
Fast and Parallel Mapping Algorithms for Irregular

Problems

Chao-Wei Ou, Sanjay Ranka, and Geo�rey Fox

Northeast Parallel Architectures Center

School of Computer and Information Science

Syracuse University

Syracuse, NY 13244

Email: cwou@npac.syr.edu, ranka@top.cis.syr.edu

Abstract

In this paper we develop simple index-based graph partitioning techniques. We show our

methods to be very fast, easily parallelizable and that they produce good quality mappings.

These properties make them useful for parallelization of a number of irregular and adaptive

applications.

Index Terms: Mapping, Remapping, Parallel, Merging, Sorting

1 Introduction

Parallelization of data-parallel programs on distributed-memory parallel computers requires

careful attention to load balancing and reduction of communication to achieve a good per-

formance. For most regular and synchronous problems [13], mapping can be performed at

the time of compilation by giving directives to decompose the data and its corresponding

computations [8]. For irregular applications, achieving a good mapping is considerably more

di�cult; the nature of the irregularities may not be known at the time of compilation and

can be derived only at runtime [7]. These applications can be represented as computational

graphs from the perspective of parallel computing. The vertices of these graphs represent

tasks that can be executed concurrently, while the edges represent the interactions between

them.

The key problem in e�ciently executing irregular applications is partitioning the data and

computation to minimize communication while balancing the load (Figure 1). Partitioning

such applications can be posed as a graph-partitioning problem that is shown to be NP-

complete [16]; hence exact solutions are computationally intractable for large problems.

Several heuristic methods are available in the literature to perform such partitioning. These

methods include recursive coordinate bisection, inertial bisection, scattered decomposition,

geometry-based partitioners, simulated annealing, mean-�eld annealing, recursive spectral

bisection, recursive spectral multisection, mincut-based methods, and genetic algorithms

[1, 11, 12, 14, 15, 17, 19, 23, 24, 26, 28, 29, 36, 41]. The computational graphs derived

from many applications are such that the vertices correspond to two- or three-dimensional

coordinates, and the interaction between computations is limited to physically proximate

vertices. Examples of such applications include molecular dynamics, static and adaptive PDE

solvers [30, 38], region-growing, component labeling [10], and statistical physics simulations

[6, 7, 9, 10]. Simple and fast heuristics for partitioning such graphs is to cluster physically

proximate points in two or three dimensions.

Most of the above applications are iterative and the same computational graph is used

for several iterations. The average time required to solve one iteration of these irregular

data-parallel applications depends on the sum of the amortized cost of partitioning A, (time

required for partitioning divided by the number of times the same partitioning is used), and

the time required for computation and communication C. A good partitioning keeps the

load balanced and the amount of communication low and has a small value of C. When the

computational graph is static the cost of partitioning is typically neglected; a more expensive

algorithm which produces a high-quality solution is desirable. When the computational

structure can be determined only at runtime the graph-partitioning cost cannot be ignored.

A cheaper algorithm that produces a good-quality solution may be preferable for such cases.

Further, it is highly desirable that the partitioners should themselves be parallelizable.

For many irregular and/or adaptive applications, the computational structure changes in-

crementally. These changes may re
ect perturbations in the physical domain (e.g., molecular

dynamics applications [6]) or re
ect additions/deletions to a data structure (e.g., adaptive

PDE solvers [30, 38]). In such cases one option is to repartition the new computational

1

P0 P2
P6

P4

P1 P3 P5 P7

Figure 1: The partitioning of an irregular mesh

graph from scratch; however, information about partitioning from the previous phase can

potentially be exploited to accelerate the partitioning for the new phase.

In this paper we describe index-based mapping schemes for partitioning two- and three-

dimensional irregular and adaptive grids on parallel machines. We show that these methods

are extremely fast, easy to parallelize, and produce good-quality mappings. When new ver-

tices are added and/or old vertices deleted, the repartitioning can be achieved faster than

partitioning from scratch. We believe these methods should be useful for a wide variety

of irregular and adaptive problems. Index-based mappings have been used to develop e�-

cient algorithms for sorting [37], quadtree operations [32], sparse images [33], and n-body

simulations [39] on parallel machines.

The rest of the paper can be described as follows. In Section 2 we brie
y describe

the mapping problem; Section 3 describes the important parallel primitives required for

the mapping and remapping algorithms; Section 4 gives an overview of our mapping scheme;

Section 5 discusses the mapping algorithm; Section 6 shows the parallelization of the mapping

algorithm, and Section 7 exploits the incremental aspects of the remapping algorithm.

2 The Mapping Problem

Let a graph G = (V;E), where V represents a set of vertices, and E represents a set of

edges. The number of vertices is given by n =j V j, and the number of edges is given

by m =j E j. For a graph representing the computational structure of physical domain,

each vertex vi 2 V , 1 � i � m corresponds to a physical coordinate in a d-dimensional

2

space (xi1; xi2; : : : ; xid). Each edge is an ordered pair (vi1; vi2). In graphs corresponding to

the computational structure of a physical domain, these edges connect physically proximate

vertices.

The graph-partitioning problem can be de�ned as an assignment scheme M : V �! P

that maps vertices to partitions. We denote byB(q), the set of vertices assigned to a partition

q. Thus B(q) = fv 2 V :M(v) = qg. The weight wi corresponds to the computation cost (or

weight) of the vertex vi. The cost of an edge we(v1; v2) is given by the amount of interaction

between vertices v1 and v2, thus the weight of every partition can be de�ned as

W (q) =
X

vi2B(q)

wi: (1)

A cross-edge is de�ned as an edge whose end vertices belong to di�erent partitions. The cost

of all the cross-edges from a partition is given by

C(q) =
X

vi2B(q);vj 62B(q)

we(vi; vj): (2)

For the purpose of mapping on parallel machines, a number of di�erent but related

cost functions have been described in the literature. Most formulations decompose the

computation and communication costs separately. The total cost of mapping is given by a

linear combination of the two terms. The computation cost is given by maxq W (q), which

is typically approximated by
P

q (W (q)� �)
2
, where � =

P
q
W (q)

p
. The communication cost

is given by the sum of all the cross-edges (or the cut weight):

C =
X

q

C(q): (3)

Some formulations also use the following metric for representing the communication cost:

max
q

C(q): (4)

We will provide the quality of mapping achieved by using both the communication met-

rics, assuming that the computational loads are balanced.

3 Index-Based Mapping

This mapping is based on converting an n-dimensional coordinate into a one-dimensional

index such that proximity in the multi-dimensional space is usually maintained [37, 39].

Consider a graph in which the set of vertices are arranged in a grid of size 8� 8. Row-major

indexing and shu�ed row-major indexing are two of the several ways of indexing pixels in

a two-dimensional grid (Figure 2). These two indexing schemes are shown in Figure 2 (a)

and Figure 2 (b), respectively. Intuitively, it can be seen that shu�ed row-major indexing

maintains a two-dimensional proximity of indices better than row-major indexing.

3

00 01 02 03 04 05 06 07 00 01 04 05 16 17 20 21

08 09 10 11 12 13 14 15 02 03 06 07 18 19 22 23

16 17 18 19 20 21 22 23 08 09 12 13 24 25 28 29

24 25 26 27 28 29 30 31 10 11 14 15 26 27 30 31

32 33 34 35 36 37 38 39 32 33 36 37 48 49 52 53

40 41 42 43 44 45 46 47 34 35 38 39 50 51 54 55

48 49 50 51 52 53 54 55 40 41 44 45 56 57 60 61

56 57 58 59 60 61 62 63 42 43 46 47 58 59 62 63

(a) (b)

Figure 2: Di�erent indexing schemes for an 8 � 8 image: (a) Row-Major and (b) Shu�ed

Row-Major

We assume that the vertices of the computational graph are embedded in a d-dimensional

space. An algorithm for mapping such a graph using a bit-interleave-based index is given in

Figure 4. The vertices are �rst embedded in a logical grid of size 2l1 � 2l2� 2l3:::� 2ld, which
is done by calculating the bounding hyperplanes along every dimension and decomposing the

space along d, the dimension in 2ld bins. Thus the number of bits required for representing

the bin that a vertex belongs to along the ith dimension is given by li. Each vertex is now

represented by an integer tuple (cord1; cord2; :::cordd). This tuple is transformed into a one-

dimensional index (Figure 3) using the bit-interleaving algorithm given in Figure 5. This

algorithm assumes that l1 � l2 � l3::: � ld and can be easily modi�ed for the general case.

The algorithm chooses bits (right to left) of each of the dimensions one by one, starting from

the dimension with the smallest number of bits. When the bits of a particular dimension

are no longer available, that dimension is not considered.

Example 1: Suppose index1 = 001, index2 = 010, and index3 = 110. The number of

bits in each dimension is equal to 3. The interleaved index is 001011100.

Example 2: Suppose l1 = 3, l2 = 2, and l3 = 1, the indices are listed as index1 = 101,

index2 = 01, and index3 = 0. The interleaved index is 100110.

Bit-interleaving is one of the many transformation functions from an n-dimensional do-

main to a one-dimensional domain such that proximate vertices in the original domain are

generally mapped to proximate vertices in the one-dimensional domain.

Once the index of every vertex is obtained, a sorting algorithm can be used to provide a

nondecreasing ordering of vertices based on their index values. This is followed by dividing

the list into P consecutive sublists of nearly equal size. Each sublist represents one partition.

4

.

.

.
.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

. .

. . .

.
. .

...

.
.

.

..
.

. .

.
.

1

2 3 4

5
6 .7 8

9
10

11
12

13 14
15

16 1817
20

19

0

36 37 48

39 50

5644

(a) (b)

Figure 3: Mapping from a two-dimensional grid to a one-dimensional index

Indexing(index,d,n)

1 for j � 1 to d do

2 unitj � ((maxni=1 xij)� (minni=1 xij))=2
lj

3 for i � 1 to n do

4 for j � 1 to d do

5 cordj � xij=unitj
6 indexi � Interleave(cord,d,l)

Figure 4: Indexing algorithm

f Assume bits represent the number of bits used in each dimension i, and bits1 � bits2 �
bits3 : : : bitsd+1 = 0; index is an array that stores the resulting index.g
Interleave(cord,d,bits)

1 for i � d downto 1 do

2 for j � 1 to bitsi � bitsi+1 do

3 for k � 1 to i do

4 move the rightmost jth bit in cordk into the rightmost bit in index

5 left shift index

6 return index

Figure 5: Interleave

5

Experimental Results

In this section we present the time requirements and the quality of partitioning produced

by the index-based partitioning schemes and compare them to two frequently used graph

partitioning schemes|recursive coordinate bisection and recursive spectral bisection.

Recursive coordinate bisection (RCB) bisects a given graph along the longest dimension

into two subgraphs with approximately equal sizes recursively until the expected number of

subgraphs is achieved [3, 40]. The bisection is based on �nding the median coordinate value

along the dimension to be bisected. The computational time requirement is proportional to

O(N logN).

Recursive spectral bisection (RSB) is derived from a graph bisection strategy based on

the Fiedler vector (the second eigenvector of the Laplacian matrix of the given graph) [2,

36]. The computational complexity for RSB has been empirically observed to be O(N
p
N),

dominated by the Lanczos iterative solver used to �nd the bisecting eigenvector at every

recursive step. Several improvements have been proposed recently to improve on the time

as well as quality of the simple spectral bisection method [2, 18, 19, 20]. One way to reduce

the computational requirements, while maintaining the quality of partitioning, is based on

contracting an original graph to a smaller weighted graph and then applying the eigenvector

solver to the smaller graph. Several stages of contraction can be applied, hence this algorithm

is popularly known as mulitlevel rescursive spectral bisection (MRSB). Since the cost of RSB

is much higher than MRSB and the quality of RSB is worse than MRSB with Kernighan-Lin

re�nement, we present the experimental results of using the MRSB software provided in the

\Chaco" package [21] instead of RSB.

Graph Graph 1 Graph 2 Graph 3 Graph 4 Graph 5

jV j 6019 9428 10166 15606 53961

jEj 17473 59863 30471 45878 353476

Figure 6: Experimental graphs

We applied all the above partitioning schemes to several graphs on a 40-MHz SUN4 with

60 MB memory. Results for �ve representative graphs in Figure 6 on a SUN4 workstation

are presented in Figure 7 and Figure 8. The time required for index-based partitioning is

independent of the number of partitions. For large graphs as well as number of partitions,

the time requirements are comparable to RCB and one to two orders of magnitude better

than MRSB. The quality of partitioning produced by the index-based mapping strategy is

comparable to coordinate bisection, but worse than spectral methods. We will show in the

next two sections that this mapping procedure is simple to parallelize and incremental in

nature. This, along with its low computational requirements, makes it suitable for a number

of adaptive and irregular data-parallel applications.

6

Partitions Partitioner Graph 1 Graph 2 Graph 3 Graph 4 Graph 5

IBP 620 4998 837 1115 15559

4 RCB 533 4789 433 785 15206

MRSB 312 2934 366 370 9120

IBP 1187 7731 1360 1866 24685

8 RCB 942 7799 837 1350 21005

MRSB 477 4602 668 699 14983

IBP 1601 10828 2057 2703 34830

16 RCB 1562 15148 1449 2254 31753

MRSB 721 6784 1119 1161 22681

IBP 2184 14309 2942 3602 47285

32 RCB 2117 22067 2164 3301 57655

MRSB 1127 9711 1611 1885 31801

IBP 3045 19074 4372 5033 64787

64 RCB 2902 27139 3251 4502 77313

MRSB 1838 13269 2451 3024 44526

Figure 7: Quality (in terms of cross edges obtained) of IBP, RCB, and MRSB on di�erent

graphs

Partitions Partitioner Graph 1 Graph 2 Graph 3 Graph 4 Graph 5

IBP .089 .159 .169 .249 1.009

4 RCB .116 .183 .199 .316 1.033

MRSB 3.369 8.149 5.369 7.049 48.35

IBP .089 .159 .169 .249 1.009

8 RCB .166 .249 .266 .416 1.483

MRSB 5.319 13.09 10.97 12.18 69.81

IBP .089 .159 .169 .249 1.009

16 RCB .199 .316 .349 .516 1.899

MRSB 8.479 17.06 20.08 19.96 93.31

IBP .089 .159 .169 .249 1.009

32 RCB .249 .399 .433 .649 2.333

MRSB 14.40 26.76 30.73 30.31 120.35

IBP .089 .159 .169 .249 1.009

64 RCB .299 .483 .499 .783 2.733

MRSB 23.48 33.23 50.67 50.09 155.61

Figure 8: Execution time in seconds for IBP, RCB, and MRSB on a SUN4

7

4 Parallelization

We model a coarse-grained parallel machine as follows. A coarse-grained machine consists

of several processors connected by an interconnection network. Rather than make speci�c

assumptions about the underlying network, we assume a two-level model of computation.

The two-level model assumes a �xed cost for an o�-processor access independent of the

distance between the communicating processors. A unit computation local to a processor

has a cost of �. Communication between processors has a start-up overhead of � , while the

data transfer rate is 1
�
. For our complexity analysis we assume that � and � are constant

and independent of the link congestion and distance between two processors. With new

techniques, such as wormhole routing and randomized routing, the distance between com-

municating processors seems to be less of a determining factor on the amount of time needed

to complete the communication. This permits us to use the two-level model and view the

underlying interconnection network as a virtual crossbar network connecting the processors.

These assumptions closely model the behavior of the CM-5 on which our experimental results

are presented. Although our algorithms are analyzed under these assumptions, most of them

are architecture-independent and can be e�ciently implemented on meshes and hypercubes.

For the rest of the paper, let Aj represent an element A stored in processor j. Hence

Aj[i] represents the ith element of an array belonging to the jth processor. We will drop the

subscript j whenever it is obvious from the context.

In the following we describe some important primitives used to develop our parallel

algorithms.

1. Sending a Message

Assuming no vertex contention, the time taken to send a message from one processor

to another is modeled as O(� + �m), where m is the size of the message.

2. Global Reduction

Assume that each processor contains Vi. A global reduction computes an associative

and commutative operation to produce a result R. The resultant R is stored in all the

processors. This operation can be completed in � log p. Special hardware is available

on the CM-5 for performing this operation with a very small value of � [5].

3. Global Concatenation

Assume that each processor has n=p elements, where p is the number of processors.

Each processor contains a vector Vi[0 � � � np � 1]. The global concatenate operation

performs a concatenation of the local vector in each of the processors. The resultant

vector R[0 � � � n � 1] is stored in all the processors. Assuming that n is larger than p,

this operation can be completed in O(� log p+�1n) time. Special hardware is available

on the CM-5 for performing this operation with a small value of �1 [5].

4. Complete Exchange

The complete exchange primitive performs all-to-all personalized communication with

8

equal-sized messages. Assuming that t is the total length of all the messages sent out

and received at every processor, a complete exchange can be performed in time p�+�t.

5. Transportation Primitive

The transportation primitive performsmany-to-manypersonalized communication with

possibly high variance in message size. If the total length of the messages being sent

out or received at any processor is bounded by t, the time taken for the communication

is 2�t (+ lower order terms) when t � O(p2 + p�=�). If the outgoing and incoming

tra�c bounds are r and c instead, the communication takes time 2�(r + c) (+ lower

order terms) when either r � O(p2 + p�=�) or c � O(p2 + p�=�) [34].

6. Order-Maintaining Load Balance

Assume that processor i contains a sorted array Vi[0 � � �Xi � 1]. (0 � i < p), where p

is the number of processors. Further, a concatenation of all these arrays in ascending

order of the processor number is also sorted. We would like to balance the load on

each processor such that the global ordering of elements does not change.

The load-balancing algorithm which maintains the sorted order is given in Figure 9.

Steps 2 and 3 calculate the pre�x sum and the average number of elements. For ease

of presentation we will assume X to be an integer. Let

� pre�x sum Yk =
Pk�1

i=0 Xi for k = 1; : : : ; n� 1, and Y0 = 0;

� average number of elements X = 1
n

Pn�1
i=0 Xi. For ease of presentation we assume

that X is an integer.

Let Gk[i] represent Vk[i]
0s corresponding global index, Gk[i] = Yk + i; 0 � i � Xk � 1.

In Step 4 data elements are sent to appropriate destinations. Let packetki contain data

elements that should be moved from processor Pk to Pi. Let lb
k
i = maxfiX; Ykg and

ubki = minf(i + 1)X � 1; Yk + Xk � 1g, then if lbki > ubki ; packet
k
i = �, otherwise

packetki = fVk[j] j G�1
k [lbki] � j � G�1

k [ubki]g, where G�1
k [i] = i�Yk. The boundaries of

these packets can be determined easily by calculating the leftmost processor to which

data must be sent (by using a binary search for Gk[0] on Z[0::p� 1] on processor k).

Since all the data has to be sent to consecutive processors, deriving this for the rest of

the processors can be achieved easily.

The complexity of this algorithm depends on the maximum amount of data to be

sent/received from any processor and the underlying communication network. As-

suming that the minimum number of elements on any processor is more than X

K
and

the maximum number of elements on any processor is less than XK, it can easily be

shown that the maximum number of number of messages to be sent by each processor

is less than or equal to K, and the maximum number of messages to be received by

any processor is less than or equal to K + 1. Thus, assuming near load balance, i.e.,

K � 2, each processor will send and receive a few messages and this operation can be

completed in O(� + � �X).

9

For processor Pi, 0 � i < p, in parallel do

1 Z[0::p� 1] = Concatenate(Xi)

2 Y [k] =
Pk�1

j=0 Z[j] for k = 1; 2; :::; p� 1, Y0 = 0

3 X =

Pk�1

j=0
Z[j]

p

/* Processor Pk owns data from Y [k] to Y [k + 1]� 1 */

/* After load balance it should have kX to (k + 1)X */

4 Divide the local list into packets and send them to processors from left to right.

5 Receive messages and store them in the appropriate positions in the local array.

Figure 9: Order-Maintaining Load Balance Algorithm.

4.1 Parallel Mapping Algorithm

In this section we describe the parallelization of the mapping algorithm given in the pre-

vious section. We assume that vertices of the graph are equally distributed among all the

processors. The �rst step is to compute the indices for all the vertices in the graph and is

simple to parallelize. The algorithm is described in Figure 10. Step 1 �nds the the local

maximum and minimum values. Since the vertices of the graph are equally distributed, this

takes the same amount of time. Step 2 �nds the global maximum and minimum values in

each dimension to form the indices for all vertices, which is the only communication among

all processors. The interleave operation (described earlier) in step 4 assigns an index value

to each vertex.

Using a sample sort the vertices are then sorted based on their index values. The algo-

rithm (Figure 11) is similar to the randomized sorting algorithms described in [4, 35]. The

subroutine Random choose randomly chooses f�n (0 < f � 1) index values from vertices

and stores the values in a temporary array, CHOOSE. The distribution of the indices in

this sample represents with high probability the distribution of the overall set. One can �nd

this sample assuming probabilistic techniques as described in [4]. For the speci�c application

in this paper, the integers correspond to vertices in a physical domain. A potentially smaller

fraction is a good representative of the whole mesh (a sample size of 600 vertices for two

dimensions, and 1000 vertices are enough for three dimensions for the geometric sampling-

based scheme given in [25]). Figure 12 represents the sequence of the input vertices of the

graph and the corresponding hash values for 4 processors (each processor has 4 vertices).

Figure 13 gives the randomly chosen vertices for the example in Figure 12.

This sample is sorted using a deterministic parallel algorithm (parallel merge sort) and is

equally divided among the processors in an ascending fashion (in the order of the processor

numbers) (Figure 13). We de�ne the boundary points of a particular processor to be the

minimumand the maximumindices that are parts of a particular processor. Boundary points

given by partitioning (based on the one-dimensional index) of the small sample is used as an

10

fprocessor i owns ni vertices where ni � N
P
.g

for each processor i do in parallel

Parallel Indexing(hashi; d; ni)

1 for j � 1 to d do

maxi[j] := maxnik=1 xk[j]

mini[j] := minnik=1 xk[j]

2 for j � 1 to d do

MAX[j] := GLOBAL maxdi=1maxi[j]

MIN [j] := GLOBAL mindi=1mini[j]

3 for j � 1 to d do

unit[j] := (MAX[j]�MIN [j])=2l

4 for k � 1 to ni do

for j � 1 to d do

indexi[j] :=
xk[j]

unit[k]

for j � 1 to d do

hashi[k] := Interleave(indexi[j]; d; l)

Figure 10: Parallel Indexing Algorithm

for each processor i do in parallel

1 Parallel indexing(hash,d,ni)

2 choosei[1::fni] := Random choose(hashi; ni)

3 CHOOSE[1::fN] := Parallel merge sort(choosei[k]; fni)

4 C BOUND[0::P] := Find boundary(fN;P)

5 for k � 1 to ni do

proc := Binary search(hashi[k]; C BOUND)

Add hashi[k] to send list[proc]

6 All-to-Many communication using send list and store in receive listi of size nri
7 Sort(nri; receive listi; permi)

8 R BOUND[0::P] := Find boundary(N;P)

9 Perform a Order Maintaining Load Balance on receive listi

Figure 11: Parallel Mapping Algorithm

0 3 7 19 12 11 15 26 37 36 48 48 39 50 56 44 42 56 61 58

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

index

Figure 12: One-dimensional indices

11

7 19 11 36 50 56 42 58

7 11 19 36 42 50 56 58

CHOOSE

CHOOSE

Unsorted

Sorted

Figure 13: Sorted list of randomly chosen indices

0 3 7 26 56

1 2 3 8 18

11 36

9

37

10

56

156

partition 1

19

4

15

75

12

partition 2

48

11

48

12

39

13 14

50

16

44

17

42 61 58

2019

partition 4partition 3

index

Figure 14: Move vertices according to the index values of coarse boundaries

approximation to the partitioning points (for P partitions) for all data items. For example,

in Figure 14, we have CHOOSE[C BOUND[1]] = 11, CHOOSE[C BOUND[2]] = 36,

CHOOSE[C BOUND[3]] = 50, CHOOSE[C BOUND[4]] = 58.

This information is used to shu�e the data items into P processors. A local sort is

performed on the local vertices. This is followed by an Order-Maintaining Load Balance to

ensure each processor has equal number of vertices. Figure 15 illustrates the �nal positions

of di�erent vertices and corresponding partitions.

Analysis

Parallel indexing requires O(dN
P
) time to assign index values to all vertices, and 2d global

reduction operations to �nd the maximum and minimum values in each dimension. Ran-

dom choose takes f�N

P
to choose vertices randomly. The complexity of the sorting algo-

rithm used in Step 3 (Figure 11) can be given by

O(
fN

P
log

fN

P
+ log2

fN

P
(� +

�fN

P
+
fN

P
));

where f represents the fraction of elements chosen by Step 2, the �rst term corresponds

to a local sort, and the second term corresponds to the merging phase. Step 5 requires

O(N
P
log N

P
) amount of time. Let R represent the maximum number of indices received by

any processor. The complexity of Step 6 is given by O(�P + �R), and the complexity of

0 3 7 12 26 50 56

1 2 3 5 8 14 18

11

6

15

7

19

4

36

9

37

10

39

13

42

17

44

16

56

15

48

11

48

12

58

1920

61

partition 2 partition 3partition 1 partition 4

index

Figure 15: Sort the vertices in each coarse partition and set the re�ning boundaries

12

Step 7 is given by O(R logR). It has been shown that the value of R is N

P
(1 + ") if f is

chosen properly (f is a function of ") [4]. Further, the value of f required for the fraction

value of " (" < 0:05) is reasonably small for large values of N . Under such conditions the

time required for Step 7 would be bounded by O(N logN

P
).

Assuming that each processor needs to send vertices only to the left or the right, the

time complexity of Step 9 can be given by O(� + �N

P
). In the worst case it may require the

use of the Transportation Primitive and is bounded by O(�P + �R).

Experimental Results

64K 128K 192K 256K 320K
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0
Parallel Time

4-node
8-node
16-node
32-node

Figure 16: Timing for parallel mapping algorithm on 4, 8, 16, and 32 processors

To study the cost of parallelization for di�erent values of N , the coordinate data was gen-

erated randomly. The algorithm was implemented in the C language with the CMMD

communication library and conducted on the 32-node CM-5 available at NPAC at Syracuse

University. The time shown is the median of 11 executions of the same data set. The time

represents the "busy time" given by the CMMD library calls.

The computational requirements for di�erent phases of the algorithm for Graph 4 (15606

vertices on 32 nodes) are presented in steps given in Figure 17. This demonstrates the tradeo�

between the time spent on sorting the sample and the time spent in the local sort. Larger

samples imply more time spent on the sample sort and less time spent on the local sorting,

as the maximum number of items on a given processor is close to the average number of

items (N
P
). Choosing the optimal fraction would in general depend on this tradeo�. However,

choosing the optimal fraction does not seem to be very important. Choosing a non-optimal

fraction (close to the optimal) does not a�ect the total time by more than 10%.

Figure 18 gives the execution time for Graph 1, Graph 3, and Graph 4 for a 1-node

CM-5. The time for di�erent number of processors (and corresponding number of parti-

13

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

T
i
m
e

fraction (f)

Indexing
Sampling Sort

Local Sort
Communication

Total Execution

Figure 17: Partitioning times for a j V j= 15606 graph into 32 partitions on the CM-5 for

di�erent values of fraction f

14

tions) are given in Figure 19. Even for these small graphs a speedup of up to 9 is achieved

on a 32-node CM-5. The time is dominated by the communication phase (Step 6 in Fig-

ure 11) of the sorting algorithm. It corresponds to 41%, 34%, and 30% of the total time

for Graph 1, Graph 3, and Graph 4 for 32 partritions on 32-node CM-5, respectively. Since

every processor communicates with every other processor, a major portion of this time is

the setup overhead for small data sets. This communication time corresponds to moving the

vertices to the appropriate destination. This is the minimum time required for remapping all

the vertices based on the index-based partitioning. As the data size increases this fraction

reduces signi�cantly. Figure 19 also gives the parallel execution time for the RSB-based par-

titioner [22] (available in the CMSSL library) on the CM-5. The time is provided for cases

when only scalar units were used as well as when vector units were used.1 The performance

of IBP-based methods (when uses the SPARC chip only) is about two to three orders of

magnitudes faster than RSB-implemented which in the CMSSL library, depending on the

size of the graph, when vector units are not used. Even when vector units are used, the

performance is approximately two magnitudes better.

Graph 1 Graph 3 Graph 4

.276 .611 .880

Figure 18: Sequential execution time in seconds for IBP on 1-node CM-5

Partitioner 4-node 8-node 16-node 32-node

IBP .151 .094 .068 .051

Graph 1 RSB 10.08 13.084 15.31 17.38

RSB/VU 4.284 5.524 6.396 7.218

IBP .254 .159 .103 .069

Graph 3 RSB 14.00 22.20 28.39 33.95

RSB/VU 5.563 9.076 10.96 13.41

IBP .356 .211 .121 .096

Graph 4 RSB 27.40 40.57 50.96 63.61

RSB/VU 7.860 11.98 15.22 18.08

Figure 19: Parallel execution time in seconds for IBP, and RSB in CMSSL on CM-5

1The CMSSL functions are called using CM Fortran. The input graphs have to be provided in a di�erent

format (in terms of �nite elements). The number of �nite elements for Graph 1, Graph 3, and Graph 4 are

11451, 20232, and 30269, respectively.

15

4.2 Remapping Algorithm

For many applications, such as adaptive meshes, new vertices are added to the computational

graph. This is typically done in a localized area to study the numerical behavior more

precisely. These re�nements are based on the solution of the previous phase and are available

only at runtime. During a typical simulation, vertices may be added in a particular portion,

only to be removed after a few phases. The following discussion is limited to the case when

vertices are added to the computational graph. Deletion of vertices can be done similarly.

Remapping requires calculating the shu�ed row-major indices of the new vertices, which

must be combined with the indices of the previous phase. Since the previous mapping is

available, this corresponds to adding an unsorted list of integers (corresponding to the indices

of the new vertices that are added) to a sorted list (corresponding to the indices of the old

vertices). Let A represent a sorted list of N integers, and let B represent an unsorted list of

M integers. A simple sequential approach for merging list B into list A is to sort B, followed

by merging the two sorted lists. The complexity of this approach is O(M logM +(M +N)).

For M < O(N

logN
), the complexity is O(N).

A simple parallel algorithm (Figure 20) can be used for solving this problem under the

assumptionM � N . It assumes that list A is already sorted and distributed equally among

all the processors, which corresponds to the partitioning of the previous phase. The new

vertices added/deleted in the new phase are assumed to be equally distributed among all the

processors for the merging algorithm. However, this is not going to be the case in general. In

fact, for most practical cases the incremental vertices are added in localized portions, which

would typically correspond to all the new elements belonging to a few processors. In such

cases a simple load-balancing scheme can be e�ectively applied [31]. In most cases the cost

of this load-balancing scheme is nominal compared to the cost of merging for most cases.

Analysis

The analysis provided in this section corresponds to the near worst-case scenario for this

algorithm. An average case is hard to de�ne and depends on the application to be solved.

The worst-case scenario for this algorithm corresponds to one processor receiving all the

merging elements from all the processors. Step 2 takes N
P
logP amount of time. The time

taken for Step 3 depends on the number of packets generated and the size of the packets.

The all-to-many communication algorithm has been described in Section 3; the worst-case

total cost of Step 3 is O(p� + �M). Steps 4 and 5 take O(mi logmi +
N

P
+mi) amount of

time where mi is the number of elements to be inserted. For the worst-case scenario this

corresponds to O(M logM+ N

P
), thus the total cost of Steps 1 through Step 5 is O(M

P
logP +

�P+�M+M logM+ N

P
). When N andM are large compared to P , and whenM logM < N

P

(the incremental data is much less than the data on one processor), Step 6 will be reduced

to shifting to either the left or the right neighbors and can be completed in O(� +�
) where

 is the maximum amount of data sent/received by any processor.

16

f Sorted array A is distributed using block distribution

Unsorted array B is distributed using block distribution

Bound[i] is the largest key of A stored in processor ig
For each processor i do in parallel

Step 1 : For k � 0 to p� 1 do

send list[k] := nil

Step 2 : For k � 1 to mi do

proc := Binary search(Bi[k]; Bound)

Add Bi[k] to send list[proc]

Step 3 : All-to-Many communication using send list

Step 4 : Sort all Bi the elements received in Step 3 and call it Ci

Step 5 : Merge list Ai and Ci

Step 6 : Perform Order-Maintaining Load Balance on A

Figure 20: Simple Merging Algorithm

Experimental Results

We generated two sets of data for performing our experiments.

� Data Set 1: Each processor generated a random number (uniform distribution) of

elements such that the index values were within the boundaries of each processor.

This represents the near best case for the algorithm and corresponds to the case when

all processors generate approximate equal number of mesh elements.

� Data Set 2: One processor generated all the elements (M) such that the elements will

reside within the boundaries of each processor. This case is followed by a load-balancing

step in which data was distributed to all processors equally (M
P
), which represents the

worst case for the algorithm, as all the data would be sent to one processor.

Experiments were conducted for variable fractions of additional vertices as well as number of

vertices. In the following we discuss only representative examples. The results in Figure 21

show the time requirements for Data Set 1 when 10% additional vertices were added. The

results show that for large addition the algorithm parallelizes very well. The cost on 32

processors for 10% additional vertices (Figure 21) is approximately 0.31 seconds for 320,000

vertices. The corresponding time for mapping 320,000 vertices from scratch on 32 processors

is 1.34 seconds. This shows that the incremental algorithm can be used to reduce signi�cantly

the time for repartitioning.

For Data Set 2, the algorithm does not parallelize very well with the number of processors

unless the fraction is small (less than 1%) and the number of vertices is large (greater than

10,000). This is because all the messages are received by one processor. Further, all the data

17

is sorted on one processor in Step 4 of the remapping algorithm. Figures 22 and 23 give the

timing for Data Set 2 when the number of additional vertices are 1% and 5%, respectively.

64K 128K 192K 256K 320K
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
Parallel Time

4-node
8-node
16-node
32-node

Figure 21: Time for 10% additional vertices on 4, 8, 16, 32 processors (Data Set 1)

5 Conclusions

In this paper we proposed a simple index-based mapping algorithm for mapping computa-

tional graphs. We have shown that these methods can

1. provide good solutions with a relatively low cost,

2. be parallelized, and

3. can potentially be used for problems that are incremental in nature.

The above properties should cause these algorithms to be of great importance in the paral-

lelization of applications for which the computational structure changes frequently and/or

incrementally.

The performance of the incremental mapping algorithm depends on the type of data gen-

erated. There is a big gap between the performance of our algorithm for di�erent types of

data sets. We have recently developed several algorithms for improving the worst-case per-

formance of the merging algorithm [27]. We have also investigated the remapping of adaptive

applications in which the vertices of the computational graph move re
ecting perturbations

in the physical domain [27].

18

64K 128K 192K 256K 320K
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
Parallel Time

4-node
8-node
16-node
32-node

Figure 22: Time for 1% additional vertices on 4, 8, 16, 32 processors (Data Set 2)

64K 128K 192K 256K 320K
0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7
Parallel Time

4-node
8-node
16-node
32-node

Figure 23: Time for 5% additional vertices on 4, 8, 16, 32 processors (Data Set 2)

19

Acknowledgments

The authors would like to thank Horst Simon for providing the meshes and the Recursive

Spectral Bisection software. We would like to thank Bruce Hendrickson and Robert Leland

at Sandia National Laboratories for the \Chaco" graph-partitioning software. We would like

to thank Elaine Weinman for editing this paper.

This work was supported in part by NSF under CCR-9110812, NSF under ASC-9213821,

and ARPA under contract #DABT63-91-C-0028, and NAG-1485. The contents do not

necessarily re
ect the position or the policy of the United States government and no o�cial

endorsement should be inferred.

References

[1] I. Angus, G. Fox, J. Kim, and D. Walker. Solving Problems on Concurrent Processors,

vol. 2. Prentice Hall, Englewood Cli�s, NJ, 1990.

[2] S. Barnard and H. Simon. A Fast Multilevel Implementation of Recursive Spectral Bisec-

tion for Partitioning Unstructured Problems. Proceedings of the 6th SIAM Conference,

pp. 711{718, 1993.

[3] M. Berger and S. Bokhari. A Partitioning Strategy for Nonuniform Problems on Mul-

tiprocessors. IEEE Trans., 36:570{580, May 1987.

[4] M. Bolorforoush, N. Coleman, D. Quammen, and P. Wang. A Parallel Randomized

Sorting Algorithm. Proceedings of the International Conference on Parallel Processing,

vol. 3, pp. 293{296, 1992.

[5] Z. Bozkus, S. Ranka, and G. Fox. Benchmarking the CM-5 Multicomputer. Proceedings

of the Frontiers of Massively Parallel Computation, 1992.

[6] B. Brooks, R. Bruccoleri, B. Olafson, D.J. States, S. Swaminathan, and M. Karplus. A

Program for Macromolecular Energy, Minimization, and Dynamics Calculations. Jour-

nal of Computational Chemistry, 4:187, 1983.

[7] A. Choudhary, G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, S. Ranka, and J. Saltz.

Software Support for Irregular and Loosely Synchronous Problems. Proceedings of the

Conference on High Performance Computing for Flight Vehicles, 1992.

[8] A. Choudhary, G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, S. Ranka, and C. Tseng.

Compiling Fortran 77D and 90D for MIMD Distributed-Memory Machines. Proceedings

of the Frontiers of Massively Parallel Computation, 1992.

[9] P. Coddington and C. Baillie. Cluster Algorithms for Spin Models on MIMD Parallel

Computers. Proceedings of the 5th Distributed Memory Computing Conference, pp.

384{388, Charleston, SC, April 1990.

20

[10] N. Copty, S. Ranka, G. Fox, and R. Shankar. SIMD and MIMD region growing algo-

rithms on the CM-5. International Conference on Parallel Processing, 1994.

[11] F. Ercal. Heuristic Approaches to Task Allocation for Parallel Computing. Ph.D. thesis,

Ohio State University, 1988.

[12] G. Fox. Graphical Approach to Load Balancing and Sparse Matrix Vector Multiplication

on the Hypercube, 1988. Ed. M. Schultz, Springer-Verlag, Berlin.

[13] G. Fox. The Architecture of Problems and Portable Parallel Software Systems. Technical

report, Syracuse University, July 1991.

[14] G. Fox and W. Furmanski. Load Balancing Loosely Synchronous Problems with a

Neural Network, 1988.

[15] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving Problems

on Concurrent Processors, vol. 1. Prentice Hall, Englewood Cli�s, NJ, 1988.

[16] M. Garey and D. Johnson. Computers and Intractability, pp. 209{210, Freeman, New

York, 1979.

[17] J. Gilbert, G. Miller, and S. Teng. A Geometric Approach to Mesh Partitioning: Im-

plementation and Experiments. Technical report, Xerox Palo Alto Research Center,

1992.

[18] B. Hendrickson and R. Leland. A Multilevel Algorithm for Partitioning Graphs. Tech-

nical report, Sandia National Laboratories, Albuquerque, NM 87185, 1993.

[19] B. Hendrickson and R. Leland. An Improved Spectral Load Balancing Method. Pro-

ceedings of 6th SIAM Conference, pp. 953{961, 1993.

[20] B. Hendrickson and R. Leland. Multidimensional Spectral Load Balancing. Technical

report, Sandia National Laboratories, Albuquerque, NM 87185, 1993.

[21] B. Hendrickson and R. Leland. The Chaco User's Guide, Version 1.0. Technical report,

Sandia National Laboratories, October 1993.

[22] Z. Johan, K. Mathur, S. Johnsson, and T. Hughes. An e�cient communication strategy

for �nite element methods on c the Connection Machine CM-5 system. Technical report

, TMC.

[23] H. Maini, K. Mehrotra, C. Mohan, and S. Ranka. Genetic Algorithms for Graph Parti-

tioning and IncrementalGraph Partitioning. Proceedings of Supercomputing '94, Novem-

ber 1994.

[24] N. Mansour. Physical Optimization Algorithms for Mapping Data to Distributed-

Memory Multiprocessors. Ph.D. thesis, Syracuse University, NY, 1993.

21

[25] G. Miller, S. Teng, W. Thurston, and S. Vavasis. Automatic Mesh Partitioning. Pro-

ceedings of the 1992 Workshop on Sparse Matrix Computations: Graph Theory Issues

and Algorithms, Institute for Mathematics and its Applications, 1992.

[26] B. Nour-Omid, A. Raefsky, and G. Lyzenga. Solving Finite Element Equations on

Current Computers. Parallel Computations and Their Impact on Mechanics, pp. 209{

227, 1986.

[27] C. Ou and S. Ranka. Parallel Remapping Algorithms for Adaptive Problems. Frontiers

'95, pp. 367{374, 1995.

[28] C. Ou, S. Ranka, and G. Fox. Fast Mapping and Remapping Algorithm for Irregular

and Adaptive Problems. Proceedings of the 1993 International Conference on Parallel

and Distributed Systems, pp. 279{283, Taipei, Taiwan, December 1993.

[29] A. Pothen, H. Simon, and K. Liou. Partitioning Sparse Matrices with Eigenvectors of

Graphs. SIAM Journal of Matrix Analysis and Application, 11:430{352, July 1990.

[30] J. Quirk. An Adaptive Grid Algorithm for Computational Shock Hydrodynamics. Ph.D.

thesis, Cran�eld Institute of Technology, United Kingdom, 1991.

[31] S. Ranka, Y. Won, and S. Sahni. Programming a Hypercube Multicomputer. IEEE

Software, pp. 69{77, September 1988.

[32] R. Shankar and S. Ranka. Hypercube algorithms for quadtree operations. Journal of

Pattern Recognition, pp. 741{747, September 1992.

[33] R. Shankar and S. Ranka. Computer Vision Algorithms for Sparse images. Journal of

Pattern Recognition, 26:1511{1519, October 1993.

[34] R. Shankar, S. Ranka, and K. Alsabti. Many-to-Many Personalized Communication

with Bounded Tra�c. Frontiers '95, pp. 20{27, 1995.

[35] H. Shi and J. Schae�er. Parallel Sorting by Regular Sampling. Journal of Parallel and

Distributed Computing, 14:361{372, 1992.

[36] H. Simon. Partitioning of Unstructured Mesh Problems for Parallel Processing. Pro-

ceedings of the Conference on Parallel Methods on Large Scale Structural Analysis and

Physics Applications. Permagon Press, 1991.

[37] C. Thompson and H. Kung. Sorting on a mesh-connected parallel computer. Comm.

ACM, 20:263{271, 1977.

[38] G. Warren, W. Anderson, J. Thomas, and T. Roberts. Grid Convergence for Adaptive

Methods. Proceedings of the AIAA 10th Computational Fluid Dynamics Conference,

page 1591, June 1991.

22

[39] M. Warren and J. Salmon. Astrophysical N-body Simulations Using Hierarchical Tree

Data Structure. Proceedings Supercomputing '92, Minneapolis, November 1992.

[40] R. Williams. DIME: Distributed Irregular Mesh Enviroment. California Institute of

Technology, February 1990.

[41] R. Williams. Performance of Dynamic Load-Balancing Algorithm for Unstructured

Mesh Calculations. Concurrency, 3:457{481, 1991.

23

Appendix A: Computational Graphs

Four of the Five Graphs used for our experiments (Graph 5 is similar to Graph 2 but with

larger number of nodes and edges)

Graph 1

Graph 3

Graph 2

Graph 4

24

