
Parallel Incremental Graph Partitioning

Chao-Wei Ou and Sanjay Ranka

Northeast Parallel Architecture Center

and

School of Computer and Information Science

Syracuse University

Syracuse, NY 13244-4100

Email: cwou@npac.syr.edu, ranka@top.cis.syr.edu

Phone: (315) 443-4890, (315) 443-4457

FAX: (315) 443-1122

August 1994

Abstract

Partitioning graphs into equally large groups of nodes while minimizing the number of edges between di�erent

groups is an extremely important problem in parallel computing. For instance, e�ciently parallelizing several

scienti�c and engineering applications requires the partitioning of data or tasks among processors such that

the computational load on each node is roughly the same, while communication is minimized. Obtaining

exact solutions is computationally intractable, since graph-partitioning is an NP-complete.

For a large class of irregular and adaptive data parallel applications (such as adaptive meshes), the

computational structure changes from one phase to another in an incremental fashion. In incremental

graph-partitioning problems the partitioning of the graph needs to be updated as the graph changes over

time; a small number of nodes or edges may be added or deleted at any given instant.

In this paper we use a linear programming-based method to solve the incremental graph partitioning

problem. All the steps used by our method are inherently parallel and hence our approach can be easily

parallelized. By using an initial solution for the graph partitions derived from recursive spectral bisection-

based methods, our methods can achieve repartitioning at considerably lower cost than can be obtained by

applying recursive spectral bisection. Further, the quality of the partitioning achieved is comparable to that

achieved by applying recursive spectral bisection to the incremental graphs from scratch.

1 Introduction

Graph partitioning is a well-known problem for which fast solutions are extremely important in parallel

computing and in research areas such as circuit partitioning for VLSI design. For instance, parallelization

of many scienti�c and engineering problems requires partitioning data among the processors in such a

fashion that the computation load on each node is balanced, while communication is minimized. This

is a graph-partitioning problem, where nodes of the graph represent computational tasks, and edges describe

the communication between tasks with each partition corresponding to one processor. Optimal partitioning

would allow optimal parallelization of the computations with the load balanced over various processors

and with minimized communication time. For many applications, the computational graph can be derived

only at runtime and requires that graph partitioning also be done in parallel. Since graph partitioning is

NP-complete, obtaining suboptimal solutions quickly is desirable and often satisfactory.

For a large class of irregular and adaptive data parallel applications such as adaptive meshes [2], the

computational structure changes from one phase to another in an incremental fashion. In incremental

graph-partitioning problems, the partitioning of the graph needs to be updated as the graph changes over

time; a small number of nodes or edges may be added or deleted at any given instant. A solution of the

previous graph-partitioning problem can be utilized to partition the updated graph, such that the time

required will be much less than the time required to reapply a partitioning algorithm to the entire updated

graph. If the graph is not repartitioned, it may lead to imbalance in the time required for computation on

each node and cause considerable deterioration in the overall performance. For many of these problems the

graph may be modi�ed after every few iterations (albeit incrementally), and so the remapping must have

a lower cost relative to the computational cost of executing the few iterations for which the computational

structure remains �xed. Unless this incremental partitioning can itself be performed in parallel, it may

become a bottleneck.

Several suboptimal methods have been suggested for �nding good solutions to the graph-partitioning

problem. For many applications, the computational graph is such that the vertices correspond to two-

or three-dimensional coordinates and the interaction between computations is limited to vertices that are

physically proximate. This information can be exploited to achieve the partitioning relatively quickly by

clustering physically proximate points in two or three dimensions. Important heuristics include recursive

coordinate bisection, inertial bisection, scattered decomposition, and index based partitioners [3, 6, 12, 11, 14,

16]. There are a number of methods which use explicit graph information to achieve partitioning. Important

heuristics include simulated annealing, mean �eld annealing, recursive spectral bisection, recursive spectral

multisection, mincut-based methods, and genetic algorithms [1, 4, 5, 7, 8, 9, 10, 13]. Since, the methods use

explicit graph information, they have wider applicability and produce better quality partitioning.

In this paper we develop methods which use explicit graph information to perform incremental graph-

partitioning. Using recursive spectral bisection, which is regarded as one of the best-known methods for

graph partitioning, our methods can partition the new graph at considerably lower cost. The quality of

partitioning achieved is close to that achieved by applying recursive spectral bisection from scratch. Further,

our algorithms are inherently parallel.

The rest of the paper is outlined as follows. Section 2 de�nes the incremental graph-partitioning problem.

Section 3 describes linear programming-based incremental graph partitioning. Section 4 describes a multilevel

approach to solve the linear programming-based incremental graph partitioning. Experimental results of our

methods on sample meshes are described in Section 5, and conclusions are given in Section 6.

1

2 Problem de�nition

Consider a graph G = (V;E), where V represents a set of vertices, E represents a set of undirected edges, the

number of vertices is given by n = jV j, and the number of edges is given by m = jEj. The graph-partitioning

problem can be de�ned as an assignment scheme M : V �! P that maps vertices to partitions. We denote

by B(q) the set of vertices assigned to a partition q, i.e., B(q) = fv 2 V :M (v) = qg.

The weight wi corresponds to the computation cost (or weight) of the vertex vi. The cost of an edge

we(v1; v2) is given by the amount of interaction between vertices v1 and v2. The weight of every partition

can be de�ned as

W (q) =
X

vi2B(q)

wi: (1)

The cost of all the outgoing edges from a partition represent the total amount of communication cost

and is given by

C(q) =
X

vi2B(q); vj 62B(q)

we(vi; vj): (2)

We would like to make an assignment such that the time spent by every node is minimized, i.e.,

minq (W (q) + �C(q)), where � represents the ratio of cost of unit computation/cost of unit communi-

cation on a machine. Assuming computational loads are nearly balanced (W (0) � W (1) � � � � �W (p� 1)),

the second term needs to be minimized. In the literature
P

C(q) has also been used to represent the

communication.

Assume that a solution is available for a graph G(V;E) by using one of the many available methods in

the literature, e.g., the mapping function M is available such that

B(1) � B(2) � B(3) � � � � � B(q � 1); (3)

and the communication cost is close to optimal. Let G0(V 0; E0) be an incremental graph of G(V;E)

V 0 = V [V1 � V2 where V2 � V; (4)

i.e., some vertices are added and some vertices are deleted. Similarly,

E0 = E [E1 � E2 where E2 � E;E1 \E2 6= �; (5)

i.e., some edges are added and some are deleted. We would like to �nd a new mapping M 0 : V 0 �! P such

that the new partitioning is as load balanced as possible and the communication cost is minimized.

The methods described in this paper assume that G0(V 0; E0) is su�ciently similar to G(V;E) that this

can be achieved, i.e., the number of vertices and edges added/deleted are a small fraction of the original

number of vertices and edges.

3 Incremental partitioning

In this section we formulate incremental graph partitioning in terms of linear programming. A high-level

overview of the four phases of our incremental graph-partitioning algorithm is shown in Figure 1. Some

notation is in order.

Let

1. P be the number of partitions.

2. B0(i) represent the set of vertices in partition i.

2

3. � represent the average load for each partition � =

P
i
jB0(i)j

P
.

The four steps are described in detail in the following sections.

Step 1: Assign the new vertices to one of the partitions (given by M 0).

Step 2: Layer each partition to �nd the closest partition for each vertex (given by L0).

Step 3: Formulate the linear programming problem based on the mapping of Step 1 and balance loads (i.e., modify M 0) minimizing

the total number of changes in M 0.

Step 4: Re�ne the mapping in Step 2 to reduce the communication cost.

Figure 1: The di�erent steps used in our incremental graph-partitioning algorithm.

3.1 Assigning an initial partition to the new nodes

The �rst step of the algorithm is to assign an initial partition to the nodes of the new graph (given by

M 0(V)). A simple method for initializingM 0(V) is given as follows. Let

M 0(v) = M (v) for all v 2 V � V1: (6)

For all the vertices v 2 V1,

M 0(v) = M (x) where min
x2V�V2

(d(v; x)); (7)

d(v; x) is the shortest distance in the graph G0(V 0; E0). For the examples considered in this paper we assume

that G0 is connected. If this is not the case, several other strategies can be used.

� If G00(V [V1; E [E1) is connected, this graph can be used instead of G for calculation of M 0(V).

� If G00(V [V1; E [E1) is not connected, then the new nodes that are not connected to any of the old

nodes can be clustered together (into potentially disjoint clusters) and assigned to the partition that

has the least number of vertices.

For the rest of the paper we will assume thatM 0(v) can be calculated using the de�nition in (7), although

the strategies developed in this paper are, in general, independent of this mapping. Further, for ease of

presentation, we will assume that the edge and the vertex weights are of unit value. All of our algorithms

can be easily modi�ed if this is not the case. Figure 2 (a) describes the mapping of each the vertices of a

graph. Figure 2 (b) describes the mapping of the additional vertices using the above strategy.

3.2 Layering each partition

The above mapping would ordinarily generate partitions of unequal size. We would like to move vertices

from one partition to another to achieve load balancing, while keeping the communication cost as small as

possible. This is achieved by making sure that the vertices transferred between two partitions are close to

the boundary of the two partitions. We assign each vertex of a given partition to a di�erent partition it is

close to (ties are broken arbitrarily).

L0(v) = M (x) (8)

3

P

P

P

P2

1

0

3

(a)

P

P

P

P2

1

0

3

*
*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*
*

*

*
*

* *
*

* * *

*

*

(b)

Figure 2: (a) Initial Graph (b) Incremental Graph (New vertices are shown by *").

where x is such that

min
x=2B0(M(v))

(d(v; x)) (9)

is satis�ed; d(v; x) is the shortest distance in the graph between v and x.

A simple algorithm to perform the layering is given in Figure 3. It assumes the graph is connected. Let

�ij represent the number of such vertices of partition i that can be moved to partition j. For the example

case of Figure 3, labels of all the vertices are given in Figure 4. A label 2 of vertex in partition 1 corresponds

to the fact that this vertex belongs to the set that contributed to �12.

3.3 Load balancing

Let lij represent the number of vertices to be moved from partition i to partition j to achieve load balance.

There are several ways of achieving load balancing. However, since one of our goals is to minimize commu-

nication cost, we would like to minimize
X

i

X

j

lij, because this would correspond to a minimization of the

amount of vertex movement (or \deformity") in the original partitions. Thus the load-balancing step can be

formally de�ned as the following linear programming problem.

Minimize X

0�i6=j�P

lij (10)

subject to

0 � lij � �ij � jB0(i)j (11)
X

0�i<P

(lij � lji) = jB0(j)j � � 0 � j < P: (12)

Constraint 12 corresponds to the load balance condition.

The above formulation is based on the assumption that changes to the original graph are small and

the initial partitioning is well balanced, hence moving the boundaries by a small amount will give balanced

partitioning with low communication cost.

4

f map[v[j]] represents the mapping of vertex j. g

f adji [j] represents the j
th element of the local adjacent list in partition i. g

f xadji [v[j]] represents the starting address of vertex j in the local adjacent list of partition i. g

f S
(j;k)
i

represents the set of vertices of partition i at a distance k from a node in partition j.

f Neighbori represents the set of partitions which have common boundaries with partition i. g

For each partition i do

For vertex v[j] 2 Vi do

For k � xadji[v[j]] to xadji [v[j + 1]] do

if map[adji [k] 6= i

Counti[map[adji [k]]] := Counti[map[adji [k]]] + 1

if
P

l
Count[l] > 0

Add v[j] into S
(tag;0)
i

f where Count[tag] = maxl Count[l] g

Vi Vi � fv[j]g

level := 0

repeat

For k 2 Neighbori do

For vertex v[j] 2 S
(k;level)
i

do

For l � xadji[v[j]] to xadji[v[j + 1]] do

if adji [l] 62 S
(k;level)
i

counti[adji [l]][k] := counti[adji [l]][k] + 1

Add v[j] into tmpS

level := level + 1

For vertex v[j] 2 tmpS do

Add v[j] into S
(tag;level)
i

f where counti[j][tag] = maxl counti[j][l] g

Vi Vi � fv[j]g

until (Vi = �)

For j 2 Neighbori do

�ij :=

X

0�k<level

jS
(j;k)
i
j

Figure 3: Layering Algorithm

5

P
i Pj

P
k

j k

i

i

i

j

k

k

k

j

j

j

(a)

0
N

1
N

2
N

3
N

C

C
C

C

C

C
20

01 C
32

02

10

03

C30

23

12

C 21

C

(b)

Figure 4: Labeling the nodes of a graph to the closest outside partition; (a) a microscopic view of the layering

for a graph near the boundary of three partitions; (b) layering of the graph in Figure 2 (b); no edges are

shown.

Constraints in (11):

l01 � 9 l02 � 7 l03 � 12 l10 � 10 l12 � 11

l20 � 3 l21 � 7 l23 � 9 l30 � 7 l32 � 5

Constraints in (12):

l01 + l02 + l03 � l10 � l20 � l30 = 8

l10 + l12 � l01 � l21 = 1

�l20 � l21 � l23 + l02 + l12 + l32 = 1

�l30 � l32 + l03 + l23 = 8

Solution using the Simplex Method

l03 = 8, l12 = 1

all other values are zero.

Figure 5: Linear programming formulation and its solution, based on the mapping of the graph in Figure 2;

(b) using the labeling information in Figure 4 (b).

6

There are several approaches to solving the above linear programming problem. We decided to use the

simplex method because it has been shown to work well in practice and because it can be easily parallelized.1

The simplex formulation of the example in Figure 2 is given in Figure 5. The corresponding solution is l03 = 8

and l12 = 1. The new partitioning is given in Figure 6.

P

P

P

P2

1

0

3

P

P

P

P2

1

0

3

Initial partitions

Incremental partitions

Figure 6: The new partition of the graph in Figure 2 (b) after the Load Balancing step.

The above set of constraints may not have a feasible solution. One approach is to relax the constraint in

(11) and not have lij � �ij as a constraint. Clearly, this would achieve load balance but may lead to major

modi�cations in the mapping. Another approach is to replace the constraint in (12) by

X

0�i<P

(lij � lji) =
jB0(j)j � �

�
0 � j < P: (13)

Assuming C > � > 1, this would not achieve load balancing in one step, but several such steps can be

applied to do so. If a feasible solution cannot be found with a reasonable value of � (within an upper bound

C), it would be better to start partitioning from scratch or solve the problem by adding only a fraction of

the nodes at a given time, i.e., solve the problem in multiple stages. Typically, such cases arise when all the

new nodes correspond to a few partitions and the amount of incremental change is greater than the size of

one partition.

3.4 Re�nement of partitions

The formulation in the previous section achieves load balance but does not try explicitly to reduce the number

of cross-edges. The minimization term in (10) and the constraint in (11) indirectly keep the cross-edges to

a minimum under the assumption that the initial partition is good. In this section we describe a linear

programming-based strategy to reduce the number of cross-edges, while still maintaining the load balance.

This is achieved by �nding all the vertices of partitions i on the boundary of partition i and j such that

the cost of edges to the vertices in j are larger than the cost of edges to local vertices (Figure 7), i.e., the

total cost of cross-edges will decrease by moving the vertex from partition i to j, which will a�ect the load

1We have used a dense version of simplex algorithm. The total time can potentiallybe reduced by using sparse representation.

7

Pj

P
k

P
i

local edges = 2

v

j

knon-local edge to partition = 1

non-local edge to partition = 3

(a)

P

P

P

P2

1

0

3

(b)

Figure 7: Choosing vertices for re�nement. (a) Microscopic view of a vertex which can be moved from

partition Pi to Pj, reducing the number of cross edges; (b) the set of vertices with the above property in the

partition of Figure 6.

balance. In the following a linear programming formulation is given that moves the vertices while keeping

the load balance.

Let M 00(k) : V 0 �! P represent the mapping of each vertex after the load-balancing step. Let out(k; j)

represent the number of edges of vertex k in partition M 00(k) connected to partition j(j 6= M 00(k)), and let

in(k) represent the number of vertices a vertex k is connected to in partition M 00(k). Let bij represent the

number of vertices in partition i which have more outgoing edges to partition j than local edges.

bij = jfV 2 B00i jout(V; j) � in(V) � 0gj:

We would like to maximize the number of vertices moved so that moving a vertex will not increase the

cost of cross-edges. The inequality in the above de�nition can be changed to a strict inequality. We leave

the equality, however, since by including such vertices the number of points that can be moved can be larger

(because these vertices can be moved to satisfy load balance constraints without a�ecting the number of

cross-edges).

The re�nement problem can now be posed as the following linear programming problem:

Maximize X

0�i6=j�P

lij (14)

such that

0 � lij � bij 0 � i 6= j < P (15)
X

0�i<j

(lij � lji) = 0 0 � j < P: (16)

This re�nement step can be applied iteratively until the e�ective gain by the movement of vertices is

small. After a few steps, the inequalities (lij � bij) need to be replaced by strict inequalities (lij < bij);

8

Constraint (15)

l01 � 1 l02 � 1 l03 � 1 l10 � 2 l12 � 1

l20 � 0 l21 � 1 l23 � 1 l30 � 2 l32 � 1

Load Balancing Constraint (16)

l01 + l02 + l03 � l10 � l20 � l30 = 0

l10 + l12 � l01 � l21 = 0

�l20 � l21 � l23 + l02 + l12 + l32 = 0

�l30 � l32 + l03 + l23 = 0

Solution using Simplex Method

l01 = 0, l02 = 1, l03 = 1, l10 = 1, l12 = 1

l20 = 0, l21 = 1, l23 = 1, l30 = 1, l32 = 1

Figure 8: Formulation of the re�nement step using linear programming and its solution.

otherwise, vertices having an equal number of local and nonlocal vertices may move between boundaries

without reducing the total cost. The simplex formulation of the example in Figure 6 is given in Figure 8,

and the new partitioning after re�nement is given in Figure 9.

P

P

P

P2

1

0

3

P

P

P

P2

1

0

3

P

P

P

P2

1

0

3

Incremental partitions

Refined partitions

Figure 9: The new partition of the graph in Figure 6 after the Re�nement step.

3.5 Time complexity

Let the number of vertices and the number of edges in a graph be given by V and E, respectively. The time

for layering is O(V +E). Let the number of partitions be P and the number of edges in the partition graph2

2Each node of this graph represents a partition. An edge in the super graph is present whenever there are any cross edges

from a node of one partition to a node of another partition.

9

be R. The number of constraints and variables generated for linear programming are O(P +R) and O(2R),

respectively.

Thus the time required for the linear programming is O((P +R)R). Assuming R is O(P), this reduces to

O(P 2). The number of iterations required for linear programming is problem dependent. We will use f(P)

to denote the number of iterations. Thus the time required for the linear programming is O(P 2f(P)). This

gives the total time for repartitioning as O(E + P 2l(P)).

The parallel time is considerably more di�cult to analyze. We will analyze the complexity of neglecting

the setup overhead of coarse-grained machines. The parallel time complexity of the layering step depends on

the maximum number of edges assigned to any processor. This could be approximated by O(E=P) for each

level, assuming the changes to the graph are incremental and that the graph is much larger than the number

of processors. The parallelization of the linear programming requires a broadcast of length proportional to

O(P). Assuming that a broadcast of size P requires b(P) amount of time on a parallel machine with P

processors, the time complexity can be approximated by O(E
P
+ l(P)(P + b(P))).

4 A multilevel approach

For small graphs a large fraction of the total time spent in the algorithm described in the previous section

will be on the linear programming formulation and its solution. Since the time required for one iteration

of the linear programming formulation is proportional to the square of the number of partitions, it can be

substantially reduced by using a multilevel approach. Consider the partitioning of an incremental graph

for 16 partitions. This can be completed in two stages: partitioning the graph into 4 super partitions and

partitioning each of the 4 super partitions into 4 partitions each. Clearly, more than two stages can be used.

The advantage of this algorithm is that the time required for applying linear programming to each stage

would be much less than the time required for linear programming using only one stage. This is due to a

substantial reduction in the number of variables as well as in the constraints, which are directly dependent

on the number of of partitions. However, the mapping initialization and the layering needs to be performed

from scratch for each level. Thus the decrease in cost of linear programming leads to a potential increase in

the time spent in layering.

The multilevel algorithm requires combining the partitions of the original graph into super partitions.

For our implementations, recursive spectral bisection was used as an ab initio partitioning algorithm. Due

to its recursive property it creates a natural hierarchy of partitions. Figure 10 shows a two-level hierarchy

of partitions. After the linear programming-based algorithm has been applied for repartitioning a graph

that has been adapted several times, it is possible that some of the partitions corresponding to a lower level

subtree have a small number of boundary edges between them. Since the multilevel approach results in

repartitioning with a small number of partitions at the lower levels, the linear programming formulations

may produce infeasible solutions at the lower levels. This problem can be partially addressed by recon�guring

the partitioning hierarchy.

A simple algorithm can be used to achieve recon�guration. It tries to group proximate partitions

to form a multilevel hierarchy. At each level it tries to combine two partitions into one larger parti-

tion. Thus the number of partitions is reduced by a factor of two at every level by using a procedure

FIND UNIQUE NEIGHBOR(P) (Figure 11), which �nds a unique neighbor for each partition such that the

number of cross-edges between them is as large as possible. This is achieved by applying a simple heuristic

(Figure 12) that uses a list of all the partitions in a random order (each processor has a di�erent order). If

more than one processor is successful in generating a feasible solution, ties are broken based on the weight

and the processor number. The result of the merging is broadcast to all the processors. In case none of the

10

B"

B’

B’

B’

B’

0

1

2

3

Figure 10: A two-level hierarchy of 16 partitions

FIND UNIQUE NEIGHBOR(P)

f A0; A1; A2; � � �AP�1 represent the P partitions g

f Edgeij represents the number of edges from partition i to partition j. g

global success := FALSE

trial := 0

While (not global success) and (trial < T) do

For each processor i do

Mark[0::P � 1] := -1

Random list[0::P � 1] := list of all partitions in a random order

Weight := 0

FIND PAIR(success;Mark;Weight; Edge)

global success := GLOBAL OR(success)

if (not global success) then

FIX PAIR(success;Mark;Weight; Edge)

global success := GLOBAL OR(success)

if (global success) then

winner := FIND WINNER(success;Weight)

f Return the processor number of maximum Weight g

BROADCAST(winner;Mark)

f Processor winner broadcast Mark to all the processors g

return(global success)

else

trial := trial+1

Figure 11: Reconstruction Algorithm

11

FIND PAIR(success;Mark;Weight; Edge)

success := TRUE

for j � 0 to P � 1 do

if (Mark[j] < 0) then

Find a neighbor k of j where (Mark[k] < 0)

if k exists then

Mark[k] := j Mark[j] := k

Weight := Weight + Edge(i; j)

else

success := FALSE

FIX PAIR(success;Mark;Weight; Edge)

success := TRUE j = 0

While (j < P) and (success) do

if (Mark[j] < 0) then

if a x exists such that (Mark[x] < 0), (x is a neighbor of l), (Mark[l] = k), and (k is a neighbor of j)

Mark[x] := l Mark[l] := x

Mark[j] := k Mark[k] := j

Weight := Weight + Edge(j; k) + Edge(l; x) - Edge(k; l)

j := j + 1

else

success := FALSE

else

j := j + 1

Figure 12: A high level description of the procedures used in FIND UNIQUE NEIGHBOR.

12

processors are successful, another heuristic (Figure 12) is applied that tries to modify the partial assignments

made by heuristic 1 to �nd a neighbor for each partition. If none of the processors are able to �nd a feasi-

ble solution, each processor starts with another random solution and the above step is iterated a constant

number (L) times.3 Figure 11 shows the partition recon�guration for a simple example.

If the recon�guration algorithm fails, the multilevel algorithm can be applied with a lower number of

levels (or only one level).

P0 0 13 2
Random_list = <P P P P >

P3 2 3 0 1
Random_list = <P P P P >

P2 1 3 2 0
Random_list = <P P P P >

P1 0 13 2
Random_list = <P P P P >

P0 0 3V = ((P P) (P P)) 1 2

P1 3 0V = ((P P) (P P)) 1 2

P3 2 3V = ((P P) (P P)) 0 1

P2 1 3V = ((P P) (P P)) 0 2

P0

Weight = 16

P1

Weight = 33

P2

P3

Weight = 33

Weight = 16

P P0P2 P3 1

P
0

P
1

P
2

P
2

P
1

P
0

P0

P1

P2

P3

1

2

2

2

3

3

1

0

0

1Neighbor = P P

Neighbor = P P P

Neighbor = P P P

Neighbor = P P
3

PP
3

12

10 21

6

27

(a) (b) (a)

(d) (e) (f)

(g)

Figure 13: A working example of the reconstruction algorithm. (a) Graph with 4 partitions; (b) partition

graph; (c) adjacency lists; (d) random order lists; (e) partition rearrangement; (f) processor 3 broadcasts

the result ((P1P0)(P3P1)) to the other processors; (g) hierarchy after recon�guration.

3In practice, we found that the algorithm never requires more than one iteration.

13

4.1 Time complexity

In the following we provide an analysis assuming that recon�guration is not required. The complexity of

recon�guration will be discussed later. For the multilevel approach we assume that at each level the number

of partitions done is equal and given by k. Thus the number of levels generated is logkP . The time required

for layering increases to O(ElogkP). The number of linear programming formulations can be given by

O(P
k
). Thus the total time for linear programming can be given by O(P

k
k2f(k)). The total time required

for repartitioning is given by O(ElogkP + Pkf(k)). An appropriate value of k would minimize the sum of

the cost of layering and the cost of the linear programming formulation. The choice of k also depends on the

quality of partitioning achieved; increasing the number of layers would, in general, have a deteriorating e�ect

on the quality of partitioning. Thus values of k have to be chosen based on the above tradeo�s. However, the

analysis suggests that for reasonably sized graphs the layering time would dominate the total time. Since the

layering time is bounded by O(ElogP), this time is considerably lower than applying spectral bisection-based

methods from scratch.

Parallel time is considerably more di�cult to analyze. The parallel time complexity of the layering step

depends on the maximum number of edges any processor has for each level. This can be approximated by

O(E
P
) for each level, assuming the changes to the graph are incremental and that the graph is much larger

than the number of processors. As discussed earlier, the parallelization of linear programming requires a

broadcast of length proportional to O(k). For small values of k, each linear programming formulation has to

be executed on only one processor, else the communication will dominate the total time. Thus the parallel

time is proportional to O(E
P
+ k2f(k)logkP).

The above analysis did not take recon�guration into account. The cost of recon�guration requires O(kd2)

time in parallel for every iteration, where d is the average number of partitions to which every partition is

connected. The total time is O(kd2 logP) for the recon�guration. This time should not dominate the total

time required by the linear programming algorithm.

5 Experimental results

In this section we present experimental results of the linear programming-based incremental partitioning

methods presented in the previous section. We will use the term "incremental graph partitioner" (IGP) to

refer to the linear programming based algorithm. All our experiments were conducted on the 32-node CM-5

available at NPAC at Syracuse University.

Meshes

We used two sets of adaptive meshes for our experiments. These meshes were generated using the DIME

environment [15]. The initial mesh of Set A is given in Figure 14 (a). The other incremental meshes are

generated by making re�nements in a localized area of the initial mesh. These meshes represent a sequence

of re�nements in a localized area. The number of nodes in the meshes are 1071, 1096, 1121, 1152, and 1192,

respectively.

The partitioning of the initial mesh (1071 nodes) was determined using recursive spectral bisection. This

was the partitioning used by algorithm IGP to determine the partitioning of the incremental mesh (1096

nodes). The repartitioning of the next set of re�nement (1121, 1152, and 1192 nodes, respectively) was

achieved using the partitioning obtained by using the IGP for the previous mesh in the sequence. These

meshes are used to test whether IGP is suitable for repartitioning a mesh after several re�nements.

14

(a)

(c)

(e)

(b)

(d)

Figure 14: Test graphs set A (a) an irregular graph with 1071 nodes and 3185 edges; (b) graph in (a) with

25 additional nodes; (c) graph in (b) with 25 additional nodes; (d) graph in (c) with 31 additional nodes;

(e) graph in (d) with 40 additional nodes.

15

(a)

(c)

(e)

(b)

(d)

Figure 15: Test graphs Set B (a) a mesh with 10166 nodes and 30471 edges; (b) mesh a with 48 additional

nodes; (c) mesh a with 139 additional nodes; (d) mesh a with 229 additional nodes; (e) mesh a with 672

additional nodes.

16

Results

Initial Graph | Figure 14 (a)

jV j jEj Total Cutset Max Cutset Min Cutset

1071 3185 734 56 35

jV j = 1096 jEj = 3260 | Figure 14 (b)

Partitioner Time-s Time-p Total Cutset Max Cutset Min Cutset

Spectral Bisection 31.71 | 733 56 33

IGP 14.75 0.68 747 55 34

IGP with Re�nement 16.87 0.88 730 54 34

jV j = 1121 jEj = 3335 | Figure 14 (c)

Partitioner Time-s Time-p Total Cutset Max Cutset Min Cutset

Spectral Bisection 34.05 | 732 56 34

IGP 13.63 0.73 752 54 33

IGP with Re�nement 16.42 1.05 727 54 33

jV j = 1152 jEj = 3428 | Figure 14 (d)

Partitioner Time-s Time-p Total Cutset Max Cutset Min Cutset

Spectral Bisection 34.96 | 716 57 34

IGP 15.89 0.92 757 56 33

IGP with Re�nement 18.32 1.28 741 56 33

jV j = 1192 jEj = 3548 | Figure 14 (e)

Partitioner Time-s Time-p Total Cutset Max Cutset Min Cutset

Spectral Bisection 38.20 | 774 63 34

IGP 15.69 0.94 815 63 34

IGP with Re�nement 18.43 1.26 779 59 34

Time unit in seconds. p - parallel timing on a 32-node CM-5. s - timing on 1-node CM-5.

Figure 16: Incremental graph partitioning using linear programming and its comparison with spectral bisec-

tion from scratch for meshes in Figure 14 (Set A).

The next data set (Set B) corresponds to highly irregular meshes with 10166 nodes and 30471 edges.

This data set was generated to study the e�ect of di�erent amounts of new data added to the original mesh.

Figures 17 (b), 17 (c), 17 (d), and 17 (e) correspond to meshes with 68, 139, 229, and 672 additional nodes

over the mesh in Figure 15.

The results of the one-level IGP for Set A meshes are presented in Figure 16. The results show that, even

after multiple re�nements, the quality of partitioning achieved is comparable to that achieved by recursive

spectral bisection from scratch, thus this method can be used for repartitioning several stages. The time

required by repartitioning is about half the time required for partitioning using RSB. The algorithm provides

speedup of around 15 to 20 on a 32-node CM-5. Most of the time spent by our algorithm is in the solution

of the linear programming formulation using the simplex method. The number of variables and constraints

generated by the one-level linear programming algorithm for the load-balancing step for meshes in Figure

16 with jV j = 1096 and jEj = 3260 for 32 partitions are 188 and 126, respectively.

For the multilevel approach, the linear programming formulation for each subproblem at a given level

17

Initial Graph | Figure 15 (a)

jV j jEj Total Cutset Max Cutset Min Cutset

10166 30471 2118 171 82

(b) Initial assignment by IGP using the partition of Figure 15 (a')

jV j = 10214 jEj = 30615 Total Cutset = 2118 Max load = 361 Min load = 317

Partitioner Time-s Time-p Total Cutset Max Cutset Min Cutset

Spectral Bisection 800.05 | 2137 178 90

IGP before Re�nement 13.90 1.01 2139 186 84

IGP after Re�nement 24.07 1.83 2040 172 82

(c) Initial assignment by IGP using the partition of Figure 15 (a')

jV j = 10305 jEj = 30888 Total Cutset = 2128 Max load = 409 Min load = 317

Partitioner Time-s Time-p Total Cutset Max Cutset Min Cutset

Spectral Bisection 814.36 | 2099 166 87

IGP before Re�nement 18.89 1.08 2295 219 93

IGP after Re�nement 29.33 2.01 2162 206 85

(d) Initial assignment by IGP using the partition of Figure 15 (a')

jV j = 10395 jEj = 31158 Total Cutset = 2162 Max load = 409 Min load = 317

Partitioner Time-s Time-p Total Cutset Max Cutset Min Cutset

Spectral Bisection 853.35 | 2057 169 94

IGP before Re�nement (2) 35.98 2.08 2418 256 92

IGP after Re�nement 43.86 2.76 2139 190 85

(e) Initial assignment by IGP using the partition of Figure 15 (a')

jV j = 10838 jEj = 32487 Total Cutset = 2536 Max load = 523 Min load = 317

Partitioner Time-s Time-p Total Cutset Max Cutset Min Cutset

Spectral Bisection 904.81 | 2158 158 94

IGP before Re�nement (3) 76.78 3.66 2572 301 102

IGP after Re�nement 89.48 4.39 2270 237 96

Time unit in seconds. p - parallel timing on a 32-node CM-5. s - timing on 1-node CM-5.

Figure 17: Incremental graph partitioning using linear programming and its comparison with spectral bisec-

tion from scratch for meshes in Figure 15 (Set B).

18

was solved by assigning a subset of processors. Table 19 gives the time required for di�erent algorithms and

the quality of partitioning achieved for di�erent numbers of levels. A 4� 4� 2-based repartitioning implies

that the repartitioning was performed in three stages with decomposition into 4, 4, 2 partitions, respectively.

The results are presented in Figure 19. The solution qualities of multilevel algorithms show an insigni�cant

deterioration in number of cross edges and a considerable reduction in total time.

The partitioning achieved by algorithm IGP for Set B meshes in Figure 18 using the partition of mesh

in Figure 15 (a) is given in Figure 17. The number of stages required (by choosing an appropriate value of

�, as described in section 2.3) were 1, 1, 2, and 3, respectively.4 It is worth noting that, although the load

imbalance created by the additional nodes was severe, the quality of partitioning achieved for each case was

close to that of applying recursive spectral bisection from scratch. Further, the sequential time is at least

an order of magnitude better than that of recursive spectral bisection. The CM-5 implementation improved

the time required by a factor of 15 to 20. The time required for repartitioning Figure 17 (b) and Figure 17

(c) is close to that required for meshes in Figure 14. The timings for meshes in Figure 17 (d) and 17 (e) are

larger because they use multiple stages. The time can be reduced by using a multilevel approach (Figure 20).

However, the time reduction is relatively small (from 24.07 seconds to 6.70 seconds for a two-level approach).

Increasing the number of levels increases the total time as the cost of layering increases. The time reduction

for the last mesh (10838 nodes) is largely due to the reduction of the number of stages used in the multilevel

algorithm (Section 3.3). For almost all cases a speedup of 15 to 25 was achieved on a 32-node CM-5.

Figure 21 and Figure 22 show the detailed timing for di�erent steps for the mesh in Figure 14 (d) and

mesh in Figure 15 (b) of the sequential and parallel versions of the repartitioning algorithm, respectively.

Clearly, the time spent in recon�guration is negligible compared to the total execution time. Also, the time

spent for linear programming in a multilevel algorithm is much less than that in a single-level algorithm.

The results also show that the time for the linear programming remains approximately the same for both

meshes, while the time for layering is proportionally larger. For the multilevel parallel algorithm, the time for

layering is comparable with the time spent on linear programming for the smaller mesh, while it dominates

the time for the larger mesh. Since the layering term is O(levelsE
P
), these results support the complexity

analysis in the previous section. The time spent on recon�guration is negligible compared to the total time.

6 Conclusions

In this paper we have presented novel linear programming-based formulations for solving incremental graph-

partitioning problems. The quality of partitioning produced by our methods is close to that achieved by

applying the best partitioning methods from scratch. Further, the time needed is a small fraction of the

latter and our algorithms are inherently parallel. We believe the methods described in this paper are of

critical importance in the parallelization of adaptive and incremental problems.

4The number of stages chosen were by trial and error, but can be determined by the load imbalance.

19

(a0)

(c0)

(e0)

(b0)

(d0)

Figure 18: (a0) Partitions using RSB; (b0) partitions using IGP starting from a0; (c0) partitions using IGP

starting from a0; (d0) partitions using IGP starting from a0; (e0) partitions using IGP starting from a0.

20

Graph Level Description Time-s Time-p Total Cutset

1 32 16.87 0.88 730

jV j=1096 2 8x4 1.16 0.58 740

jEj=3260 3 4x4x2 1.27 0.23 745

1 32 16.42 1.02 727

jV j=1121 2 8x4 1.60 0.64 752

jEj=3335 3 4x4x2 1.27 0.22 766

1 32 18.32 1.28 741

jV j=1152 2 8x4 1.58 0.76 758

jEj=3428 3 4x4x2 1.28 0.21 741

1 32 18.43 1.26 779

jV j=1192 2 8x4 1.44 0.75 816

jEj=3548 3 4x4x2 1.33 0.20 811

Time unit in seconds on CM-5.

Figure 19: Incremental multilevel graph partitioning using linear programming and its comparison with

single-level graph partitioning for the sequence of graphs in Figure 14.

Graph Level Description Time-s Time-p Total Cutset

1 32 24.07 1.83 2040

jV j=10214 2 8x4 6.70 0.73 2099

jEj=30615 3 4x4x2 8.48 0.40 2067

1 32 29.33 2.01 2162

jV j=10305 2 8x4 6.89 0.73 2170

jEj=30888 3 4x4x2 8.40 0.40 2176

1 32 43.86 2.76 2139

jV j=10395 2 8x4 6.80 0.81 2220

jEj=31158 3 4x4x2 8.61 0.44 2214

1 32 89.48 4.39 2270

jV j=10838 2 8x4 7.43 0.99 2408

jEj=32487 3 4x4x2 9.07 0.48 2337

Time unit in seconds on CM-5.

Figure 20: Incremental multilevel graph partitioning using linear programming and its comparison with

single-level graph partitioning for the sequence of meshes in Figure 15.

21

jV j = 1152, jEj = 3428, in Figure 14 (d)

Level Recon�guration Layering Linear programming Total

B R T B R T B R T

1 | 0.29 0.21 0.50 15.89 1.90 17.79 16.19 2.12 18.32

2 0.01 0.47 0.34 0.82 0.13 0.62 0.78 0.61 1.00 1.65

3 0.01 0.65 0.47 1.13 0.045 0.09 0.17 0.72 0.60 1.31

jV j = 10214, jEj = 30615, in Figure 15 (b)

Level Recon�guration Layering Linear programming Total

B R T B R T B R T

1 | 1.45 1.57 3.02 12.53 8.52 21.05 13.98 10.09 24.07

2 0.01 2.80 2.84 5.64 0.24 0.76 1.10 3.50 4.22 6.70

3 0.01 4.26 3.92 8.18 0.05 0.14 0.19 4.33 4.12 8.48

Time in seconds

B { Balancing. R { Re�nement. T { Total.

Figure 21: Time required for di�erent steps in the sequential repartitioning algorithm.

jV j = 1152, jEj = 3428, in Figure 14 (d)

Level Recon�guration Layering Linear programming Data movement Total

B R T B R T B R T B R T

1 | 0.01 0.02 0.03 0.82 0.41 1.23 0.01 0.01 0.02 0.84 0.43 1.27

2 0.01 0.02 0.01 0.03 0.11 0.61 0.72 0.01 0.02 0.03 0.14 0.65 0.80

3 0.01 0.02 0.02 0.04 0.03 0.07 0.10 0.02 0.03 0.05 0.07 0.12 0.20

jV j = 10214, jEj = 30615, in Figure 15 (b)

Level Recon�guration Layering Linear programming Data movement Total

B R T B R T B R T B R T

1 | 0.06 0.03 0.09 0.84 0.87 1.71 0.01 0.02 0.03 0.91 0.92 1.83

2 0.01 0.10 0.11 0.20 0.08 0.39 0.48 0.02 0.05 0.07 0.21 0.51 0.73

3 0.01 0.15 0.13 0.28 0.02 0.07 0.09 0.02 0.06 0.08 0.18 0.22 0.40

Time in seconds

B { Balancing. R { Re�nement. T { Total.

Figure 22: Time required for di�erent steps in the parallel repartitioning algorithm (on a 32-node CM-5).

22

References

[1] I. Angus, G. Fox, J. Kim, and D. Walker. Solving Problems on Concurrent Processors, volume 2.

Prentice Hall, Englewood Cli�s, NJ, 1990.

[2] Alok Choudhary, Geo�rey C. Fox, Seema Hiranandani, Ken Kennedy, Charles Koelbel, Sanjay Ranka,

and Joel Saltz. Software Support for Irregular and Loosely Synchronous Problems. In Proceedings of

the Conference on High Performance Computing for Flight Vehicles, 1992. To appear.

[3] F. Ercal. Heuristic Approaches to Task Allocation for Parallel Computing. Ph.D. thesis, Ohio State

University, 1988.

[4] G. C. Fox and W. Furmanski. Load Balancing Loosely Synchronous Problems with a Neural Network.

1988.

[5] G. C. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D.Walker. Solving Problems on Concurrent

Processors, volume 1. Prentice Hall, Englewood Cli�s, NJ, 1988.

[6] Geo�rey C. Fox. Graphical Approach to Load Balancing and Sparse Matrix Vector Multiplication on

the Hypercube. 1988. Ed. M. Schultz, Springer-Verlag, Berlin.

[7] Bruce Hendrickson and Robert Leland. An Improved Spectral Graph Partitioning Algorithm for Map-

ping Parallel Computations. Technical Report SAND92-1460, Sandia National Laboratories, Albu-

querque, NM 87185, 1992.

[8] Bruce Hendrickson and Robert Leland. Multidimensional Spectral Load Balancing. Technical Report

SAND93-0074, Sandia National Laboratories, Albuquerque, NM 87185, 1993.

[9] Harpal Maini, Kishan Mehrotra, Chilukuri Mohan, and Sanjay Ranka. Genetic Algorithms for Graph

Partitioning and Incremental Graph Partitioning. In Proceedings of Supercomputing '94, November

1994.

[10] Nashat Mansour. Physical Optimization Algorithms for Mapping Data to Distributed-Memory Multi-

processors. PhD thesis, Syracuse University, NY, 1993.

[11] B. Nour-Omid, A. Raefsky, and G. Lyzenga. Solving Finite Element Equations on Current Computers.

Parallel Computations and Their Impact on Mechanics, 1986.

[12] Chao-Wei Ou, Sanjay Ranka, and Geo�rey Fox. Fast Mapping And Remapping Algorithm For Irregular

and Adaptive Problems. In Proceedings of the 1993 International Conference on Parallel and Distributed

Systems, Taipei, Taiwan, December 1993.

[13] A. Pothen, H. Simon, and K-P Liou. Partitioning Sparse Matrices with Eigenvectors of Graphs. SIAM

Journal of Matrix Analysis and Application, 11(3), July 1990.

[14] H. Simon. Partitioning of Unstructured Mesh Problems for Parallel Processing. In Proceedings of the

Conference on Parallel Methods on Large Scale Structural Analysis and Physics Applications. Permagon

Press, 1991.

[15] R.D. Williams. DIME: Distributed Irregular Mesh Enviroment. California Institute of Technology,

February 1990.

[16] R.D. Williams. Performance of Dynamic Load-Balancing Algorithm for Unstructured Mesh Calcula-

tions. Concurrency, 3:457{481, 1991.

23

