallelization of data-parallel applications

for static computational environments have been discussed in the literature and are part of data-

parallel languages such as High-Performance Fortran [17] and potential extensions [16].

Limited research has been targeted towards parallel compilers and runtime support for nonuni-

form and/or adaptive environments. Nedeljkovic and Quinn [23] developed a data-parallel C com-

piler with dynamic load balancing for a network of workstations. Siegell and Steenkiste [29] im-

plemented a runtime system that supports automatically generated programs with dynamic load

balancing for workstations. Keyser, Lust, and Roose [22] implemented a parallel 2-D multiblock

Euler/Navier-Stokes solver with adaptive block re�nement and runtime load balancing for di�erent

parallel architecture, including clusters of workstations.

In this paper we discuss the runtime support required for the parallelization of unstructured

mesh on a cluster of workstations. Many of these optimizations and issues are equally important for

parallelization of a wide variety of structured as well as unstructured applications on an adaptive

computing environment. The software developed is part of the STANCE (Software Techniques for

Adaptive and Nonuniform Computational Environments) runtime library [18].
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The remainder of the paper is organized as follows. Section 2 discusses the computational

environment and the important issues and major contributions of this research. Section 3 describes

the runtime support library. Section 4 presents performance measures for nonuniform and adaptive

environments. Section 5 presents the performance of the library on a cluster of heterogeneous

workstations connected by Ethernet. We conclude in Section 6.

2 Computational environment

Our model is restricted to the Single Processor Multiple Data (SPMD) model of execution. In this

model the same program is executed on all processors. Parallelism is achieved by partitioning the

data structures and associated computations among processors. We are targeting a nonuniform

computational environment where the computational resources available may change adaptively.

� These changes should be gradual enough that remapping is not required as soon as the com-

putational resources adapt. Data-parallel programs execute by iterating through a sequence

of several phases. There is an implicit synchronization at the end of execution of every phase.

We assume that remapping can be performed after a phase is completed. The e�ect of the

change in computational resources during the execution of one phase is not expected to cause

the overall performance to deteriorate signi�cantly.

� Minimal amount of computational resources are available for the remapping and redistribution

of data. Clearly, one can terminate the process as soon as it stops performing e�ective

computation for the given data-parallel application. However, when the resource is available

again this may require spawning a new process that may be considerably more expensive.

It is currently left to the programmer to choose the speci�c places in the program where checks

are made to ensure that the e�ects of any change of available computational resources warrant a

redistribution of the data.

Important issues and contributions

In the following we describe the important issues for the parallelization of unstructured data-parallel

applications on adaptive environments:

1. Fast Methods for Remapping The amount of available computational resources may

change during computation, which may require redistributing data items to achieve load bal-

ancing. It is important that this redistribution be done such that locality is maintained after

the redistribution. Most unstructured data-parallel applications can be represented as com-

putational graphs. We use a simple architecture-independent transformation that permutes

all the nodes of the graph such that locality is improved. Let T : V �! f1; 2; 3; : : : ; ng de�ne

the above permutation. The goal of this transformation is to achieve good partitioning for a

wide range of partitions. Several methods for achieving this transformation are described in
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[7, 19] and elaborated on in Section 3. Mapping and remapping becomes relatively easy once

this transformation is available.

2. Minimization of Communication Cost Several optimizations can be performed to reduce

the amount of communication, including the removal of duplicate accesses and message coa-

lescing [27]. For many data-parallel applications the accesses are symmetric. We describe in

Section 3 several methods to reduce communication requirements for such cases in.

3. Minimization of Redistribution Cost There are several good ways to repartition data.

The communication cost of redistribution can be reduced by choosing a repartitioning that

minimizes the amount of data movement among the processors. We describe several strategies

in Section 3.

4. Address Translation Parallel loops can be transformed into an inspector and an executor

[27]. The inspector examines the data references and computes the o�-processor data to be

fetched. It also computes where the data will be stored once it is received. The executor uses

this information to perform its computation.

The use of a one-dimensional representation removes the necessity for maintaining explicit

translation tables. The only information required at every node is the current partitioning of

a one-dimensional list (memory requirements are proportional to the number of processors).

This can be used to locally determine the location of all the data items.

3 Runtime support

Phase A Data Partitioning Transforms a graph into one-dimensional list

Phase B Inspector Translates indices; generates schedules

Phase C Executor Uses schedules for data movement; executes computations

Phase D Load Balancing Monitors load on each processor; redistributes data

Figure 1: The four phases required for parallelization iterative unstructured applications

Parallelization of iterative and unstructured data-parallel applications requires four major phases

(see Figure 1). The �rst phase involves data partitioning. In this phase the nodes of the graph are

renumbered to improve locality, which makes it easy to repartition the graph when the available

resources change. The next two phases concern analyzing data-access patterns and communication

between processors. The last phase involves load balancing, in which the load on each processor

is monitored and, if necessary, the data is redistributed to balance the load. In static environ-

ments phase C tends to be executed multiple times, while phase B is executed once. In adaptive

environments and/or adaptive applications1 phase B is executed whenever data is redistributed.

1For these classes of applications the computational structure adapts after every few iterations.
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3.1 One-Dimensional model of locality
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Figure 2: Mapping a graph into one-dimensional space using recursive coordinate bisection

A large number of unstructured data-parallel applications [8] can be represented as computational

graphs from the perspective of parallel computing. The nodes of these graphs represent tasks that

can be executed concurrently, while the edges represent the interactions between them. Further,

the computational graphs derived from many applications are such that the vertices correspond

to two- or three-dimensional coordinates, and the interaction between computations is limited to

vertices that are physically proximate.

Several graph-partitioning methods are described in the literature. There are simple and fast

heuristics for achieving partitioning by clustering physically proximate nodes (based on coordi-

nate information) in two or three dimensions. Important heuristics include recursive coordinate

bisection, inertial bisection, scattered decomposition, geometry-based partitioners, and index-based

partitioners [9, 12, 13, 6, 25, 30, 32]. There are a number of methods that use explicit edge infor-

mation to achieve better partitioning. Important heuristics include simulated annealing, mean-�eld

annealing, recursive spectral bisection, recursive spectral multisection, mincut-based methods, and

genetic algorithms [1, 11, 10, 14, 15, 21, 20, 26].

When computational resources are nonuniform, the parallelization of this computational graph

requires partitioning the graph such that each processor is assigned nodes with computational

weight proportional to the computational capabilities of that processor, and the number of cross

edges are minimized. In adaptive environments there is a need to remap the graph when the

available computational resources adapt according to the new computational capabilities of the

processors. Many of the above methods are computationally expensive and thus are not suitable
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for such environments.

We have shown that computational graphs representing applications from the physical do-

main (i.e., embedded in two or three dimensions) can be transformed into a simple architecture-

independent one-dimensional representation that encapsulates the locality in these graphs (see

Figure 2). This representation allows for a fast mapping of the computational graph onto the

underlying computational resources at the time of execution. Let the nodes of the vertex set be

numbered from 1 through n. The architecture-independent transformation permutes all the nodes

of the graph such that locality is improved. Let T : V �! f1; 2; 3; : : : ; ng de�ne the above permuta-

tion. The goal of this transformation is to achieve good partitioning for a wide range of partitions.

Several methods for achieving this transformation are described in [19, 7]. After the initial trans-

formation it is inexpensive to partition the one-dimensional list among the processors according

to their computational capability, since partitioning is equivalent to assigning contiguous blocks of

vertices to each partition. The size of each block is proportional to the weight of the partition.

When the computational resources adapt, the same transformation can be used for repartitioning.

Several algorithms for achieving this transformation and their performance are described in [19].

3.2 Inspector

In this section we outline the preprocessing needed by the inspector to generate the arguments

required by the executor to perform the computations. The inspector has two main functions: data

referencing, and generating a communication schedule [27].

0 - 50

  51 - 120

120 - 200

0 - 50

  51 - 120

120 - 200

0 - 50

  51 - 120

120 - 200

Translation table Translation table Translation table 

      Processor 0   Processor 1 Processor 2 

Processor 0 Processor 1 Processor 2

Figure 3: Translation table

Data Referencing The library supports a translation mechanism using a translation table. A

simple implementation of a translation table stores, for each element, the name of its home processor

and its local address in its home processor [27]. Dereferencing an element converts a global index
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into a (processor, local index) tuple using the translation table. The translation table may be

replicated among the processors or distributed among the processors using a �xed distribution

(e.g., block or cyclic). When the table is replicated, dereferencing does not require communication;

dereferencing may require communication when this table is distributed. Due to high memory

requirements, replicating the translation table is not feasible for applications with large data sets.

When a one-dimensional transformation is used (Section 3.1), each processor is assigned an

interval of data elements. Storing the �rst and last elements belonging to every processor in the

transformed space is su�cient to generate the (processor, local index) tuple. The size of this list is

proportional to the number of processors. It can be replicated on each processor (see Figure 3). To

�nd the home processor of a particular element the list is searched until the processor holding the

element is found. A processor holds an element if the element is greater than or equal to the �rst

element that belongs to the processor, and less than or equal to the last element that belongs to it.

The local address of a particular element is computed by subtracting it from the �rst element that

belongs to its home processor. Although the computation cost of the translation using this table

is signi�cant, it is negligible compared to the cost of using communication for dereferencing using

the simple scheme.

Communication Schedules Communication schedules are used to fetch nonlocal data elements

into a local bu�er or/and to scatter local data elements to other processors. Each processor provides

the following information to generate a communication schedule:

1. Local list: local references to be gathered from or scattered to other processors

2. Processor list: processors to be gathered from or scattered to

3. Data size: Size of data elements involved in the gathering or scattering

The following information is available at a given processor P at this stage:

1. Send list: a list of arrays that store the local references of processor P that must be sent to

other processors. The size of each array is maintained.

2. Permutation list: an array that stores the placement order in the local bu�er of P for the

data elements that processor P will receive when the schedule is used in the executor phase.

It also includes information about the sizes of the messages that P will receive from other

processors.

E�cient generation of communication schedules for nonlocal references can be done using two

phases. The �rst phase removes duplicate accesses to avoid fetching a data item more then once.

This is done by using a hash table [27]. The global references of the unique data elements are

changed to local references in the hash table. Using the translation table, a communication schedule

is created for accessing nonlocal accesses. This requires sending to the destination processor(s) a

list of the di�erent accesses that are required.
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Processor 0           Processor 1                     Processor 2

Processor 0

Processor 2   Processor 2

 

Processor 2   Processor 2

 0     2     1    0    2                                                                 0     1     2     0    2

Send list of processor 0 before sorting Send list of processor 0 after sorting 

   0    1     2     3
1    4     2     3    7     8    9     6

5    6     7     9    2     8    4      15    6     7     9    2     8    4      1

Processor 0      Processor 2 Processor 0      Processor 2

Permutation list of processor 1 before sorting Permutation list of processor 1 after sorting
 each segment according to the local references 

          Processor 1

   5     6     7    9    2     8     4    1   
                0     1    2     0     1

                    Processor 2

  8      9    6     1     5    2

                    local data      off processor data                    local data       off processor data                    local data   off processor data 

local data     off processor data local data     off processor data

Data distribution 

Local references of data in their home processors 

1:     7, 8

4:     7, 2

2:     4, 3, 9, 6 

3:     1, 2

6:     5, 2, 8

5:     6, 5, 9

7:     4, 1

8:    6, 1

9:    5, 2

of the nodes  

Figure 4: Schedule sort1
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For many irregular applications the accesses are symmetric (commutative) in nature (i.e., itera-

tive techniques for the �nite element method). If nodes n1 and n2 are stored on di�erent processors

and there is an edge between them, then the processor that stores n1 will access n2 and vice versa.

One can exploit this symmetry to eliminate the communication required to generate the commu-

nication schedule. Although a processor may be able to determine the nodes it needs to send to

every processor, it will not be able to determine the order in which these nodes are sent. Sorting

of nodes based on their indices can determine the correct order of the nodes. This optimization is

useful only when the cost of sorting is much smaller than the cost of o�-processor accesses.

We have developed two methods for building communication schedules based on the above

optimizations. We shall refer to them as schedule sort1 and schedule sort2. In schedule sort1 we

sort both the sending list and the permutation list of each processor in increasing order. Each

segment of the permutation list which points to the locations of the nodes that will be received

from a particular processor is sorted according to the local references of these nodes in their home

processor. Each segment of the sending list is sorted independently, thus the contents of each

message is sent in increasing order and received in the same order (see Figure 4). Sorting the

sending list can be avoided if a restriction is added that the nodes are traversed in increasing order

according to their local references when building a communication schedule. We shall refer to this

method as schedule sort2.

3.3 Executor

The executor uses the communication schedules generated by the inspector to move data between

the processors in the environments and to perform the necessary computations. There are two

basic primitives, gather and scatter. Gather is used to fetch o�-processor elements, while scatter is

used to to send o�-processor elements.

3.4 Minimizing the amount of data movement

There are several ways to achieve the repartitioning such that contiguous blocks are assigned

to every processor. We will use the term arrangements to represent each of the possible ways of

partitioning. There are p! arrangements for p processors. We discuss a simple strategy for the

minimization of the communication cost of redistributing data items. The two factors contributing

to data redistribution time are the amount of data to be transferred and the number of messages

generated.

The amount of data movement can be reduced by �nding a new arrangement that maximizes

the overlap between the original intervals and the new intervals. For example, consider a list

of 100 elements and 5 processors with the following ratios of computational capabilities: P0 =

0:27; P1 = 0:18; P2 = 0:34; P3 = 0:07; and P4 = 0:14. Let us assume that the one-dimensional list

is divided among the processors using the arrangement (P0; P1; P2; P3; P4). If the computational

capabilities of the processors adapts to 0.10, 0.13, 0.29, 0.24, 0.24, respectively, then dividing the

list according to the original arrangement (P0; P1; P2; P3; P4) will yield 29 overlapped elements (see

Figure 5 (a)) (i.e., 71 elements have to be moved across the network). On the other hand, if the

8



                  (a)

            (b)

     P0            P1                     P2                                  P3                            P4     

    P0                        P1                            P2                          P3         P4          

     P0                        P1                            P2                         P3         P4          

     P0                         P3                     P1                       P2                                  P4                     

Figure 5: Di�erent ways of repartitioning data items

procedure MinimizeCostRedistribution(LIST ,p,LIST OUT )

/* p is the number of processors.

LIST is the array which has the arrangement of the processors.

The function COST given two di�erent arrangements

of processors returns the cost of data redistribution.

LIST OUT is the array which contains the arrangement of

processors generated by the procedure

*/

for(1 � i � p)LIST OUT [i] := LIST [i]

max := �1: jmax := �1.

for(1 � i � p)

for(1 � j � p)

MOVE(LIST OUT;LIST [i]; j):

temp := COST (LIST; LIST OUT ).

if (temp > max)

max := temp: jmax := j:

MOV E(LIST OUT;LIST [i]; jmax).

end.

Figure 6: MinimizeCostRedistribution Algorithm
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procedure MOVE(LIST;C; L)

/* Move the element C in LIST (current arrangment of processors) in location L and

rearrange the remaining elemnts. */

/* MOVE(f1; 3; 5; 4; 6g; 5;0) = f5; 1; 3; 4; 6g� =

�nd the location of C in LIST . We shall refer to this

location as X.

if (X < L)

shift the elements in location X + 1 to L to the left.

if (X > L)

shift the elements in location X + 1 to L to the right

put C in location L.

end.

Figure 7: Rearranging a list

list is divided using the arrangement (P0; P3; P1; P2; P4), the number of overlapped elements will

increase to 65 (see Figure 5 (b)). The number of messages generated can also be taken into account

by incorporating it into the cost of redistribution. Using the �rst arrangement (Figure 5 (a)),

the number of messages needed to redistribute the data is 5; the number of messages needed to

redistribute the data for the latter arrangement (Figure 5 (b)) is only 3.

Choosing the best arrangement by trying out all cases is feasible only for a small number of

processors. Figure 6 gives a simple greedy algorithm which generates only a subset of all the

arrangements, considering data overlap and number of messages generated. Our simulations show

that this algorithm (MinimizeCostRedistribution (MCR)) produces good suboptimal results. The

algorithm MOVE, which is used by MCR, is described in Figure 7. The time requirement for this

algorithm is O(p3), where p is the number of processors.

3.5 Adaptive load balancing

When the available computational resources adapt, a remapping of data items may be required to

maintain good load balance. This can be divided into four phases:

� Monitoring local load on each processor.

� Exchanging load information between processors.

� Making a decision to remap; if remapping is required, choosing the appropriate partitioning

of the array to minimize data movement.

� If remapping is required, performing the data movement.

In our current implementation each processor monitors its own load and sends it to a controller

processor, which makes the decision about repartitioning the data. Centralized load-balancing
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algorithms are suitable for an environment with a small number of processors. This currently

requires sending the load information as separate messages to the controller, which broadcasts the

decision to all the processors. When better resource management tools are available, we hope to

have distributed strategies.

The goal of a good parallelization for the targeted environment is to minimize the idle time

on any given processor. Using information from the current phase, the data (and associated com-

putations) should be redistributed such that the idle time for the next phase is minimized. This

assumes that the computational resources allocated for the data parallel computation are the same

as for the previous phase.2 The controller determines from time to time whether the remapping of

data is pro�table. Remapping is considered pro�table if its cost is o�set by an improvement in time

for the next phase. If it is not pro�table, the controller broadcasts an appropriate message to all

the processors, and computations are resumed for the next phase. Otherwise, the controller com-

putes new data intervals for each processor based on its estimated computational capability in the

previous phase. The new intervals are broadcast to all the processors and the data is redistributed

among the processors.

The frequency of this load-balancing check has to be set based on the following:

� The overhead of load balancing. This should represent a small fraction of the time between

successive load-balancing steps

� The rate at which the underlying computational resources adapt. If the computational en-

vironment adapts slowly, the frequency can be low. Clearly, if the computational resources

adapt very frequently, e�ective parallelization will not be possible.

Techniques to choose the best frequency are outside the scope of this paper.

The controller receives the new computational capability of the processors and determines

whether remapping the data is pro�table. Remapping is considered pro�table if the e�ect of the

change in the load is expected to improve the overall computation time for the environment in the

next phase to o�set the cost of remapping. If remapping is not pro�table, the controller processor

broadcasts an appropriate message to the processors and computations are resumed for the next

iteration.

3.6 Other communication optimizations

Latency is an important factor when performing parallel computing on a general network. The

number of messages generated by our library could be reduced signi�cantly by using multicast.

Our library has the ability to use multicast to perform all communications between processors in

the environments if the network supports multicast (e.g., Ethernet [3], ATM [2]).

2This could be extended to techniques that would predict the available computational resources based on more

than one previous phase. If the operating system can guarantee that a process will be allocated a particular amount

of resources for the next phase, this can also be used to predict the amount of computational resources available in

the next phase.
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4 Performance measures

The performance of a parallel application is usually measured in terms of speedup and e�ciency. It

is di�cult to have analagous terms for nonuniform computational environment. In this section we

give a general de�nition of e�ciency that is suitable for data-parallel applications in a nonuniform

environment. Let the amount of time required for computing a task be given by T (pi) on processors

i if it is executed sequentially. Thus, processors i can complete 1
T (pi)

of the task per unit time.

Collectively all the processors can complete (assuming no parallelization overheads)
Pn

i=1
1

T (pi)
of

the task per unit time. Thus, one can de�ne the e�ciency of parallelization as

E(p1; p2; : : : ; pn) =

1
T (p1;p2;:::;pn)
Pn

i=1
1

T (pi)

;

where T (p1; p2; : : : ; pn) represents the time taken for completing the task when processors p1; p2; : : : ; pn

are all used together.

For adaptive computational environments, assume that T (p1; p2; : : : ; pn) is the total time taken

for completing the task. Let the fraction of the whole task which could have been completed by

processor i during that time be given by fi(T ). Then the e�ciency of the parallelization can be

given by

E(p1; p2; : : : ; pn) =
1

Pn
i=1 fi(T )

:

Unfortunately, the value of fi(T ) is di�cult to compute in an adaptive environment.

5 Experimental results

In this section we study the e�ectiveness of the di�erent optimizations suggested in the previous

section. We evaluated the library on a cluster of SUN4 workstations connected by Ethernet using

the P4 message-passing environment.

Workstations Time

3 0.00033

5 0.00049

10 0.0025

15 0.0074

20 0.017

Table 1: Execution time of MinimizeCostRedistribution (in seconds)

Table 1 shows the execution time of MinimizeCostRedistribution in seconds. Its execution

time is small, even for 20 processors. Table 2 shows the average cost of remapping di�erent array

sizes (oating point) over 100 randomly generated samples. These results show that using the
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heuristic improved the cost of data remapping in all cases. It also shows that the total time

required for remapping (with or without the optimization) is very small. This is critical for e�ective

parallelization.

real y(number of vertices), t(number of vertices) /* data arrays */

integer ia(number of edges) /* indirection array */

k := 0:

for(1 � i � number of vertices)

t[i] := 0:

for(1 � j � number of vertices connected to i)

k := k + 1:

t[i] := t[i] + y(ia(k)):

for(1 � i � number of vertices)

y[i] := t[i]= number of vertices connected to i:

Figure 8: Irregular loop to be parallelized

Figure 9: Mesh

We parallelized the loop in Figure 8. The indirection array corresponds to the unstructured
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mesh in Figure 9. The mesh has 30269 vertices and 44929 edges. The loop was repeated 500 times.

The nodes of the mesh were transformed into a one-dimensional array using Recursive Spectral

Bisection-based indexing [19].

The load-balancing algorithm requires an estimate of the current computational resources avail-

able on a given processor. There are several ways of estimating the computational resources avail-

able to the data-parallel applications on a given processor. One metric we have used is the average

computation time per data item. Each processor computes this information by dividing the total

time spent on the computation by the number of data elements it owned. This assumes that the

variation in computational cost per data unit is relatively small.

Workstations

Data Size 1,2,3 1,2,3,4 1,2,3,4,5

With MCR Without MCR With MCR Without MCR With MCR Without MCR

512 0.0037 0.0042 0.0041 0.0043 0.0045 0.0047

2048 0.0047 0.0052 0.0044 0.0056 0.0054 0.006

16384 0.026 0.031 0.0234 0.0309 0.0229 0.0319

131072 0.2448 0.2594 0.1816 0.2440 0.184 0.2584

1048576 1.8417 1.9646 1.4691 1.9444 1.4294 2.0691

Table 2: Average cost of data remapping (in seconds)

Workstations 1,2 1,2,3 1,2,3,4 1,2,3,4,5

Sort1 0.247 0.171 0.136 0.131

Sort2 0.236 0.169 0.130 0.125

Simple Strategy 0.2 0.188 0.176 0.290

Table 3: Time required for building communication schedule using di�erent strategies (in seconds).

Workstations Time E�ciency

1 97.61 1

1,2 55.68 0.88

1,2,3 42.27 0.77

1,2,3,4 34.06 0.72

1,2,3,4,5 31.50 0.62

Table 4: Execution time of the parallel loop for 500 iterations in static environments (in seconds).
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Workstations Execution Time Execution Time Load Balance Load Balancing

with Load Balancing without Load Balancing Check Cost

1 290.93

1,2 88.96 166.2 0.005 0.58

1,2,3 57.22 115.6 0.007 0.39

1,2,3,4 43.52 92.54 0.008 0.19

1,2,3,4,5 40.56 79.32 0.011 0.17

Table 5: Execution time of the parallelize loop for 500 iterations in an adaptive environment (in

seconds).

We �rst measured the performance of the library in a static environment. Table 3 shows the

time required to build a communication schedule using the di�erent methods described in Section 3.

Simple Strategy corresponds to the time for building the communication schedule when an explicit

translation table is used (which requires communication). Sort1, Sort2 correspond to the time for

building the communication schedule using Schedule sort1 and Schedule sort2, respectively. For a

�xed graph, as the number of processors increase, the cost of sorting-based schedules will decrease

because the amount of data assigned to each processor decreases. When the number of processors

increases, the number of message setups increases, adversely a�ecting the simple strategy. The

time requirements for the latter two schemes can be reduced by improving our current software.

Table 4 gives the execution time of the library in static environments. These results show that

a reasonable e�ciency can be achieved in most cases.

We used the same environment as above to measure the performance in a controlled adaptive

environment. The performance was measured using the following initial conditions:

1. A constant competing load was added to one of the processors (processor 1).

2. The graph was decomposed assuming all the processors had equal computational ratio.

We performed the following experiments:

1. The parallel loop was executed for 500 iterations without any load balancing.

2. The loop was executed for 10 iterations. A check was made after 10 iterations. Using the

information gathered for the 10 iterations, a remapping was performed and was used for the

remaining 490 iterations.

The results are presented in Table 5. As expected, these results show that using the remapping

substantially improves the time required for execution. The cost of load balancing (remapping

and building the new communication schedule) is close to the time required for completing a few

iterations of the parallel loop, while the cost of performing the load balance check is an order

of magnitude lower. These results show that even if a check is done every 10 iterations, the

15



overhead of performing this check will be small compared to the total execution cost; however, if the

environment adapts during that time, the potential advantages of the remapping can be substantial.

The frequency of this check and when the remapping should be performed are important parameters

for achieving good performance, but are beyond the scope of this paper.

6 Conclusions

In this paper we have presented several optimizations necessary for the parallelization of data-

parallel applications on an adaptive and nonuniform computational environment. The library was

evaluated on a cluster of workstations using P4 in static and adaptive environments. We showed

that our runtime library can be used for e�ective parallelization in the above environment.

Several methods described in the paper are preliminary approaches for solving the subproblems.

We are currently investigating improved methods for achieving similar goals, but at a considerably

lower runtime overhead. Although the library was targeted towards solving an unstructured grid

on a cluster of workstations, we believe many of the techniques developed in this paper are relevant

for e�cient solution of other regular as well as irregular data-parallel applications in a nonuniform

and adaptive computational environment.
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