
COMPILING FORTRAN 90D/HPF

FOR DISTRIBUTED MEMORY MIMD COMPUTERS

by

ZEKI BOZKUS

B.S., Middle East Technical University, 1988

M.S., Syracuse University University, 1990

DISSERTATION

Submitted in partial ful�llment of the requirements for the

degree of Doctor of Philosophy in Computer Engineering

in the Graduate School of Syracuse University

June 1995

Approved

Professor Geo�rey C. Fox

Date

c
 Copyright 1995 Zeki Bozkus

All rights reserved

Abstract

Distributed memory multiprocessors are increasingly being used to provide high

performance for advanced calculations with scienti�c applications. Distributed mem-

ory machines o�er signi�cant advantages over their shared memory counterparts in

terms of cost and scalability, though it is widely accepted that they are di�cult to

program given the current status of software technology. Currently, distributed mem-

ory machines are programmed using a node language and a message passing library.

This process is tedious and error prone because the user must perform the task of

data distribution and communication for non-local data access.

This thesis describes an advanced compiler that can generate e�cient parallel pro-

grams when the source programming language naturally represents an application's

parallelism. Fortran 90D/HPF described in this thesis is such a language. Using

Fortran 90D/HPF, parallelism is represented with parallel constructs, such as array

operations, where statements, forall statements, and intrinsic functions. The lan-

guage provides directives for data distribution. Fortran 90D/HPF gives the program-

mer powerful tools to express a problem with natural data parallelism. To validate

this hypothesis, a prototype of Fortran 90D/HPF was implemented. The compiler

is organized around several major units: language parsing, partitioning data and

computation, detecting communication and generating code.

The compiler recognizes the presence of communication patterns in the computa-

tions in order to generate appropriate communication calls. Speci�cally, this involves

a number of tests on the relationships among subscripts of various arrays in a state-

ment. The compiler includes a specially designed algorithm to detect communications

and to generate appropriate collective communication calls to execute array assign-

ments and forall statements.

The Fortran 90D/HPF compiler performs several types of communication and

computation optimizations to improve the performance of the generated code.

Empirical measurements show that the performance of the output of the Fortran

90D/HPF compiler is comparable to that of corresponding hand-written codes on

several systems.

We hope that this thesis assists in the widespread adoption of parallel comput-

ing technology and leads to a more attractive and powerful software development

environment to support application parallelism that many users need.

Acknowledgments

I thank my advisor Geo�rey Fox for providing intellectual stimulus, encouragement

and comments on my work during my graduate program at Syracuse University and

for the long hours of fruitful discussion. His advice and suggestions form an integral

part of this thesis. It has been a pleasure to have known and worked with Geo�rey

Fox.

I would like to thank Alok Choudhary for the signi�cant role he has played in

shaping my career and intellectual growth. I am also grateful to him for taking a

signi�cant time to help me write various papers. Thanks also to Tomasz Haupt and

Sanjay Ranka. Tomasz has been a great source of encouragement and support over

the past few years. I thank Sanjay helping me with my �rst publication.

I would like to thank Alok Choudhary, Tomasz Haupt, Sanjay Ranka Simon Cat-

terall and Kenneth Hawick for serving on my dissertation committee and for their

many useful comments and suggestions. I thank Min-You Wu for his knowledge of

parallel compiler design and his assistance that has had a great in
uence on this work.

I would like to thank my colleagues Larry Meadows, Seteve Nakamoto, Mark Young

and Vincent Schuster at The Portland Group, Inc. (PGI) Their invaluable comments

helped me to improve the quality of this presentation. Special thanks to Mark Young

for helping me to adapt PGI.

I am grateful to Parasoft for providing the Fortran 90 parser and Express without

which the prototype compiler could have been delayed.

I want to thank Tomasz Haupt and Tom Van Raalte for careful reading of a draft.

Hakan Ancin, Mehmet Gulsen, Selim Akyokus, Kivanc Dincer, Ersel Anar and

v

Kubilay Cardakli have provided me with friendship and support. Thanks to you all.

Special thanks to Omur Ozavci for the love and support.

Finally, I wish to acknowledge my father Mehmet and my mother Emine. Their

love, encouragement, patience, and support have made possible my accomplishments

and successes.

vi

Contents

Acknowledgments v

List of Tables xi

List of Figures xii

1 Introduction 1

1.1 Background : 2

1.2 Hypothesis : 4

1.3 Contributions : 4

1.4 Overview : 6

1.5 Summary of Related Work : 7

2 Fortran 90D/HPF Language 13

2.1 Introduction : 13

2.2 Data Distribution : 14

2.2.1 Decomposition directives : 15

2.2.2 Alignment directives : 15

2.2.3 Distribution directives : 17

2.3 Data Parallelism in Fortran 90D/HPF : : : : : : : : : : : : : : : : : 18

2.4 Intrinsic Functions : 21

2.4.1 Array Reduction Functions : 22

2.4.2 Array Construction Function : : : : : : : : : : : : : : : : : : 22

vii

2.4.3 Array Manipulation Function : : : : : : : : : : : : : : : : : : 22

2.4.4 Array Location Functions : 23

2.5 Discussion : 23

3 Architecture of the Compiler 24

3.1 The Front-End : 24

3.2 Analysis of Distribution Directives : : : : : : : : : : : : : : : : : : : 26

3.3 Internal Forall Transformations : 27

3.4 Communication Analysis : 28

3.5 Sequentialization : 29

3.6 Building Array Descriptors : 30

3.7 Code Generation : 31

3.7.1 Array Assignment Parallelism : : : : : : : : : : : : : : : : : : 31

3.7.2 Where Statement Parallelism : : : : : : : : : : : : : : : : : : 33

3.7.3 Forall Statement Parallelism : : : : : : : : : : : : : : : : : : : 34

4 Distribution Model 35

4.1 Introduction : 35

4.2 Expressive Power of Directives : 36

4.3 Design Methodology : 38

4.4 Compiling the ALIGN Directive (Stage 1) : : : : : : : : : : : : : : : 39

4.5 Data Distribution (Stage 2) : 45

4.5.1 Distribution functions : 45

4.5.2 Usage of the data distribution functions : : : : : : : : : : : : 46

4.6 Grid Mapping Functions (Stage 3) : 49

5 Communication Model 54

5.1 Computation Partitioning : 55

5.2 Why Use Runtime Collective Communication? : : : : : : : : : : : : : 59

5.3 Communication Primitives : 60

viii

5.4 Communication Detection : 63

5.5 Communication Generation : 67

5.5.1 Structured Communication : 67

5.5.2 Unstructured Communication : : : : : : : : : : : : : : : : : : 69

5.6 Run-time Support System : 75

5.7 Storage Management : 77

6 Optimizations 81

6.1 Single Node Parallelism : 82

6.2 Communication Hierarchy : 82

6.3 Vectorized Communication : 83

6.4 Overlap Shift Communications : 83

6.5 Message Aggregation : 86

6.6 Evaluating Expression : 87

6.7 Communication Parallelization : 88

6.8 Communications Union : 89

6.9 Eliminate Unnecessary Communications : : : : : : : : : : : : : : : : 90

6.10 Reuse of scheduling information : 90

6.11 Code movement : 91

6.12 Forall Dependency : 91

6.13 Forall Loop Interchange : 92

6.14 Forall Mask Insertion : 93

6.15 An Example Program for Optimization : : : : : : : : : : : : : : : : : 94

7 Experimental Results 102

7.1 Test System : 102

7.2 Portability : 103

7.3 Scalibility : 105

7.4 Scalability of Intrinsics : 106

ix

7.5 An Experiment with Distributions : 108

7.6 Hand-written Comparison : 110

8 Conclusions 113

8.1 Compiling Fortran 90D/HPF : 113

8.2 Future Work : 115

8.2.1 Fortran 90D/HPF on Low Latency Systems : : : : : : : : : : 115

8.2.2 InterProcedural Analysis : 118

x

List of Tables

1 Data distribution functions : 46

2 Structured communication detection. : : : : : : : : : : : : : : : : : : 66

3 Unstructured communication detection. : : : : : : : : : : : : : : : : : 66

4 Fortran 90D/HPF Intrinsic Functions : : : : : : : : : : : : : : : : : : 76

5 Performance of Intrinsic Functions (time in milliseconds). : : : : : : : 106

6 Fortran 90D/HPF versus the hand-written code for several applica-

tions. (Intel iPSC/860, time in seconds). : : : : : : : : : : : : : : : : 111

7 Fortran 90D/HPF versus the hand-written code for the �rst 10 Liver-

more loop kernels. Data size is 16K real. (a 16 node Intel iPSC/860,

time is in milliseconds). : 112

xi

List of Figures

1 2-D Block distributions : 19

2 2-D Cyclic distributions : 19

3 2-D Combination distributions : 20

4 The architecture of the Fortran 90D/HPF compiler. : : : : : : : : : 25

5 An example of Fortran 90D/HPF directives. : : : : : : : : : : : : : : 26

6 Internally completed distribution directives. : : : : : : : : : : : : : : 27

7 Transforming array assignment and where into foralls. : : : : : : : : 28

8 Matrix-vector decomposition. : 37

9 Three stage array mapping : 38

10 A Fortran 90D/HPF program fragment. : : : : : : : : : : : : : : : : 41

11 Transforming array index domain to template index domain. : : : : : 42

12 The compiler generated code from Figure 10. : : : : : : : : : : : : : : 44

13 Logical processor topologies : 50

14 The prototype of grid-mapping functions : : : : : : : : : : : : : : : : 52

15 Possible computation distribution. : 56

16 Structured communication on logical grid processors. : : : : : : : : : 70

17 Message Vectorization : 84

18 Sample Overlap Shift Optimization : : : : : : : : : : : : : : : : : : : 85

19 Message Aggregation : 86

20 Expression Evaluation Trees : 88

xii

21 Parallel Communication : 89

22 Fortran 90D/HPF code for GE. : 95

23 Fortran 90D/HPF compiler generated Fortran77+MP code for GE. : 97

24 GE with communication elimination optimization. : : : : : : : : : : : 100

25 Performance of three version of GE. Matrix size is 1023x1024 (time in

seconds). : 101

26 Gaussian Elimination on a 16-node Intel iPSC/860 and nCUBE/2

(time in seconds). : 104

27 Shallow Performance : 107

28 Hyd
o Performance : 107

29 PDE1 Performance : 107

30 Main factorization loop in gauss. : 109

31 Load balancing for gauss : 109

32 Gauss Performance : 110

xiii

Chapter 1

Introduction

Modern distributed memory computers o�er very high levels of
exibility, scalability

and performance but leave the programmer or the algorithm designer with the di�-

cult and detailed task of planning computations, i.e, the orchestration of the entire

parallel execution. The programmer is forced to manually distribute code and data

in addition to explicitly managing communication. These tasks, in addition to being

error-prone and time consuming, generally lead to non-portable code. Hence compiler

technologies for distributed memory machines have received great attention due to

their ease of use and portability.

To overcome the de�ciencies of distributed memory machines, our Syracuse Uni-

versity group, along with colleagues at Rice University have designed the Fortran D

language [1]. Fortran D is a version of Fortran that is enhanced with a rich set of data

decomposition speci�cations providing a simple machine-independent programming

model for most data-parallel computations. Standard Fortran 90 with these exten-

sions is called \Fortran 90D", a Fortran 90 version of the Fortran D language. There

is an analogous version of Fortran 77 with compiler directives and other constructs for

use of parallel system, called Fortran 77D. Recently, the High Performance Fortran

Forum, an informal group of people from academia, industry and national labs, led

by Ken Kennedy, developed a language called HPF (High Performance Fortran) [2]

based on Fortran D. Companies that have already committed to developing compilers

1

CHAPTER 1. INTRODUCTION 2

and/or supporting HPF include Intel SSD, The Portland Group Inc., (PGI), DEC,

IBM, and others. Hence, Fortran 90D and HPF are very similar. For this reason, we

call the Fortran 90D language Fortran 90D/HPF.

1.1 Background

Current commercial parallel supercomputers are clearly the next generation of high

performance machines [3, 4]. Although parallel computers have been commercially

available for some time, their use has been mostly limited to academic and research

institutions. This is mainly due to the lack of software tools available to develop

parallel programs. Writing programs for parallel machines using message passing

model is a complicated, time-consuming, and error-prone task [5]. Karp and Babb [6,

7] selected a simple program and rewrote it to run on nine commercially available

parallel machines. They report being surprised to see how complicated some of these

programs became.

Fortran has been a popular language for developing software for industry for the

past few decades. Accordingly, there has been signi�cant research in developing par-

allelizing compilers for Fortran codes. Most notable examples include Parafrase at the

University of Illinois [8] and PFC at Rice University [9]. In this approach, the com-

piler takes a sequential Fortran 77 program as input, applies a set of transformation

rules, and produces a parallelized code for the target machine. New transformation

rules are added to the compiler as they are learned.

A sequential language, such as Fortran 77, hides a problem parallelism in se-

quential loops and in other sequential constructs. A program is written without any

parallel constructs provided, even if the user is willing to express parallelism explic-

itly. Furthermore, the user may optimize the program to reduce memory usage and

computation time. This makes the potential parallelism more di�cult to detect.

Therefore, compiling a sequential program into a parallel program is not a natural

approach. An alternative approach is to use a source programming language that

CHAPTER 1. INTRODUCTION 3

can naturally represent an application using parallel constructs. Fortran 90 (with

some extensions) is such a language. The extensions may include the forall statement

and compiler directives for data partitioning, such as decomposition, alignment, and

distribution.

From our point of view, Fortran 90 (and its dialects including Fortran 90D/HPF)

is not regarded as the natural portable language only for SIMD computers [10], but

as a natural language for parallelism of a large class of synchronous and some loosely

synchrounous problems [11, 12, 13, 14]. In Fortran 90D/HPF, parallelism is rep-

resented with parallel constructs, such as array operations, forall statements, and

intrinsic functions. The forall statement is not a standard construct in Fortran 90;

however, this construct is included in Fortran 90D/HPF.

A Fortran 90D/HPF parallel compiler exploits only the parallelism expressed in

these parallel constructs. Fortran 90D/HPF compiler does not attempt to parallelize

other constructs, such as do loops and while loops, since they are naturally sequential.

Developing a compiler under this assumption becomes much easier. Also users can

reliably understand where parallelism will be exploited.

1.2 Hypothesis

Our hypothesis is that an advanced compiler can generate e�cient parallel programs

for distributed memory machines if a programming language can naturally repre-

sent an application's parallelism. Fortran 90D/HPF is such a language. In Fortran

90D/HPF, parallelism is represented with parallel constructs, such as array oper-

ations, where statements, forall statements, and intrinsic functions. The Fortran

90D/HPF language provides distribution directives to help the compiler distribute

data e�ciently on distributed memory machines which demand high data locality for

good performance. This language gives the programmer a powerful tool to express

data parallelism that is natural to a problem. To validate this hypothesis, we have

implemented the Fortran 90D/HPF compiler.

CHAPTER 1. INTRODUCTION 4

1.3 Contributions

The core of this thesis is devoted to demonstrating that Fortran 90D/HPF programs

written in a data-parallel programming style can be compiled into e�cient parallel

programs for distributed memory machines.

This thesis describes the design and implementation of a Fortran 90D/HPF com-

piler. A systematicmethodology to process distribution directives of Fortran 90D/HPF

is presented. Furthermore, techniques for data and computation partitioning, com-

munication detection and generation, and run-time support for the compiler are dis-

cussed.

The compiler must recognize the presence of communication patterns in the com-

putations in order to generate appropriate communication calls. Speci�cally, this

involves a number of tests on the relationships among subscripts of various arrays in

a statement. We designed an algorithm to detect communications and to generate

appropriate collective communication calls to execute array assignments and foralls

statement on distributed memory machines.

The thesis presents several types of communication and computation optimizations

used to maximize the performance of the generated code: Communication optimiza-

tions can be classi�ed as

� Communication hierarchy

� Vectorized communication

� Message aggregation

� Evaluating expression

� Communication parallelization

� Communications union

� Eliminate unnecessary communications

CHAPTER 1. INTRODUCTION 5

� Reuse of scheduling information.

In addition, some computation optimizations are developed for sequentialization

of forall statements such as

� Forall dependency

� Forall loop interchange

� Forall mask insertion

Some of these optimizations are validated with examples.

We have indicated our con�dence in the performance of the code generated by pub-

lishing the absolute execution times of several benchmarks. We believe that Fortran

90D/HPF greatly improves programmer productivity. Fortran 90D/HPF programs

are shorter, easier to write, and easier to debug than programs written in Fortran 77

with message passing. We have found that Fortran 90D/HPF makes it much easier

to tune nontrivial programs.

We believe that the methodology used to process data distribution, computation

partitioning, communication system design and the overall compiler design can be

used by implementors of future HPF compilers.

1.4 Overview

This thesis describes the design, implementation, and evaluation of the Fortran

90D/HPF compiler. Here we present an overview of the remainder of the thesis.

Fortran 90D/HPF Language: Chapter 2 presents the Fortran 90D/HPF lan-

guage, concentrating on its strategy for expressing data parallelism and mapping data

to the underlying parallel architecture. The chapter discusses a number of language

issues including the crucial language features for partitioning data.

Architecture of the Compiler: Chapter 3 presents the major phases of the

Fortran 90D/HPF compiler. The basic structure of the compiler is organized around

CHAPTER 1. INTRODUCTION 6

seven major phases: front-end, semantic analysis of distribution directives, transfor-

mation of all parallel constructs into equivalent internal forall representations, se-

quentialization, building array descriptors to pass to the runtime routines, and code

generation. This chapter describes some of these phases and also provides examples

showing code generation for parallel statements.

Distribution Model: Chapter 4 presents methods to compile distribution direc-

tives and illustrates the important design considerations. Speci�cally, we show how

the alignment and distribution directives can be systematically processed to produce

e�cient code.

Communication Model: Chapter 5 presents how the Fortran 90D/HPF com-

piler recognizes the presence of communication patterns in computations and gener-

ates appropriate communication calls. The chapter also describes computation parti-

tioning, the run-time support system and the storage management methods used by

the Fortran 90D/HPF compiler.

Optimization: Chapter 6 presents several optimization techniques to reduce the

total cost of communication and computation. The chapter gives an example program

to show the e�ectiveness of optimizations.

Experimental Results: Chapter 7 presents benchmark results to illustrate per-

formance obtained using the Fortran 90D/HPF compiler. The chapter emphasizes

the portability and scalability of the Fortran 90D/HPF compiler. It gives the perfor-

mance results for di�erent distributions and compares with the hand-written Fortran

77 + message passing codes.

1.5 Summary of Related Work

Fortran 77D

One compiler related to Fortran 90D is the Fortran 77D compiler which was devel-

oped at Rice University[15, 16]. The Fortran 77D compiler introduces and classi�es

CHAPTER 1. INTRODUCTION 7

a number of advanced optimizations needed to achieve acceptable performance. For-

tran 77D compiler is guided by the concept of data dependency, unlike Fortran 90D.

The compiler performs vector message pipelining, a technique that combines message

vectorization and message pipelining to hide communication. It detects pipelined com-

putations via cross-processor loops and exploits pipeline parallelism while balancing

communication costs though coarse-grain pipelining [17].

HPF

High Performance Fortran Forum, an informal group of people from academia, indus-

try and national labs, led by Ken Kennedy, developed a language called HPF (High

Performance Fortran) [2, 18]. HPF language combines the full Fortran 90 language

with special user annotations dealing with data distribution It is expected that HPF

will be the standard programming language for computationally intensive applica-

tions on many types of machines, such as traditional vector processors and newer

massively parallel MIMD and SIMD multiprocessors. Companies that have already

committed to developing compilers and/or supporting HPF include Intel, TMC, Port-

land Group(PGI), DEC, IBM, and others.

SUPERB and Vienna Fortran 90

The compilation system SUPERB (University of Vienna) [19] takes a sequential For-

tran program and a speci�cation of the desired data distribution. SUPERB then

converts the code to an equivalent program to run on a distributed memory machine

by inserting the communication required and optimizing communications where pos-

sible. The user is able to specify arbitrary block distributions and the compiler

performs dependence analysis to guide interactive program transformations.

Recently, SUPERB has been adapted for a new language called Vienna Fortran

90. Vienna Fortran 90 is a language extension of Fortran 90 which enables the user

to write programs for distributed memory machines using only global references. It

CHAPTER 1. INTRODUCTION 8

is similar to Fortran 90D/HPF language. However, Vienna Fortran does not provide

a data decomposition, but does support alignment and distribution directives.

Kali

The KALI compiler [20, 21] is the �rst compiler system available to support both

regular and irregular computations on MIMD machines, using an inspector/executor

strategy to handle indirectly distributed data. An inspector/executor strategy is

used for run-time preprocessing of the communication for irregularly distributed ar-

rays. KALI requires that the programmer explicitly partition loop iterations onto

the processor grid. It produces code which is independent of the number of available

processors.

ASPAR

ASPAR (Automatic and Symbolic PARallelization) [22] consists of a source-to-source

parallelizer and a set of interactive graphic tools. It uses symbolic analysis and data

dependency analysis methods to determine an explicit data decomposition scheme.

ASPAR utilizes collective communication primitives from the EXPRESS run-time

system for distributed memory machines. Communication utilizing EXPRESS prim-

itives are then automatically generated. ASPAR performs less compile-time analysis

and optimization, instead relying heavily on run-time support system.

Dataparallel C

Dataparallel C [23, 24] is a variant of the C* programming language, designed by

Thinking Machine Corporation for its Connection Machines processor array. Data

parallel C extends C to provide the programmer with access to a parallel virtual

machine. It supports a variety of standard domain decomposition primitives, and it

also allows the programmer to specify a custom mapping of data to the distributed

CHAPTER 1. INTRODUCTION 9

memories of the hypercube. This compiler generates code suitable for execution on

both the nCUBE 3200 and the Intel iPSC/2.

ARF

ARF (ARguably Fortran) is a compiler for irregular computations [25, 26, 27]. Dis-

tributed arrays are declared in ARF source. An ARF user can declare a mapping

of an array in an irregular manner. It is capable of handling a wide range of irreg-

ular problems in scienti�c computing. The ARF compiler generates inspector and

executor loops with embedded primitives. It provides an interface between applica-

tion programs and the PARTI run-time support primitives using a set of run-time

library routines that support irregular communication on MIMD distributed memory

machines. The Fortran 90D/HPF compilation system may also use the PARTI[28]

system to support irregular communications.

CM Fortran

The CM Fortran language [29, 30] is implemented as a subset of Fortran 77, extended

by Fortran 8x array features to support a data parallel programming style for the

Connection Machine (CM) computer system. CM Fortran maps arrays into the CM

architecture. The compiler generates code to be executed by a CM system with a

DEC VAX front end. For a given routine, both VAX and CM code are generated. In

general, array code is executed by CM processors, while scalar code is executed by the

VAX. This approach is used by the CM-1 and CM-2 SIMD architectures. The new

version of the CM Fortran compiler [31] is developed for the CM-5 MIMD architecture

[32]. The new compiler generates two classes of output code: code for scalar control

processors and code targeted for the nodes of the CM-5 parallel processing elements.

CHAPTER 1. INTRODUCTION 10

Cray MPP Fortran

Cray Research Inc. has announced a set of language extensions to Cray Fortran

[33] which enable the user to specify the distribution of data and work. The exten-

sions provide intrinsics for data distribution and permit redistribution at subroutine

bounds. Furthermore, the CRAY extensions permit the user to structure the execut-

ing processors by giving them a shape and weighting the dimension. Several methods

for distributing iterations of loops are provided. Many features of shared memory

parallel languages have been retained; these include: critical sections, events and

locks.

Additional Research

Callahan and Kennedy [34] proposed distributed-memory compilation techniques

based on data-dependence driven program transformations. These techniques were

implemented in a prototype compiler in the ParaScope programming environment.

Under the ADAPT system [35] developed at the University of Southampton, the

parallelization process of Fortran 90 is guided by distribution declarations for arrays,

in a similar but, more restricted approach than Fortran D.

The ADAPTOR [36] is a tool that transforms data parallel programs written in

Fortran with array extensions and layout directives to explicit message passing.

Li and Chen [37, 38] describe general compiler optimization techniques that re-

duce communication overhead for Fortran-90 implementation on massively parallel

machines. Our compiler uses similiar pattern matching techniques to Li and Chen to

detect communication.

Chapter 2

Fortran 90D/HPF Language

2.1 Introduction

Our Syracuse University group, along with colleagues at Rice University have de-

signed the Fortran D language [1]. Fortran D is a version of Fortran that is enhanced

with a rich set of data decomposition speci�cations Standard Fortran 90 with these

extensions is called \Fortran 90D", a Fortran 90 version of the Fortran D language.

There is an analogous version of Fortran 77 with compiler directives and other con-

structs for use of parallel system, called Fortran 77D. Rice University implemented

Fortran 77D compiler. Our group at Syracuse University implemented Fortran 90D

compiler. Recently, the High Performance Fortran Forum, an informal group of peo-

ple from academia, industry and national labs, led by Ken Kennedy, developed a

language called HPF[2] based on Fortran D. HPF uses standard Fortran 90 as base

language. Hence, Fortran 90D and HPF becomes very similar. For this reason, we

call the Fortran 90D language as Fortran 90D/HPF. The core part of this thesis does

not claim to design a language such as Fortran 90D/HPF, but claims to design a

compiler for Fortran 90D/HPF language.

11

CHAPTER 2. FORTRAN 90D/HPF LANGUAGE 12

This chapter presents the Fortran 90D/HPF language, concentrating on its strat-

egy for expressing data parallelism and mapping data to the underlying parallel ar-

chitecture. The chapter discusses a number of language issues including the crucial

language features for partitioning data. Because data partitioning ultimately deter-

mine the shape of the resulting code by de�ning the computation partitioning and

communication, we start by describing the data distribution.

2.2 Data Distribution

Data distribution can be done in two steps which separate machine independent

problem parallelism from machine dependent details. The �rst step is to determine

the best alignment among di�erent arrays. To reduce unnecessary data movement,

distributed arrays should be aligned with each other in a fashion that is usually de-

termined by the underlying computation structure. The alignment of arrays depends

on the program and is often machine-independent. The second step is to determine

how arrays should be distributed to the underlying hardware and is therefore ma-

chine dependent. The objective of array distribution is to balance the computation

load for each processor and to minimize the communication between processors. Ar-

ray distribution is largely dependent on hardware, such as the number of processors,

communication mechanisms, and interconnection topologies.

Fortran 90D/HPF provides users with annotation facilities for data partitioning.

The annotation facilities take the form of compiler directives.

CHAPTER 2. FORTRAN 90D/HPF LANGUAGE 13

2.2.1 Decomposition directives

A decomposition directive declares a problem domain. The directive declares the

name, dimensionality, and size of a decomposition.

A decomposition-directive is:

DECOMPOSITION decomposition-spec-list

A decomposition-spec is:

array-name (size-list)

A size is:

scalar-integer-constant

The decomposition directive de�nes arrays as data parallel [39] and is machine

independent. Examples of decomposition directives are shown below:

DECOMPOSITION A(N)

DECOMPOSITION B(N,N)

where A is declared as a one-dimensional decomposition of size N , and B is a two-

dimensional N by N decomposition.

2.2.2 Alignment directives

An alignment directive aligns one array to another array. Arrays aligned with each

other share a common \data parallelism". Alignment directives specify which ele-

ments of two arrays are to be allocated together by aligning each axis of a source

array with a given target array.

An alignment-directive is:

ALIGN source-spec WITH target-spec

A source-spec is:

CHAPTER 2. FORTRAN 90D/HPF LANGUAGE 14

source-array-name (index-name-list)

A target-spec is:

target-array-name (target-axis-spec-list)

A target-axis-spec is one of:

� index-name [� stride-value] [+ o�set-value]

� index-value

� subscript-triplet

A stride-value is:

integer-constant

An o�set-value is:

integer-constant

An index-value is:

[{] integer-constant

The number of index-names in a source-spec must equal the rank of the source

array. The number of target-axis-specs in a target-spec must equal the rank of the

target array.

The following examples of alignment directives specify di�erent alignment pat-

terns:

1. Alignment o�sets:

ALIGN A(I,J) with X(I-1,J+1)

2. Alignment strides:

ALIGN B(I,J) with X(I�2,J�2)

3. Embedding:

ALIGN C(I) with X(I,2)

4. Permutation:

ALIGN D(I,J) with X(J,I)

5. Collapse:

ALIGN E(I,*) with Y(I)

CHAPTER 2. FORTRAN 90D/HPF LANGUAGE 15

6. Replication:

ALIGN F(I) with X(I,*)

Alignment is usually machine independent. A complete speci�cation of the align-

ment directive is available in [1].

2.2.3 Distribution directives

A distribution directive provides control over the distribution of an array. Speci-

�cations are block distribution, scattered distribution, block-scattered distribution,

or no distribution. The relative weight of distribution along each axis indicates the

distribution ratio among axes. The distribution ratio is de�ned as the ratio of the

number of partitions along di�erent axes.

A distribution-directive is:

DISTRIBUTE distribution-spec-list

A distribution-spec is:

array-name (axis-descriptor-list)

An axis-descriptor is one of:

� BLOCK[(weight)]

� CYCLIC[(weight)]

� BLOCK CYCLIC(size [,weight])

� :

A weight is:

scalar-integer-constant
A size is:

scalar-integer-constant

The number of axis-descriptors in a distribution-spec must equal the rank of the

array speci�ed by array-name in the distribution-spec. Each distribution-spec speci�es

distribution information for the array given by array-name. The array is distributed

CHAPTER 2. FORTRAN 90D/HPF LANGUAGE 16

with the attributes speci�ed by the axis-descriptor-list of that distribution-spec. Each

axis-descriptor de�nes the attributes of the corresponding dimension that is to be

distributed. The keywords BLOCK, CYCLIC, BLOCK CYCLIC, and \:" control

the distribution style. For each axis-descriptor in the list:

� BLOCK indicates that the corresponding dimension is to be block distributed

(contiguous).

� CYCLIC indicates that the corresponding dimension is to be scattered dis-

tributed (interleaving).

� BLOCK CYCLIC(size) indicates that the corresponding dimension is to be

block-scattered-distributed; that is, blocks of size size are scattered.

� A star *" indicates that the corresponding dimension will not be distributed.

The keyword CYCLIC speci�es a scattered-distribution that has also been called

an interleaving partitioning. It is a powerful distribution method to balance loads for

irregular computation structures.

The distributions shown in Figures 1(a) and 1(b) are examples of block distribu-

tions: each processor contains a contiguous subarray of the speci�ed array. Figure

2(a) illustrates a cyclic distribution in which columns of an array are distributed onto

four processors so that each processor, starting from a di�erent o�set, contains every

fourth column. Figure 2(b) shows a distribution that is cyclic in both dimensions

onto four processors arranged in a 2 x 2 square. Figure 3 shows the combination

distribution with block and cyclic.

2.3 Data Parallelism in Fortran 90D/HPF

Parallelism can be explicitly expressed in Fortran 90/HPF using several language

features: Fortran 90 array assignments, masked array assignments using where state-

ments, where constructs, forall statements, forall constructs and intrinsic functions.

CHAPTER 2. FORTRAN 90D/HPF LANGUAGE 17

P0 P1 P2 P3

P0 P1

P2 P3

DISTRIBUTE X(*, BLOCK) DISTRIBUTE X(BLOCK, BLOCK)

Figure 2.1: 2-D Block distributions

DISTRIBUTE X(*, CYCLIC) DISTRIBUTE X(CYCLIC(3), CYCLIC(4))

P0 P1 P2 P3 P0 P1

P0

P2 P3 P2 P3

P0 P1 P!

P1 P0 P1

P3P2 P2 P#

P0

Figure 2.2: 2-D Cyclic distributions

CHAPTER 2. FORTRAN 90D/HPF LANGUAGE 18

DISTRIBUTE X(CYCLIC, BLOCK)

P0 P0 P0P1 P1 P1

P2 P2 P2P3 P3 P3

P0

P0

P0

P1

P1

P1

P2

P2

P2

P3

P3

P3

DISTRIBUTE X(BLOCK, CYCLIC)

Figure 2.3: 2-D Combination distributions

The forall statement [2] is an elemental array assignment statement used to specify

an array assignment in terms of array elements or array sections. The element array

may be masked with a scalar logical expression. The forall statement e�ectively

describes a collection of assignments to be executed elementally. Some examples of

forall statements are:

FORALL(I = 1:N, J=1:N) H(I,J) = 1.0 / REAL(I + J -1)

FORALL(I = 1:N, J=1:N, A(I,J) .NE. 0.0) B(I,J) = 1.0 / A(I,J)

The semantics of a FORALL statement are an assignment to each of these elements

or sections (one for every possible combination of subscript values for which the mask

expression is true) with all right-hand sides being evaluated before any left-hand sides

are assigned.

The forall statement and construct are new language features expressing data

parallelism, that is, providing a convenient syntax for simultaneous assignments to

CHAPTER 2. FORTRAN 90D/HPF LANGUAGE 19

large groups of array elements. The functionality these statements provide is similar

to that provided by the array assignments and the where constructs in Fortran 90.

All Fortran 90 array assignments, including where, can be expressed using forall

statements. However, Fortran 90 places several restrictions on array assignments.

In particular, it requires that operands of the right side expressions be conformable

with the left hand side array. These restrictions are relaxed in forall statements. In

addition, a forall may call user-de�ned functions, simulating Fortran 90 elemental

function invocation. Functions that may be called in a forall loop must not produce

any side e�ects.

The forall statement essentially preserves the semantics of Fortran 90 array as-

signments and the forall construct is semantically equivalent to a sequence of forall

statements. The array elements may be assigned in an arbitrary order, in particular,

concurrently. To preserve determinism of the result, it is required that each array

element only be assigned once. The execution of the forall assignment may require

an intra-statement synchronization: the evaluation of the left hand side expression

of the forall assignment must be completed for all array elements before the actual

assignment is made. Then, the processors must be synchronized again, before the

next array assignment is processed.

2.4 Intrinsic Functions

An important features of Fortran 90 is its rich set of intrinsic functions and subrou-

tines. These intrinsics allow the coding of data parallel programs at a higher level,

and potentially with greater e�ciency, than if their functions were programmed by

users. They not only provide a concise means of expressing operations on arrays, but

also identify parallel computation patterns that may be di�cult to detect automati-

cally. Fortran 90 provides intrinsic functions for operations such as shift, reduction,

CHAPTER 2. FORTRAN 90D/HPF LANGUAGE 20

transpose, reshape, and matrix multiplication.

2.4.1 Array Reduction Functions

The array reduction function SUM, PRODUCT, MAXVAL, MINVAL, COUNT,

ANY, and ALL perform numerical, logical and counting operations on arrays. They

may be applied to a whole array to give a scalar result or they may be applied over

a given dimension to yield a result of rank reduced by one.

2.4.2 Array Construction Function

The functions MERGE, SPREAD, PACK and UNPACK construct new arrays from

input arrays. MERGE combines two conformable arrays into one array by an element-

wise choice based on a logical mask. SPREAD constructs an array from several

copies of an actual argument. PACK and UNPACK, respectively, gather and scatter

the elements of a one-dimensional array to form another array speci�ed by a logical

mask.

2.4.3 Array Manipulation Function

The functions TRANSPOSE, EOSHIFT, and CSHIFT manipulate arrays. TRANS-

POSE performs the matrix transpose operations on a two dimensional array. The

shift functions leave the shape of an array unaltered but shift the positions of the

elements parallel to a speci�ed dimension of the array. These shifts are either circu-

lar (CSHIFT), in which case elements shifted o� one end reappear at the other end,

or end-o� (EOSHIFT), in which case speci�ed boundary elements are shifted into

vacated positions.

CHAPTER 2. FORTRAN 90D/HPF LANGUAGE 21

2.4.4 Array Location Functions

The functions MAXLOC and MINLOC return the location (subscripts) of an element

of an array that has maximum and minimum values, respectively. By use of an

optional logical mask that is conformable with the given array, the reduction may be

con�ned to any subset of the array.

2.5 Discussion

From our point of view, Fortran 90 (and its dialects including Fortran 90D/HPF)

is not regarded as the natural portable language for SIMD computers [10], but as a

natural language for parallelism of a class of what we have called synchronous and

some loosely synchronous problems [11, 12, 14, 13]. In Fortran 90D/HPF, parallelism

is represented with parallel constructs, such as array operations, forall statements,

and intrinsic functions.

A Fortran 90D/HPF program is a Fortran 90 program augmented with a set of

data decomposition speci�cations. If these speci�cations are ignored the program can

be run without change on a sequential machine. Compilers for parallel machines can

use the speci�cations not only to decompose data but also to decompose computa-

tions. Moreover, the directives could be generated by an automatic partitioner in

future version of compilers. A description of generating optimal alignment can be

found in [40]. The distribution directives could be generated with a constraint-based

approach [41] or with the guide of a performance estimator [42].

Chapter 3

Architecture of the Compiler

The major phases of the Fortran 90D/HPF compiler are shown in Figure 4. Fortran

90D/HPF takes a syntactically correct Fortran 90D/HPF program and transforms it

into Fortran 77 plus runtime code. The basic structure of the compiler is organized

around seven major phases: front-end, semantic analysis of distribution directives,

transformation of all parallel constructs into equivalent internal forall representations,

sequentialization, building array descriptors to pass to the runtime routines, and code

generation. This chapter describes some of these phases and also provides examples

showing code generation for parallel statements.

3.1 The Front-End

The �rst step of the compilation is to generate a parse tree. This module parses the

input program into an abstract syntax tree, performs semantic analysis to annotate

the tree with type information, and builds a symbol table; it also performs error

checking. The front-end to parse Fortran 90 was obtained from ParaSoft Corp. It is

enhanced such that it accepts all legal forms of Fortran 90D/HPF. This includes the

22

CHAPTER 3. ARCHITECTURE OF THE COMPILER 23

Analysis Distribution Directives

Transformer to Internal Forall

Computation Partitioning

front end

Communication Analysis

back end

Sequentialization

Code Generation

Templates and Processors

Build Descriptors for Arrays,

Figure 3.4: The architecture of the Fortran 90D/HPF compiler.

CHAPTER 3. ARCHITECTURE OF THE COMPILER 24

directives for ALIGN, DISTRIBUTE, DECOMPOSITION and the FORALL state-

ment and the FORALL construct. We will not discuss the front-end in detail. We

will discuss more about the phases which are directly related to Fortran 90D/HPF

language parallelism.

3.2 Analysis of Distribution Directives

The �rst phase semantically analyzes all Fortran 90D/HPF directives and stores the

resulting information on decomposition, distribution, alignment, and processor ar-

rangements in the array descriptor portion of the symbol table. This information

is used throughout compilation. For variables that are not explicitly mapped (and

compiler-created temporaries), the compiler chooses a default distribution and align-

ment. Figure 5 shows a typical sequence of Fortran 90D/HPF directives used to align

and distribute arrays. The compiler identi�es alignment chains and determines that

no PROCESSORS directive is present. In the absence of a PROCESSORS direc-

tive, the compiler generates code to dynamically determine the number of available

processors and uses a default one-dimensional processor arrangement.

integer, dimension(100) :: A, B,C

!F90D$ align A with B

!F90D$ align B with C

!F90D$ distribute C(cyclic)

Figure 3.5: An example of Fortran 90D/HPF directives.

The compiler stores the distribution information as in Figure 6. It creates a default

CHAPTER 3. ARCHITECTURE OF THE COMPILER 25

template T for array C and collapses all alignments to C into alignments to T . T is

distributed by default onto P , the default processor arrangement.

integer, dimension(100) :: A, B,C

!F90D$ processors P(number_of_processors())

!F90D$ decomposition T(100)

!F90D$ align A with T

!F90D$ align B with T

!F90D$ align C with T

!F90D$ distribute T(cyclic) onto P

Figure 3.6: Internally completed distribution directives.

3.3 Internal Forall Transformations

The next phase of the compiler transforms parallel constructs: array assignments,

where statements/constructs, and forall statements/constructs into one internal rep-

resentation which is similar to a forall statement. However, the internal representa-

tion only allows calls to pure functions (functions without side e�ects). If there is a

call to a transformational intrinsic in the original construct, the transformation phase

removes it during conversion to the internal representation to prevent joining of all

processors within the parallel construct.

In Fortran 90D/HPF, we choose the forall statement as our intermediate language

construct. Array assignment statements and where statements can be translated

into equivalent forall statements with no loss of information. After transformation,

subsequent phases of the compiler, such as optimization, process parallel constructs

CHAPTER 3. ARCHITECTURE OF THE COMPILER 26

using only the internal representation. The Fortran 90D/HPF compiler generates

the same intermediate and �nal code regardless of which constructs the programmer

chooses.

Figure 7 gives the algorithm for transforming the array assignment statement and

where statement into equivalent forall statements.

! array assignment statement

A(l1:u1:s1)=B(l2:u2:s2) + ...

! equivalent forall statement

FORALL(i=l1:u1:s1) A(i)=B(l2+((i-l1)/s1) * s2) + ...

! where statement

WHERE(C(l3:u3:s3).NE.0.0) A(l1:u1:s1)=B(l2:u2:s2) + ...

! equivalent forall statement

FORALL(i=l1:u1:s1, C(l3+((i-l1)/s1)*s3).NE.0.0)

& A(i)=B(l2+((i-l1)/s1)*s2)

Figure 3.7: Transforming array assignment and where into foralls.

3.4 Communication Analysis

The communication phase of the compiler selects the communication primitives. It in-

serts code for allocation of bu�ers as well as calls to communication primitives. This

phase also partitions computations by modifying the bounds of parallel loops and

inserting conditional statements which restrict execution of statements to the appro-

priate processors. This pass also performs numerous communication optimizations.

This phase is discussed further in Chapter 6.

CHAPTER 3. ARCHITECTURE OF THE COMPILER 27

3.5 Sequentialization

The computation assigned to each processor element will be executed sequentially.

Fortran 90D/HPF has to do sequentialization for the program with forall statements

after modi�ng the bounds of forall statements.

There are two main problems in sequentialization: how to create a legal sequen-

tialized version of the parallel construct and reduce the space needed for array tempo-

raries. The fetch-before-store semantics of an array operation or of a forall statement

can be stated as follows: the entire right-hand side must be fetched and evaluated

before any results can be stored in the left-hand side. Thus, the array operation

a = b + a

or forall statement

forall (i=1:N) a(i) = b(i) + a(i)

can be correctly interpreted by the following two do loops:

do i=1,N

tmp(i) = b(i) + a(i)

end do

do i=1,N

a(i) = tmp(i)

end do

Here, the array temporary tmp can be eliminated without changing the semantics

of the original forall statement as follows:

do i=1,N

a(i) = b(i) + a(i)

end do

CHAPTER 3. ARCHITECTURE OF THE COMPILER 28

However, the temporary array cannot be simply eliminated for the following forall

statement:

forall (i=1:N) a(i) = b(i) + a(i-1)

Various techniques, such as loop reversal, loop interchange, and loop skewing can

be applied to eliminate the array temporary in some cases. Sequentialization algo-

rithms can be found in [43], which include algorithms for �nding a correct sequential-

ization, and the use of loop reversal and loop interchange. But these methods exhibit

poor spatial locality [44]. The current Fortran 90D/HPF compiler does not perform

the loop transformations and complex dependency analysis needed to eliminate tem-

porary usage. However, the compiler checks whether the left hand side (lhs) array is

used in the right hand side (rhs) of the forall statement. If not, the compiler does

not create a temporary.

3.6 Building Array Descriptors

The next phase of the compiler builds descriptors for each processor arrangement,

decomposition, and array so that all information available at compile time is also

available at run-time. Processor descriptors include information on the shape and

mapping of the processor arrangement. A decomposition data structure describes

the shape and distribution of the template. An array descriptor contains all the

information necessary to determine the shape of the array, the decomposition to

which it is aligned, and how the alignment is speci�ed.

CHAPTER 3. ARCHITECTURE OF THE COMPILER 29

3.7 Code Generation

Finally, the code generator targets an Single Program Multiple Data (SPMD) pro-

gramming model. The SPMD model provides for a system where each processor

executes the same program, but operates on di�erent data. This is implemented by

loading the same program image into each processor. Each processor allocates and

operates on its own local portion of distributed arrays, according to the distributions,

array sizes and number of processors as determined at runtime.

The generated code is structured as alternating phases of local computation and

calls to communication primitives. Communication primitives are synchronization

points. Most of the time the compiler does not know until run-time which groups of

processors may communicate, so it guarantees that communication primitives will be

called by all processors.

The following sections provide examples showing code generation for parallel state-

ments, such as array assignment, where and forall statements.

3.7.1 Array Assignment Parallelism

The Fortran 90D/HPF compiler treats Fortran array expressions as parallel expres-

sions. Each node or processor on the parallel system will execute its part of the

computation (if the array associated with lhs of the expression is distributed). Array

constructs are internally converted to an equivalent FORALL statement and then

the distributed array is computed with a FORALL statement that is parallelized by

localizing array indices. For example, the following Fortran 90 array statement is

parallelized and produces the Fortran 77 code shown:

REAL X(16), Y(16)

CHAPTER 3. ARCHITECTURE OF THE COMPILER 30

!F90D$ DISTRIBUTE Y(BLOCK)

!F90D$ DISTRIBUTE X(BLOCK)

Y=X+1

The following code would be generated and run locally on each processor.

call set_bound(x_dist,1,1,16,1,llb,lub)

do i1 = llb, lub

y(i1) = x(i1) + 1

enddo

Note that the call set bound() is a Fortran 90D/HPF runtime library routine.

This routine generates the bounds for the index space of the array residing on the

local processor. This routine will be discussed more in the Computation Partitioning

Section of Chapter 5. For example, on a four processor system, this call would

generate di�erent loop bound depending on the processor the call is made on, and

the portion of the array stored on that processor, as shown below:

CHAPTER 3. ARCHITECTURE OF THE COMPILER 31

! Processor 1 ! Processor 3

do i1 = 1, 4 do i1 = 9, 12

y(i1) = x(i1) + 1 y(i1) = x(i1) + 1

enddo enddo

! Processor 2 ! Processor 4

do i1 = 5, 8 do i1 = 13, 16

y(i1) = x(i1) + 1 y(i1) = x(i1) + 1

enddo enddo

3.7.2 Where Statement Parallelism

The where statement is a Fortran 90 statement that conveys parallelism in a manner

similar to array assignment described in the previous section. The compiler adds

a conditional statement to mask the elements of the array's index space that are

assigned or not assigned a particular value. For example, given that X and Y are

distributed arrays, the following WHERE statement produces code similar to the

Fortran 77 output shown:

WHERE(X/=0) Y=X

The following code would be generated:

call set_bound(x_dist,1,1,16,1,llb,lub)

do i1 = llb, lub

if (x(i1) .ne. 0) then

y(i1) = x(i1)

endif

enddo

CHAPTER 3. ARCHITECTURE OF THE COMPILER 32

The generated code is similar to the node code for an array expression, with the

addition of the conditional within the DO loop.

3.7.3 Forall Statement Parallelism

The forall statement allows speci�cation of a set of index values and an assignment

expression utilizing the index values (or using a masked subset of the index values).

The computation involving the index values for the assignment expression may be

performed in an any order on a scalar machine, or in parallel on a parallel system.

For more details on the de�nition of FORALL refer to [18]. The following example

shows a simple masked FORALL and the Fortran 77 code generated by the Fortran

90D/HPF compiler.

FORALL(I=1:15, X(I)>5) X(I)=Y(I)

call set_bound(x_dist,1,1,15,1,llb,lub)

do i1 = llb, lub

if (x(i) .gt. 5) then

x(i) = y(i)

endif

enddo

Note that intrinsic functions can be called from the expression part of a FORALL

statement.

Chapter 4

Distribution Model

4.1 Introduction

Distributed memory systems solve the memory bottleneck of vector supercomputers

by having separate memory for each processor. However, distributed memory systems

demand high locality for good performance. Therefore, the distribution of data across

processors is of critical importance to the e�ciency of a parallel program in a dis-

tributed memory system. Fortran 90D/HPF language provides distribution directives

to help the compiler distribute data e�ciently on distributed memory machines.

There are three ways to generate the directives: 1) users can insert them, 2) pro-

gramming tools can help users to insert them, or 3) automatic compilers can generate

them. In the �rst approach, users write programs with explicit distribution and align-

ment directives. A programming tool can generate useful analysis to help users decide

partitioning styles, and measure performance to help users improve program parti-

tioning interactively [34, 42, 45]. The directives can also be generated automatically

by compilers. Promising work has been done along case 2 and 3 [46, 40, 47, 41, 48].

However, these ideas have not yet been implemented in a practical general system,

so we do not consider automatic partitioning in the Fortran 90D/HPF compiler.

33

CHAPTER 4. DISTRIBUTION MODEL 34

The focus of this chapter is to describe the design and implementation of the

data partitioning module. It discusses how to distribute data given data distribution

directives and illustrates what the important design considerations are. Speci�cally,

we show how the alignment and distribution directives can be systematically processed

to produce e�cient code.

4.2 Expressive Power of Directives

In this Section, we would like to give an example to show expressive power of Fortran

90D/HPF distribution directives on a real application.

Consider the data partitioning schema for matrix-vector multiplication proposed

by Fox et al.[49] and shown in Figure 8. The matrix vector multiplication can be

described as

y = Ax

where y and x are vectors of length M , and A is an M �M matrix. To create

the distribution shown in Figure 8, one can use the following directives in a Fortran

90D/HPF program.

!F90D$ DECOMPOSITION TEMPL(M,M)

!F90D$ ALIGN A(I,J) WITH TEMPL(I,J)

!F90D$ ALIGN X(J) WITH TEMPL(*,J)

!F90D$ ALIGN Y(I) WITH TEMPL(I,*)

!F90D$ DISTRIBUTE TEMPL(BLOCK,BLOCK)

CHAPTER 4. DISTRIBUTION MODEL 35

If this program is mapped onto a 4x4 physical processor system, the Fortran

90D/HPF compiler generates the distributions shown in Figure 8. Matrix A is dis-

tributed in both dimensions. Hence, a single processor owns a subset of matrix rows

and columns. X is column-distributed and row-replicated. But Y is row-distributed

and column-replicated.

A A A

A A

A

A AAA

A A A A

A A

X X X

X X X X

XXXX

X XX X X

X

Y

Y

Y

YY

Y

Y

Y

Y Y

Y

Y

Y Y

Y

Y

Y

v=0 v=1 v=2 v=3

u=0

u=1

u=2

u=3

Figure 4.8: Matrix-vector decomposition.

CHAPTER 4. DISTRIBUTION MODEL 36

4.3 Design Methodology

The Fortran 90D/HPF compilermaps arrays to physical processors using a three stage

mapping as shown in Figure 9. This three stage mapping has also been proposed in

HPF[2].

Arrays Template Logical processors

M

N

p

pxq

Data mapping

ALIGN DECOMPOSE

DISTRIBUTE

functions

with arbitrary topologywith grid topology

Grid mapping

stage 1 stage 2 stage 3

f ϕ

q

µ

µ

f -1

-1 −1
ϕ

Physical processors

functions

Figure 4.9: Three stage array mapping

Stage 1 : ALIGN directives are processed to compute functions that map the

array index domain to the template index domain and vice versa. Also, the local

shape of the arrays it determined.

Stage 2 : Each dimension of the template is mapped onto the logical proces-

sor grid based on the distribution directives. Furthermore, mapping functions are

computed to generate the relationship between global and local indices.

Stage 3 : The logical processor grid is mapped onto the physical system. This

mapping can change from one system to another but the data mapping onto logical

processor grid does not need to change. This enhances portability across a large

CHAPTER 4. DISTRIBUTION MODEL 37

number of architectures.

By performing this three stage mapping, the compiler is decoupled from the

speci�cs of a given machine or con�guration.

4.4 Compiling the ALIGN Directive (Stage 1)

Alignment of data arrays to templates is speci�ed by the ALIGN directives. In this

section, we describe how the ALIGN directive is processed.

Alignment determines which portions of two or more arrays will be in the same

processor for a particular data partitioning. Clearly, if arrays involved in the same

computation are aligned so that after distribution their respective sections lie on the

same processors, then the number of non-local accesses would be reduced.

Alignment is a relation that speci�es a one-to-one correspondence between ele-

ments of a pair of array objects. The template is de�ned by a DECOMPOSITION di-

rective with its shape and rank given. Let A be an m-dimensional array and TEMPL

be an n-dimensional template. The general form of an alignment directive is:

!F90D$ ALIGN A(i1[*], ... ,im[*]) WITH TEMPL(f1(ia1)[*], ... ,fn(iam)[*]).

The exhibited elements of A are aligned to those of TEMPL. The template is

eventually distributed on a set of processors. The compiler guarantees that the array

elements aligned to the same element of the template will be mapped to the same

processor.

The alignment function fk is required to be a linear function fk = sk � iak + ok or

fk = ok. The parameters iak, sk, and ok correspond to the three components of the

alignment function: axis, stride, and o�set. Misalignment in the axis or stride com-

ponents causes irregular communication, and misalignment in the o�set component

CHAPTER 4. DISTRIBUTION MODEL 38

Algorithm 1 (Compiling Align directives)

Input: Fortran 90D syntax tree with arbitrary alignment functions
Output: Fortran 90D syntax tree with perfect alignment functions
Method: For each aligned array, and for each dimension of that array,

carry out the following steps

Step 1. Extend aligned arrays to match template size.
Step 2. Apply alignment functions to the aligned arrays.

Step 3. Transform into canonical form.
Step 4. Compute f�1(i).

causes nearest-neighbor communication [46].

Algorithm 1 gives the steps in the algorithm used by Fortran 90D/HPF to process

align directives. Algorithm 1 takes Fortran 90D/HPF syntax tree with arbitrary align-

ment functions, transforms them to perfect alignment functions. That is to transform

array indices from the array index domain to template index domain. The following

example illustrates the steps and all the transformations performed to transform by

Algorithm 1.

Consider the Fortran 90D/HPF code fragment shown in Figure 10. There are

three arrays ODD(N/2), EVEN(N/2) and NUM(N). Elements of the array ODD are

aligned with odd elements of TEMPL. Similarly, elements of the array EVEN are

aligned with the even elements of TEMPL. NUM is aligned identically with TEMPL

which is called perfect alignment. Hence, ODD and EVEN are aligned with odd and

even indices of NUM respectively, because they are aligned to the same template.

Step 1. Extend aligned arrays to match template size. Note that it is required

that the array size is equal to or smaller than the template size in the distributed

dimension(s). If an array size is smaller than the template size in the distributed

dimension, the compiler extends the array size to match the template size. For

CHAPTER 4. DISTRIBUTION MODEL 39

1. PARAMETER(NPROC1=10, N=100)

2. REAL NUM(N), ODD(N/2), EVEN(N/2)

3. C$ DECOMPOSITION TEMPL(N)

4. C$ DISTRIBUTE TEMPL(BLOCK)

5. C$ ALIGN NUM(I) WITH TEMPL(I)

6. C$ ALIGN ODD(I) WITH TEMPL(2*I-1)

7. C$ ALIGN EVEN(I) WITH TEMPL(2*I)

8. FORALL(I=1:N:2) NUM(I) = ODD((I+1)/2)

9. FORALL(I=2:N:2) NUM(I) = EVEN(I/2)

10. LOC=MAXLOC(ODD)

Figure 4.10: A Fortran 90D/HPF program fragment.

example, ODD and EVEN arrays are extended to size N to match the template

TEMPL's size, which is N . This is a limitation of our compiler.

Step 2. Apply alignment functions to the aligned arrays. In this step, all indices

of each occurrence of an array, all the statements in the input program are trans-

formed into the template index domain using the alignment function f(I). Arrays

ODD, EVEN and NUM are associated with the fo(I) = 2 � I � 1, fe(I) = 2 � I,

fn(I) = I functions respectively. Figure 11 illustrates this transformation on the

array ODD. For example, the �rst forall assignment statement in Figure 10:

NUM(I)=ODD((I+1)/2)

is transformed into

NUM(I)=ODD(2*((I+1)/2)-1) (1)

by applying function fn(I) = I (identical function) and fo(I) = 2 � I � 1 to lhs

and rhs respectively.

CHAPTER 4. DISTRIBUTION MODEL 40

ODD

1

2
3

4

49

50

 ODD

1
2

3

4

5

6

98
99

100

f(i)=2*i-1

f
-1
(i)=

i+1

2

dummy value

Template Index DomainArray Index Domain

Figure 4.11: Transforming array index domain to template index domain.

Step 3. Transform into canonical form
1
. In this step, the compiler simpli-

�es all functions applied in step 3 by performing symbolic manipulation and partial

evaluation of constants. For example, the statement (1) becomes:

NUM(I)=ODD(I).

The above simpli�cation of indices helps the compiler to choose e�cient collective

communication routines. Our communication detection algorithm [37, 50] is based

on symbolically comparing the lhs and rhs reference patterns and determining if the

pattern is associated with one of the prede�ned collective communication routines.

In the above statement the compiler compares the lhs and rhs indices and determines

1A canonical form is a syntactic form in which variables appear in a prede�ned order and constants

are partially evaluated.

CHAPTER 4. DISTRIBUTION MODEL 41

that no communication is required because both the array reference patterns are

given by I and aligned to the same template. However, if the rhs was ODD(I+2), the

compiler recognizes the operation as a shift communication.

Step 4. Compute f
�1(i). For each array, we compute the inverse alignment

function f
�1(i) corresponding to each f(i). f

�1(i) is stored in a Distributed Array

Descriptor (DAD) [51]. This function is needed when any computation needs to be

performed using the original index of an array. For example, the last statement in

Figure 10 calls the intrinsic function MAXLOC to �nd the location of the maximum

element in the array ODD. This function must be evaluated using the original array

indices. The inverse function for array ODD is f�1(i) = i+1

2
. MAXLOC returns the

location of maximum value in the original array index domain by applying the f�1

function.

Figure 12 shows the compiler generated Fortran 77+MP code for the Fortran

90D/HPF code given in Figure 10.

We emphasize that the transformation shown in Figure 11 from the array index

domain to the template index domain has two advantages.

1-) This allows the compiler to easily detect regular collective communication

patterns among arrays aligned to the same template.

2-) The compiler keeps data distribution functions only for the template and not

for all the arrays aligned to the template.

4.5 Data Distribution (Stage 2)

In this section, we describe how the Fortran 90D/HPF compiler distributes the tem-

plate on the logical processor grid refer back to Figure 9. In this phase, the compiler

CHAPTER 4. DISTRIBUTION MODEL 42

1. PARAMETER(NPROC1=10, N=100)

2. REAL NUM(10), ODD(10), EVEN(10) ! local shapes

3. call set_BOUND(lb,ub,st,1,100,2) ! compute local lb, ub, st

4. DO I=lb,ub,st

5. NUM(I) = ODD(I) ! local computations

6. END DO

7. call set_BOUND(lb,ub,st,2,100,2)

8. DO I=lb,ub,st

9. NUM(I) = EVEN(I) ! local computations

10. END DO

! put information for ODD into ODD_DAD

11. call set_DAD(ODD_DAD,....)

! MAXLOC is implemented on f77+MP

12. LOC=MAXLOC(ODD, ODD_DAD)

Figure 4.12: The compiler generated code from Figure 10.

CHAPTER 4. DISTRIBUTION MODEL 43

uses information provided by DISTRIBUTE directives.

4.5.1 Distribution functions

A Fortran 90D/HPF program is written in the global name space. Therefore, the

arrays and template indices refer to indices in the global name space. Parallelizing

the program onto a distributed memorymachine requires mapping a global index onto

the processor number and local index pair, because on a distributed memorymachine,

each node has a separate name space. For the above index transformations, we

de�ne data-distribution functions , index-conversion functions, as given in De�nition

1 below.

De�nition 1: A data-distribution function for each dimension of template � maps

three integers, �(I; P;N) ! (p; i), where I is the global index, 0 � I < N , P is the

number of processors, and N is the size of global index. The pair (p; i) represents

the processor p, (0 � p < P) and i is the local index of p (0 � i < �
#(p; P;N)).

�
#(p; P;N) gives the cardinality (the number of global indices in processor p). The

inverse distribution function �
�1(p; i; P;N) ! I transforms the local index i in pro-

cessor p back into global index I.

The term global index refers to the index of a data item within the global array,

global name space, while the term local index denotes the index of a data item within

a logical processor.

The choice of these distribution functions is one of the most important design

choices in the compiler. We use the following criteria:

� calculation of these function at run-time must be e�cient.

� distribution functions should yield a good static load balance.

CHAPTER 4. DISTRIBUTION MODEL 44

Table 4.1: Data distribution functions

Block-distribution Cyclic-distribution

global to proc
I ! p p = I�P

N
p = I mod P

global to local

I ! i i = I � p�N

P
i = b

I

P
c

local to global

(p; i)! I I = i+ p�N

P
I = iP + p

cardinality N

P
b
N+P�1�p

P
c

The CYCLIC attribute indicates that global indices of the template in the spec-

i�ed dimension should be assigned to the logical processors in a round-robin fashion.

The last column of Table 1 shows the CYCLIC distribution functions. This yields an

optimal static load balance since the �rst N mod P processors get dN
P
e elements; the

rest get bN
P
c elements. In addition, these distribution functions are e�cient and sim-

ple to compute. Although CYCLIC distribution functions provide a good static load

balance, the locality is worse than with block distributions since cyclic distributions

scatter data.

4.5.2 Usage of the data distribution functions

The following examples illustrate how the data distribution function can be used for

various constructs. For these examples, the array A has the following alignment.

C$ DECOMPOSITION TEMPL(N,M)

C$ ALIGN A(I,J) WITH TEMPL(I,J)

C$ DISTRIBUTE TEMPL(CYCLIC,BLOCK)

and TEMPL is distributed on a two-dimensional PxQ processor grid.

Example 1 (Masking) Consider the statement:

CHAPTER 4. DISTRIBUTION MODEL 45

A(5,8)=99.0

The owner processor of the array element A(5; 8) executes the statement. Since

the compiler generates SPMD style code, it masks the rest of the processors:

if(5 mod P .eq. my_id(1) .and. 8*Q/M .eq. my_id(2))

A(5/P, 8-my_id(2)*M/Q) = 99.0

Where my id(1) and my id(2) describes the processor's position in the two dimen-

sional logical grid. In this case, the compiler uses the global to processor and global

to local functions for cyclic and block distributions. The processors are masked ac-

cording to the coordinate id numbers since the logical processors are arranged in a

grid topology.

Example 2 (Grouping) Consider the statement:

A(:,8)=99.0

Only, the group of processors owning the 8th column of array A need to execute

this statement. The rest of the grid must be masked.

do i=my_id(1),N,P

if(8*Q/M .eq. my_id(2)) A(i/P, 8-my_id(2)*M/Q) = 99.0

end do

Note that the iterations (indexed by i above) are distributed cyclicly following the

owner computes rule.

Example 3 (Forall) Consider the statement:

forall(i=1:N,j=1:M) A(i,j)=j

CHAPTER 4. DISTRIBUTION MODEL 46

In the above computations all elements of each column of array A are assigned

the corresponding column number (in the global index domain).

do i=my_id(1),N,P

do j=1,M/Q

A(i/P,j)=j+my_id(2)*M/P

end do

end do

The compiler distributes the iterations i and j in cyclic and block fashion respec-

tively since array A is distributed in that fashion. Iteration index j is localized. The

compiler transforms j back to a global index using local to global index conversion in

the rhs expression.

Example 4 (Broadcast) Consider the statement:

x=A(5,8)

where x is a scalar variable (scalars are replicated on all processors). The above

statement causes a broadcast communication. The source processor of the broadcast

is found using a global-to- processor function similar to that in Example 1.

Example 5 (Gather) Consider the statement:

B=A(U,V)

where U and V are one-dimensional replicated arrays. B is a two-dimensional

array and is distributed in the same way as is array A. This vector-valued assignment

causes an unstructured communication (also called gather[28] in this case). The owner

processors of array B may need some values of array A, depending on the contents

of arrays U and V at run-time. The compiler makes each owner processor of array B

CHAPTER 4. DISTRIBUTION MODEL 47

calculate which processor has the non-local part of array A using global to processor

function. The compiler also generates code that computes the local index the array

A using the global to local index conversion function for each source processor. After

making each processor calculate the local list and the processor list, the compiler

generates a statement to the call gather collective communication.

Example 6 (Scatter) Consider the statement:

A(U,V)=B

The above statement causes scatter communications. Again the compiler generates

code such that each owner processor of the array B uses data distribution functions

to �nd the destination of the local array B.

4.6 Grid Mapping Functions (Stage 3)

So far we have presented techniques used in our compiler that map data onto logical

processors. In this section we describe the mapping of logical processors onto physical

processors.

There are several advantages of decoupling logical processors from physical system

con�gurations. These advantages include locality, portability and grouping.

Locality: Multiple accesses to consecutive memory locations is called spatial lo-

cality. Spatial locality is very important for Distributed Memory Machines. Arrays

representing spatial locations are distributed across the parallel computer. For in-

stance, it makes sense to have data distributed in such a way that processors that

need to communicate frequently are neighbors in the hardware topology. It has been

shown that this is extremely important in the common regular problems in scien-

ti�c applications such as relaxation [49]. Our template is a d-dimensional mesh. If

CHAPTER 4. DISTRIBUTION MODEL 48

this template is BLOCK distributed on a d-dimension grid of processors, the neigh-

boring array elements (spatial locality) will be in the neighboring processors. The

grid topology is a very good topology for spatial locality. Fortran 90D/HPF makes

the logical processor topology grid according to the number of dimensions of the

DECOMPOSITION as shown in Figure 13.

1-Dimension

2-Dimension 3-Dimension

Figure 4.13: Logical processor topologies

Portability: The physical topology of a hardware system may be a grid, a tree,

a hypercube or some other layout. The mapping for the best (possible) grid topology

changes from one physical topology to another. To enhance portability, we separate

the physical and logical topologies. Therefore, porting the compiler from one hard-

ware platform to another involves changing the functions that map the logical grid

topology to the target hardware.

Grouping: Operations on a subset of dimensions in arrays are very common

CHAPTER 4. DISTRIBUTION MODEL 49

in scienti�c programming, e.g., row and column operations on matrices. Fortran

90D/HPF provides intrinsic functions such as SPREAD, SUM, MAXVAL and

CSHIFT that let a user specify operations along di�erent dimensions by specifying

the DIM dimension parameter. These dimensional operations conceptually group

elements in the same dimension. The dimensional array operations result in \dimen-

sional array communications". We have designed a set of collective communication

routines that operate along one or more dimensions (groups of processors) of the grid.

For example, we have developed spread (broadcast along dimension), shift along di-

mensions and concatenate communications. these primitives are discussed in Chapter

5.

The performance of the resulting code may be adversely a�ected if the logical

grid to physical system mapping is not e�cient. Therefore, one of the goals of these

mapping functions is to map nearby processors in the logical grid to physically close

processors in the machine architecture.

De�nition 2: A logical processor grid consists of d dimensions, (P0; P2; :::; Pi; :::; Pd�1),

where Pi, 0 � i < d is the size of the i
th
dimension. A processor grid mapping func-

tion, ', maps a processor index in the d-dimensional space, '(v0; v1; :::; vd�1) ! p

where 0 � vi < Pi (i.e., vi is the index of the logical processor in the i
th
dimension),

and p is the physical processor number, (0 � p <

Qd�1
i=0 Pi). The inverse mapping

function '
�1(p)! (v0; v1; :::; vd�1) transform the processor number p back into logical

grid number.

For example, the grid mapping function ' and '�1 for hypercube using Gray Code

can be found in [49] and the grid mapping onto a fat tree can be found in [52].

Figure 14 gives some of the grid mapping functions implemented in the Fortran

CHAPTER 4. DISTRIBUTION MODEL 50

int gridinit(dim, num(*))

int gridproc(coord(*))

int gridcoord(proc, coord(*))

Figure 4.14: The prototype of grid-mapping functions

90D/HPF compiler. The �rst routine, gridinit, takes the dimensionality of the grid,

dim, and the number of physical processors in each dimension as an array, num and

performs the necessary initializations in order to use the other two grid mapping

functions ' and '
�1. The routine gridcoord implements the function ' to generate

the physical processor number corresponding to the logical processor grid speci�ed

in the parameter array \coord(*)". Similarly, the routine gridproc implements the

function '
�1. Its input parameter \proc" speci�es the physical processor id and its

output is the corresponding index in the logical grid which is stored in the array

\coord(*)". The details of these functions can be found in[49].

The goal of these functions is to enhance portability. The compiler generates

all the communication calls based on the logical coordinates of the processors. The

communication routines in turn use the above functions to compute the physical

processor ids of involved processors. Another important point to note is that by

using the logical grid at the compiler level, masking and grouping are performed

using logical grid coordinates.

Chapter 5

Communication Model

It is not possible to arrange interconnected data on a distributed memory machine so

that all the pieces of data will reside in the processors that need to use them, because

one data item may be used in more than one part of a computation by more than

one processor. Thus, interprocessor communication may be required. Computations

on data structures have a de�nite mechanism: �rst, data elements are brought to-

gether, then computations are performed. Once the data elements have been brought

together, the computations are local. Even on very complex data structures, it is pos-

sible to have most of the interacting elements located in the same processor memory.

Typically, only a few data items need to be communicated from another processor's

memory.

The compiler must recognize the presence of communication patterns in com-

putations in order to generate appropriate communication calls. Speci�cally, this

involves a number of tests on the relationships among subscripts of various array in

a statement. We designed an algorithm to detect communications and to generate

appropriate collective communication calls to execute array assignments and forall

statements on distributed memory machines.

51

CHAPTER 5. COMMUNICATION MODEL 52

This chapter describes the computation partitioning and communication gener-

ation phases of the Fortran 90D/HPF compiler. The chapter also describes the

run-time support system and storage management used by the Fortran 90D/HPF

compiler.

5.1 Computation Partitioning

Once data is distributed, there are several alternatives to assign computations to

processing elements for each instance of a forall statement. One of the most common

methods is to use the owner computes rule. Using the owner computes rule, the

computation is assigned to the processor owning the lhs data element. This rule is

easy to implement and performs well in a large number of cases. Most the current

implementations of parallelizing compilers uses the owner computes rule [19, 53].

However, it may not be possible to apply the owner computes rule for every case

without extensive overhead.

Figure 15 shows the possible data and iteration distributions for the lhsI = rhsI

assignment caused by iteration instance I. Cases 1 and 2 illustrate the order of

communication and computation arising from the owner computes rule. Essentially,

all the communications to fetch the o�-processor data required to execute an iteration

instance are performed before the computation is performed. The generated code will

have the following communication and computation order.

Communications ! some global communication primitives

Computation ! local computation

The following examples describe how Fortran 90D/HPF performs computation

partitioning.

CHAPTER 5. COMMUNICATION MODEL 53

I

lhsI

I

lhs

I

I

I

lhsI

I

before

after

beforeafter

CASE 1

CASE 3

CASE 2

CASE 4

p p q

p q

p

q

r
lhsI

rhs

rhs

rhs

rhs

I

I

I

CASE 4: Communication before and after computation to fetch and store non-locals

CASE 3: Communication after computation to store non-local data lhs

CASE 2: Communication before computation to fetch non-local rhs

CASE 1: No communications

Figure 5.15: Possible computation distribution.

CHAPTER 5. COMMUNICATION MODEL 54

Example 1 (canonical form) Consider the following statement, taken from the

Jacobi relaxation program:

forall (i=1:N, j=1:N)

& B(i,j) = 0.25*(A(i-1,j)+A(i+1,j)+A(i,j-1)+A(i,j+1))

In the above example, as in a large number of scienti�c computations, the forall

statement can be written in the canonical form. In this form, the subscript value in

the lhs is identical to the forall iteration variable. In such cases, the iterations can be

easily distributed using the owner computes rule. Furthermore, it is also simpler to

detect structured communication by using this form (This will be considered further

in Section 5.4.).

Example 2 (non-canonical form)Consider the following statement, taken from

an FFT program:

forall (i=1:incrm, j=1:nx/2)

& x(i+j*incrm*2+incrm) = x(i+j*incrm*2) - term2(i+j*incrm*2+incrm)

The lhs array index is not in the canonical form. In this case, the compiler equally

distributes the iteration space on the number of processors on which the lhs array is

distributed. Hence, the total number of iterations will still be the same as the number

of lhs array elements being assigned. However, this type of forall statement results

in either Case 3 or Case 4 in Figure 2. The generated code will be in the following

order:

Communications ! some global communication primitives to read

Computation ! local computation

Communication ! a communication primitive to write

CHAPTER 5. COMMUNICATION MODEL 55

For reasonably simple expressions, the compiler transforms such index expressions

into the canonical form by performing symbolic expression operations [54]. However,

it may not always be possible to perform such transformations for complex expres-

sions.

Example 3 (vector-valued index) Consider the statement

forall (i=1:N) A(U(i)) = B(V(i)) + C(i)

The iteration i causes an assignment to elementA(U(i)), where U(i) may only be

known at run-time. Therefore, if iterations are statically assigned at compile time to

various PEs, iteration i is likely to be assigned to a PE other than the one owning

A(U(i)). This is also illustrated in cases 3 and 4 of Figure 15. In this case, the

compiler distributes the computation i with respect to the owner of A(i).

Having presented the computation partitioning alternatives for various reference

patterns of arrays on the lhs, we now present a primitive to perform global to local

transformations for loop bounds.

! computes local lb, ub, st from global ones

set_BOUND(llb,lub,lst,glb,gub,gst,DIST,dim)

The set BOUND primitive takes a global computation range with global lower

bound, upper bound and stride. It distributes this global range statically among the

group of processors speci�ed by the dim parameter on the logical processor dimension.

The DIST parameter gives the distribution attribute such as block or cyclic. The

set BOUND primitive computes and returns the local computation range in local

lower bound, local upper bound and local stride for each processor. The algorithm

to implement this primitive can be found in [50].

CHAPTER 5. COMMUNICATION MODEL 56

The other functionality of the set BOUND primitive is to mask inactive processors

by returning appropriate local bounds. For example, such a case may arise when the

global bounds do not specify the entire range of the lhs array. If the inputs for this

primitive are compile-time constants, the compiler can calculate the local bounds at

compile-time.

In summary, our computation and data distributions have two implications.

� The processor that is assigned an iteration is responsible for computing the rhs

expression of the assignment statement.

� The processor that owns an array element (lhs or rhs) must communicate the

value of that element to the processors performing the computation.

5.2 Why Use Runtime Collective Communication?

Our Fortran 90D/HPF compiler produces calls to collective communication routines

[49] instead of generating individual processor send and receive calls inside the com-

piled code. There are four main reasons for using collective communication to support

interprocessor communication in the Fortran 90D/HPF compiler.

1. Improved performance of Fortran 90D/HPF programs. To achieve good perfor-

mance, interprocessor communication time must be minimized. By developing

a separate library of interprocessor communication routines, each routine can

be optimized. This is particularly important given that the routines will be

used by many programs compiled through the compiler.

CHAPTER 5. COMMUNICATION MODEL 57

2. Increased portability of the Fortran 90D/HPF compiler. By separating the com-

munication library from the basic compiler design, portability is enhanced be-

cause to port the compiler, only the machine speci�c low-level communication

calls in the runtime library need to be changed to support a new system

3. Improved performance estimation of communication costs. Our compiler uses

the data distribution for the source arrays speci�ed by compiler directives. How-

ever, a future compiler may require a capability to perform automatic data dis-

tribution and alignment [47, 40, 46]. Such techniques usually require computing

trade-o�s between exploitable parallelism and the communication costs. The

costs of collective communication routines can be determined more precisely,

thereby enabling the compiler to generate better distributions automatically.

4. Reduce the complexity of the compiler. Interprocessor communication is one

of the most error-prone aspects of writing parallel programs. Furthermore, the

communication bugs may be intermittent and are di�cult to discover, especially

when using large numbers of processors. Similar problems may exist if the

communication is generated at a low level inside the compiler. Separating the

two by developing an independent library of communication routines frees the

compiler writer from the complexities of interprocessor communications.

5.3 Communication Primitives

In order to perform a collective communication on array elements, the communication

primitive needs the following information

1. send processors list

CHAPTER 5. COMMUNICATION MODEL 58

2. receive processors list

3. local index list of the source array

4. local index list of the destination array

There are two ways of determining the above information. 1) Use a preprocess-

ing loop to compute the above values or, 2) Based on the type of communication,

the above information may be implicitly available, and therefore, not require prepro-

cessing. We classify our communication primitives into unstructured and structured

communication.

Our structured communication primitives are based on a logical grid con�guration

of the processors. Hence, they use grid-based communications such as shift along

dimensions, broadcast along dimensions etc. The following summarizes some of the

structured communication primitives .

� transfer: Single source to single destination message.

� multicast: broadcast along a dimension of the logical grid.

� overlap shift: shifting data into overlap areas in one or more grid dimensions.

This is particularly useful when the shift amount is known at compile time. This

primitive uses that fact to avoid intra processor copying of data and directly

stores data in the overlap areas [55].

� temporary shift: This is similar to overlap shift except that the data is shifted

into a temporary array. This is useful when the shift amount is not a compile

time constant. This shift may require intra-processor copying of data.

CHAPTER 5. COMMUNICATION MODEL 59

� concatenation: This primitive concatenates a distributed array and the resul-

tant array ends up in all the participating processors in this primitive.

The other structured communications in data parallel languages are tree-based

communications to perform reduction operations on the speci�ed dimensions of ar-

rays. For example, in Fortran 90D/HPF, the reduction operations on arrays are

included as intrinsic functions which can be e�ciently hand-coded and supplied as a

part of the run-time library for the compiler. Therefore, tree-based communication

primitives patterns are not considered in this chapter.

The other advantages of these types of communication primitives are that they

can be combined to form composite communication patterns for better performance.

(This will be elaborated on in section 5.5.) Further, some structured communication

calls can be eliminated using appropriate alignment directives.

Example 1 (Alignment) Consider the following statement:

!F90D$ ALIGN A,B with T

A(1:N-1,1:N-1) = B(2:N,2:N)

The above code results in an overlap shift of array B in two dimensions. However,

note that this shift communication may be avoided by the aligning arrays A and B

as shown below.

!F90D$ ALIGN A(I,J) with T(I,J)

!F90D$ ALIGN B(I,J) with T(I-1,J-1)

We have implemented two sets of unstructured communication primitives: One,

to support cases where the communicating processors can determine the send and

receive lists based only on local information, and hence, only require preprocessing

CHAPTER 5. COMMUNICATION MODEL 60

that involves local computations [21], and the other, where to determine the send and

receive lists, preprocessing itself requires communication among the processors [27].

The primitives are as follows.

� precomp read: This primitive is used to bring all non-local data to the place

it is needed before the computation is performed.

� postcomp write: This primitive is used to store remote data by sending it to

the processors that own the data after the computation is performed. Note that

these two primitives require only local computation in the preprocessing loop.

� gather: This is similar to precomp read except that preprocessing loop itself

may require communication.

� scatter: This is similar to postcomp write except that preprocessing loop itself

may require communication.

5.4 Communication Detection

The compiler must recognize the presence of collective communication patterns in the

computations in order to generate the appropriate communication calls. Speci�cally,

this involves a number of tests on the relationship among subscripts of various ar-

rays in a forall statement. These tests should also include information about array

alignments and distributions. We use pattern matching techniques similar to those

proposed by Marina Chen [37] and also used by Gupta [41]. However, we also need to

perform transformation of array indices in order to account for di�erent alignments

and distributions. Further, we extend the above tests to include unstructured com-

munication. We also note that we do not expand scalars because scalars are replicated

CHAPTER 5. COMMUNICATION MODEL 61

Algorithm 1 (Detecting the communication for the forall statement.)

Input: Forall statement with untagged array and array subscripts
Output: Forall statement with arrays and array subscripts tagged

with communication primitives.

Method:

1. for each RHS array do

2. if (is aligned same template(LHS,RHS)) then
3. for each subscript gi of RHS do

4. �nd fj such that gi and fj are aligned with the same dimension of a template

5. if the pair (fj, gi) is in Table 2
tag the subscript gi with the corresponding structured communication primitive.

6. end do

7. end if

8. � if an untagged distributed dimension of array reference pattern is in Table 3,

tag the RHS array with the unstructured primitives
to read RHS before computation.

9. end do

10. � if a distributed dimension of LHS reference pattern is in Table 3

tag the LHS array with the unstructured primitives

to write LHS after computation

11. � if LHS array is not distributed

tag the distributed RHS array with concatenation primitive.

accross processors.

We consider the following forall statement to illustrate the steps involved in

communication detection.

forall(i1=l1:u1:s1, i2= ..., ...)

LHS(f1,f2,...,fn) = RHS1(g1,g2,...,gm) + ...

where gi and fj, 1 � i � m, 1 � j � n are functions of index variables or indirection

arrays. The steps involved in determining a communication pattern are summarized

in Algorithm 1.

CHAPTER 5. COMMUNICATION MODEL 62

The algorithm uses two di�erent tables. Table 2 detects structured communica-

tion primitives based on the relationship between the lhs and rhs array subscript

reference pattern for BLOCK distribution. Table 3 detects unstructured communica-

tion primitives. Tables 2 and 3 use variables to represent c: compile time constant,

s: scalar, f : invertible function, V : an indirection array.

The algorithm �rst attempts to detect structured communication if the arrays are

aligned to the same template. For each array on the rhs, the following processing

is performed. For each subscript of the array, it is coupled with the corresponding

subscript on the lhs array such that both subscripts are aligned with the same dimen-

sion of the template. For each such pair, the algorithm attempts to �nd a structured

communication pattern in that dimension according to Table 2. If a structured com-

munication pattern is found then the subscript on the rhs is is tagged, indicating the

appropriate communication primitive.

Table 5.2: Structured communication detection.

Steps (lhs,rhs) Comm. primitives

1 (i; s) multicast
2 (i; i + c) overlap shift
3 (i; i � c) overlap shift
4 (i; i + s) temporary shift
5 (i; i � s) temporary shift
6 (d; s) transfer
7 (i; i) no communication

If any distributed dimension of an array on the rhs is left untagged then the array

is marked with one of the unstructured communication primitives (the third column

of Table 3) depending on the reference pattern given in the second column of Table

3.

CHAPTER 5. COMMUNICATION MODEL 63

Table 5.3: Unstructured communication detection.

Steps Reference pattern Comm. primitives to read RHS Comm. primitive to write LHS

1 f(i) precomp read postcomp write
2 V (i) gather scatter
3 unknown gather scatter

The algorithm tags the lhs array as postcomp write or scatter according to the ref-

erence pattern given in Table 3 if one or more of the distributed dimension's subscript

is in non-canonical form , or is vector-valued or is unknown. Note that any pattern

that can not be classi�ed according to Tables 2 or 3, is marked as unknown (such as

when a subscript involves more than one forall index, e.g I + J) so that scatter and

gather can be used to parallelize any forall statement.

Finally, the algorithm marks the distributed RHS array with the concatenation

primitive if the LHS array is replicated.

5.5 Communication Generation

Having recognized the type of communication in each dimension of an array for struc-

tured communication or each array for unstructured communication in a forall state-

ment, the compiler needs to perform the appropriate program transformations. We

now illustrate these transformations.

5.5.1 Structured Communication

All the examples discussed below have the following mapping directives.

CHPF$ PROCESSORS(P,Q)

CHPF$ DISTRIBUTE TEMPL(BLOCK,BLOCK)

CHAPTER 5. COMMUNICATION MODEL 64

CHPF$ ALIGN A(I,J) WITH TEMPL(I,J)

CHPF$ ALIGN B(I,J) WITH TEMPL(I,J)

Example 1 (transfer) Consider the statement:

FORALL(I=1:N) A(I,8)=B(I,3)

The �rst subscript of B is marked as no communication because A and B are

aligned in the �rst dimension and have identical indices. The second dimension is

marked as transfer.

1. call set_BOUND(lb,ub,st,1,N,1)

2. call set_DAD(B_DAD,.....)

3. call transfer(B, B_DAD, TMP,src=global_to_proc(8),

dest=global_to_proc(3))

4. DO I=lb,ub,st

5. A(I,global_to_local(8)) = TMP(I)

6. END DO

In the above code, the set BOUND primitive (line 1) computes the local bounds

for computation assignment based on the iteration distribution (Section 5.1). In line

2, the primitive set DAD is used to �ll the Distributed Array Descriptor (DAD) asso-

ciated with array B so that it can be passed to the transfer communication primitive

at run-time. The DAD has su�cient information for the communication primitives

to compute all the necessary information including local bounds, distributions, global

shape etc. Note that transfer performs one-to-one send-receive communication based

on the logical grid. In this example, one column of grid processors communicate with

another column of the grid processors as shown in Figure 16 (a).

Example 2 (multicast) Consider the statement:

CHAPTER 5. COMMUNICATION MODEL 65

FORALL(I=1:N,J=1:M) A(I,J)=B(I,3)

The second subscript of B marked as multicast and the �rst as no communication.

1. call set_BOUND(lb,ub,st,1,N,1)

2. call set_BOUND(lb1,ub1,st1,1,M,1)

3. call set_DAD(B_DAD,.....)

4. call multicast(B, B_DAD, TMP,

& source_proc=global_to_proc(3), dim=2)

5. DO I=lb,ub,st

6. DO J=lb1,ub1,st1

7. A(I,J) = TMP(I)

8. END DO

Line 4 shows a broadcast along dimension 2 of the logical processor grid by the

processors owning elements B(I; 3) where 1 � I � N (Figure 16 (b).)

Example 3 (multicast shift) Consider the statement:

FORALL(I=1:N,J=1:M) A(I,J)=B(3,J+s)

The �rst subscript of array B is marked as multicast and the second subscript is

marked as temporary shift. The above communication can be implemented as two

separate communication steps: multicast along the �rst dimension of logical grid and

temporary shift along the second dimension of the logical grid. Alternatively, the two

communication patterns can be composed together to obtain a better communication

primitive such as the multicast shift primitive.

call set_BOUND(lb,ub,st,1,N,1) ! compute local lb, ub, and st

call set_BOUND(lb1,ub1,st1,1,M,1) ! compute local lb, ub, and st

multicast_shift(B, B_DAD,TMP, source=global_to_proc(3),

& shift=s, multicast_dim=1, shift_dim=2)

DO I=lb,ub,st

CHAPTER 5. COMMUNICATION MODEL 66

DO J=lb1,ub1,st1

A(I,J)=TMP(J)

END DO

END DO

Combining two primitives eliminates the need for creating temporary storage and

eliminates some of intra-processor copying, message-packing, and unpacking.

(a) transfer (b) multicast

Figure 5.16: Structured communication on logical grid processors.

5.5.2 Unstructured Communication

In distributed memory MIMD architectures, there is typically a non-trivial commu-

nication latency or startup cost. Hence, it is attractive to vectorize messages to

reduce the number of startups. For unstructured communication, this optimization

can be achieved by performing the entire preprocessing loop before communication

CHAPTER 5. COMMUNICATION MODEL 67

so that the schedule routine can combine messages to the maximum extent. The

preprocessing loop is also called the \inspector" loop [28, 20].

Example 1 (precomp read) Consider the statement:

FORALL(I=1:N) A(I)=B(2*I+1)

The array B is marked as precomp read since the distributed dimension subscript

is written as f(i) = 2 � i+ 1 which is invertible as g(i) = (i� 1)=2.

CHAPTER 5. COMMUNICATION MODEL 68

1 count=1

2 call set_BOUND(lb,ub,st,1,N,1)

3 DO I=1, N/P

4 receive_list(count)=global_to_proc(f(i))

5 send_list(count)= global_to_proc(g(i))

6 local_list(count) = global_to_local(g(i))

7 count=count+1

8 END DO

9 isch=schedule1(receive_list, send_list,local_list,count)

10 call precomp_read(isch, tmp,B)

11 count=1

12 DO I=1, N/P

13 if((I.ge.lb).and.(I.le.ub).and.(mod(I,st).eq.0))

& A(I) = tmp(count)

14 count= count+1

15 END DO

The preprocessing loop is given in lines between 1-9. Note that this preprocessing

loop executes concurrently in each processor. The loop covers the entire local array

bounds since each processor has to calculate the receive list as well as the send list of

processors. Each processor also �lls the local indices of the array elements which are

needed by that processor.

The schedule1 routine does not need to communicate, it constructs the schedul-

ing data structure isch. The schedule isch can also be used to carry out identical

patterns of data exchanges on several di�erent but identically distributed arrays or

array sections. The same schedule can be reused repeatedly to carry out a particular

pattern of data exchange on a single distributed array. In these cases, the cost of

CHAPTER 5. COMMUNICATION MODEL 69

generating the schedules can be amortized by only executing it once. This analysis

can be performed at compile time. Hence, if the compiler recognizes that the same

schedule can be reused, it does not generate code for scheduling, it passes a pointer

to the already existing schedule. Furthermore, the preprocessing computation can be

moved up as much as possible by analyzing de�nition-use chains [56]. Reduction in

communication overhead can be signi�cant if the scheduling code can be moved out

of one or more nested loops by this analysis. In the above example, local list (line 6)

is used to store the index of one-dimensional array. However, in general, local list will

store indices from a multi-dimensional Fortran array using the usual column-major

subscript calculations to map the indices to a one-dimensional index.

The precomp read primitive performs the actual communication using the sched-

ule. Once the communication is performed, the data is ordered in a one dimensional

array, and the computation (lines 12-15) uses this one dimensional array. The pre-

comp read primitive brings an element into temp for each local array element since

preprocessing loops covers entire local array. The if statement masks the assignment

to preserve the semantics of the original loop.

Example 2 (gather) Consider the statement

FORALL(I=1:N) A(I)=B(V(I))

The array B is marked as requiring gather communication since the subscript

is only known at runtime. The receiving processors can know what non-local data

they need from other processors, but a processor may not know what local data it

needs to send to other processors. For simplicity, in this example, we assume that the

indirection array V is replicated. If V is not replicated, it must also be communicated

to compute the receive list on each processor.

CHAPTER 5. COMMUNICATION MODEL 70

1 count=1

2 call set_BOUND(lb,ub,st,1,N,1)

3 DO I=lb,ub,st

4 receive_list(count)=global_to_proc(V(i))

6 local_list(count) = global_to_local(V(i))

7 count=count+1

8 END DO

9 isch = schedule2(receive_list, local_list, count)

10 call gather(isch, tmp,B)

11 count=1

12 DO I=lb,ub,st

13 A(I) = tmp(count)

14 count= count+1

15 END DO

Once scheduling is completed, every processor knows exactly which non-local data

elements it needs to send to and receive from other processors. Recall that the task

of scheduler2 is to determine exactly which send and receive communications must

be carried out by each processor. The scheduler �rst �gures out how many messages

each processor will have to send and receive during the data exchange. Each processor

computes the number of elements (receive list) and the local index of each element

it needs from all other processors. In schedule2 routine, processors communicate to

combine these lists (a fan-in type of communication). At the end of this processing,

each processor contains the send and receive list. After this point, each processor

transmits a list of required array elements (local list) to the appropriate processors.

Each processor now has the information required to set up the send and receive

CHAPTER 5. COMMUNICATION MODEL 71

messages that are needed to carry out the scheduled communication. This is done

by the gather primitives. Note that schedule1 does not need to communicate to form

scheduling unlike schedule2.

Example 3 (scatter) Consider the statement

FORALL(I=1:N) A(U(I))=B(I)

The array A is marked as requiring scatter primitive since the subscript is only

known at runtime. Note that the owner computes rule is not applied here. The

processor performing the computation knows the processor and the corresponding

local-o�set where the resultant element must be written.

1 count=1

2 call set_BOUND(lb,ub,st,1,N,1)

3 DO I=lb,ub,st

4 send_list(count)=global_to_proc(U(i))

6 local_list(count) = global_to_local(U(i))

7 count=count+1

8 END DO

9 isch = schedule3(proc_to, local_to, count)

10 call scatter(isch, A, B)

Unlike the gather primitive, each processor computes a send list containing pro-

cessor ids and a local list containing the local index where the communicated data

must be stored. The schedule3 routine is similar to schedule2 of the gather primitive

except that schedule3 does not need to send local index in a separate communication

step.

CHAPTER 5. COMMUNICATION MODEL 72

The gather and scatter operations are powerful enough to provide the ability to

read and write distributed arrays with a vectorized communication facility. These two

primitives are available in PARTI (Parallel Automatic Runtime Toolkit at ICASE)

[28] which is designed to e�ciently support irregular patterns of distributed array

accesses. The PARTI and other communication primitives and intrinsic functions

form the unstructured run-time support system of our Fortran 90D/HPF compiler.

5.6 Run-time Support System

The Fortran 90D/HPF compiler relies on a powerful run-time support system. The

run-time support system consists of functions which can be called from the node

programs of a distributed memory machine. Runtime system e�ciently support the

address translations and data movements that occur when mapping a shared address

space program onto a multiple processor architecture.

Intrinsic functions support many of the basic data parallel operations in Fortran

90. The intrinsics not only provide a concise means of expressing operations on

arrays, but also identify parallel computation patterns that may be di�cult to detect

automatically. Fortran 90 provides intrinsic functions for operations such as shift,

reduction, transpose, and matrix multiplication. The intrinsic functions that may

induce communication can be divided into �ve categories as shown in Table 4.

The �rst category requires data to be transferred using the low overhead struc-

tured shift communications operations. The second category of intrinsic functions

require computations based on local data followed by use of a reduction tree on the

processors involved in the execution of the intrinsic function. The third category uses

multiple broadcast trees to spread data. The fourth category is implemented using

CHAPTER 5. COMMUNICATION MODEL 73

Table 5.4: Fortran 90D/HPF Intrinsic Functions

1. Structured 2. Reduction 3. Multicasting 4. Unstructured 5. Special

communication communication routines

CSHIFT DOTPRODUCT SPREAD PACK MATMUL

EOSHIFT ALL, ANY UNPACK

COUNT RESHAPE

MAXVAL, MINVAL TRANSPOSE

PRODUCT

SUM

MAXLOC, MINLOC

unstructured communication patterns. The �fth category is implemented using exist-

ing research on parallel matrix algorithms [49]. Some of the intrinsic functions can be

further optimized for the underlying hardware architecture. Fortran 90D/HPF com-

piler includes more than 500 parallel run-time support routines. Fortran 90D/HPF

run-time is written with Fortran 77 language. If the run-time is implemented with

C language, the number of run-time routines may reduce drastically. The run-time

implementation details can be found in [51].

Arrays may be redistributed across subroutine boundaries. A dummy argument

which is distributed di�erently than its actual argument in the calling routine is

automatically redistributed upon entry to the subroutine, and is automatically re-

distributed back to its original distribution at subroutine exit. These operations are

performed by the redistribution primitives which transform from block to cyclic or

vice versa.

When a distributed array is passed as an argument to some of the run-time support

primitives, it is also necessary to provide information such as its size, its distribution

among the nodes of the distributed memory machine, and other information. All this

information is stored into a structure which is called the distributed array descriptor

CHAPTER 5. COMMUNICATION MODEL 74

(DAD) [51]. DADs pass compile-time information to the run-time system and infor-

mation between run-time primitives. The run-time primitives query alignment and

distribution information from a DAD and act upon that information.

The basic layer of a run-time system should be a portable message passing system

like Express [57], PVM [58], MPI [59] or PARMACS [60]. Only this approach guaran-

tees the portability of the HPF compiler accross many di�erent platforms. PARMACS

is based on the host-node style programming which is not god for Fortran 90D/HPF

compilation. PVM are avaliable for nearly all machines, but functinality and e�cency

is rather low. MPI support many di�erent communication modes, especially blocking

and non-blocking communication.

Our run-time library uses the Express parallel programming environment [57]

as a message passing communication primitives. The Express parallel programming

environment [57] guarantees a level of portability on various platforms including, Intel

iPSC/860, nCUBE/2, networks of workstations etc. We choose the Express because

it was the avaliable one at the time of Fortran 90D/HPF implementation.

In summary, parallel intrinsic functions, communication routines, dynamic data

redistribution primitives and other primitives and routines are part of the run-time

support system.

5.7 Storage Management

Data-parallel scienti�c codes generally require tremendous amounts of memory. In

addition to speed-up, this is one of the reasons to run scienti�c code on distributed

memory parallel machines. Besides the user's data, an HPF compiler must create

storage for several reasons:

CHAPTER 5. COMMUNICATION MODEL 75

1. When an array expression is passed to a subroutine, storage must be created to

hold the value of the expression.

2. When an array-valued function is used in an expression, storage must be created

to hold the return value of the function.

3. When a forall statement, if scalarized, would carry a dependency, storage must

be created to hold the value of the right hand side.

4. When a transformational function is referenced within a forall, storage must be

created to hold the result of the transformational function.

5. The communications strategy requires creation of storage for nonlocal array

references.

The simplest approach to storage management may allocate full-sized arrays on

each processor for all the above cases but this strategy could waste tremendous

amount of memory. The compiler should use sophisticated storage management tech-

niques to reduce memory use. Fortran 90D/HPF uses two di�erent storage allocation

techniques, overlap areas and temporary arrays.

Overlap areas are expansions of local array sections to accommodate neighboring

nonlocal elements. Overlaps are useful for regular computation because they allow the

generation of clear and readable code. However, for certain computations storage may

be wasted because all array elements between the local section and the one accessed

must also be part of the overlap. Storage is also wasted because overlaps are assigned

to individual arrays, and cannot be reused or released until arrays have completed

their lifetimes. Our compiler uses the overlap storage for overlap shift communication

for small shift values.

CHAPTER 5. COMMUNICATION MODEL 76

Temporary arrays are another form of storage. A temporary array is usually

aligned and distributed in the same manner as one of the user variables; that is the

HPF program could be written in such a way that none of these temporaries would be

needed. The algorithm used by the compiler to determine distribution of temporaries

takes the statement in which the temporary is used into account. Temporaries are

allocated before the statement in which they are used, and deallocated immediately

after that statement. For example, an array assignment like:

REAL A(N), B(N), C(N), D(N)

A = SUM(B, DIM=1) + MATMUL(C,D)

would result in the following:

allocate (tmp$b)

allocate (tmp$r)

call sum(tmp$b, b, 1)

call matmul(tmp$r, c, d)

a = tmp$b + tmp$r

deallocate(tmp$b)

deallocate(tmp$r)

For this class of temporaries, distribution of a temporary is determined depend-

ing on how the temporary is used. If a temporary is used as the argument to an

intrinsic, the compiler tries to determine its distribution based on the other intrinsic

arguments. Otherwise, it tries to assign a distribution based on the value assigned to

the temporary. Otherwise, the temporary is replicated.

The above algorithm is very simple and is certainly not optimal. However, it is

not clear what algorithm would perform better. Numerous factors, including array

alignment, array distribution, array subsection usage, and argument usage need to

CHAPTER 5. COMMUNICATION MODEL 77

be taken into account in determining temporary distribution. For example, consider

the following case:

A(1:m:3) = SUM(B(1:n:2,:) + C(:,1:n:2), dim=2)

The section of A is passed directly to the SUM intrinsic to receive the result.

A temporary is needed to compute the argument to SUM. The distribution of that

temporary has two possibly con
icting goals: minimize communication in the B +C

expression, or minimize communication in the SUM computation and assignment to

A.

Chapter 6

Optimizations

Performance for Fortran 90D/HPF programs and their communications on any par-

ticular parallel system is in
uenced by several factors including the amount of commu-

nications required by a program for computation and for overhead and the system's

latency and bandwidth where communication is required. Another factor that in
u-

ences performance is the number and power of optimizations performed to improve

or eliminate communications.

Our compiler performs several optimizations to reduce the total cost of communi-

cation. There are several optimizations that can be applied to communications that

are not present in the prototype compiler that are intended for future releases.

This chapter introduces a number of optimization techniques used by the Fortran

90D/HPF compilation system. The chapter applies some of these optimizations onto

Gaussian Elimination code written in Fortran 90D/HPF to show the e�ectiveness of

optimizations.

78

CHAPTER 6. OPTIMIZATIONS 79

6.1 Single Node Parallelism

In terms of computation optimization, it is expected that the scalar node compiler

performs a number of classic scalar optimizations within basic blocks. These opti-

mizations include common subexpression elimination, copy propagation (of constants,

variables, and expressions), constant folding, useless assignment elimination, and a

number of algebraic identities and strength reduction transformations. However, to

use parallelism within the single node (e.g. using attached vector units), our com-

piler propagates the information to the node compiler using node directives. Since,

in the original data parallel constructs such as the forall statement, there is no data

dependency between di�erent loop iterations, vectorization can be performed easily

by the node compiler.

6.2 Communication Hierarchy

Communication is divided into a hierarchy of types, with the lowest types in the

hierarchy being more expensive. The hierarchy is as follows:

1) No communication. The left and right hand side arrays reside on the same

processor.

2) Overlap shift. A BLOCK-distributed array is involved in a shift communication

pattern. The local array section is enlarged by the shift amount, and the boundary

elements are transferred from neighboring processors.

3) Collective communications. Two arrays, aligned to the same template, are

involved in a multicast, transfer, or variable shift pattern.

4) Pre read and pre write. An array is indexed with an arbitrary subscript, but

CHAPTER 6. OPTIMIZATIONS 80

the evaluation of the subscript does not involve any communication. For example,

this primitive can e�ciently handle the transpose or diagonal accesses that may arise

in a forall statement.

5) gather and scatter. An array is indexed with a subscript that involves commu-

nication.

6) Scalarization. No e�cient communication pattern was found, so every processor

performs the entire loop, broadcasting the data that it owns one element at a time,

and storing the results that it owns.

6.3 Vectorized Communication

One of the important considerations for message passing on distributed memory ma-

chines is the setup time required for sending a message. Typically, this cost is equiv-

alent to the sending cost of hundreds of bytes. Vectorization combines messages for

the same source and destination into a single message to reduce this overhead [17, 61]

Since in Fortran 90D/HPF we are only parallelizing array assignments and forall

loops, there is no data dependency between di�erent loop iterations. Thus, all the

required communication can be performed before or after the execution of a loop on

each of the processors involved as shown in Figure 17.

6.4 Overlap Shift Communications

The overlap shift communications optimization recognizes computations with arrays

that contain an overlap pattern as shown in table 6-1. When the array involved in

an overlap shift computation is allocated the overlap area [55] is also allocated and

remains available until a computation requiring an overlap shift area. Immediately

CHAPTER 6. OPTIMIZATIONS 81

P1 P2 P1 P2

(a) Before (b) After

Figure 6.17: Message Vectorization

before the computation, the overlap shift area is �lled with the current value(s) of the

overlap data (this requires communications). By allocating an overlap shift area, the

compiler localizes a portion of a computation prior to the computation that would

otherwise require communication during the computations. Figure 18 graphically

shows the overlap shift optimization for code similar to the following.

PROGRAM TEST_OVERLAP

INTEGER I, A(8), B(8)

!F90D$ DECOMPOSITION T(8)

!F90D$ ALIGN A(J) WITH T(J)

!F90D$ ALIGN B(J) WITH T(J)

!F90D$ DISTRIBUTE T(BLOCK)

FORALL(I=1:7) A(I)=B(I+1)

In the �rst stage of the overlap shift communication, the compiler determines that

a computation involving the array B requires an overlap shift area in the positive

direction (Fortran 90D/HPF also permits negative overlaps shift areas). A portion

of B is then allocated with the extra overlap location(s).

CHAPTER 6. OPTIMIZATIONS 82

Data Allocated on PROC(1)

Overlap shift data area

Data Allocated on PROC(2)

Allocation with

Overlap Shift
Allocation without

Overlap Shift

B(1)

B(2)

B(3)

B(4)

B(5)

B(5)

B(6)

B(7)

B(8)

B(1)

B(2)

B(3)

B(4)

B(5)

B(6)

B(7)

B(8)

Figure 6.18: Sample Overlap Shift Optimization

CHAPTER 6. OPTIMIZATIONS 83

6.5 Message Aggregation

The communication library routines try to aggregate messages [37, 17, 61] (corre-

sponding to several array sections) into a single larger message, possibly at the ex-

pense of extra copying into a continues bu�er. A communication routine �rst calcu-

lates the largest possible array section from this processor to the rest. These may

indicate several continuous block of data. Then, it tries to sort the continuous data by

destination. Then it aggregates non-continuous array sections (messages) into a con-

tinuous message bu�ers. Messages with an identical destination processor can then

be collected into a single communication operation as shown at Figure 19. The gain

from message aggregation is similar to vectorization in that multiple communication

operations can be eliminated at the cost of increasing the message length.

(a) Before (b) After
P2P1P2P1

Figure 6.19: Message Aggregation

CHAPTER 6. OPTIMIZATIONS 84

6.6 Evaluating Expression

Another optimization Fortran 90D/HPF performs involves how expressions are eval-

uated. For example, consider the following program fragment:

REAL A(N), B(N), C(N), D(N), E(N)

!HPF$ distribute E(BLOCK)

!HPF$ distribute (CYCLIC) :: A, B, C, D

E = (A + B) * (C + D)

In a compiler that blindly applies the owner computes rule, A, B, C and D will be

redistributed into temporaries that match the distribution of E, then the computation

will be performed locally. This may cause four di�erent communications with four

di�erent temporaries.

A more intelligent approach might perform the sum of A and B locally into a

cyclically distributed temporary, then perform the sum of C and D locally into an-

other cyclically distributed temporary. Then multiply those two temporaries locally

into a cyclically distributed a temporary, �nally, redistribute the result into E. This

approach may cause one communication with three temporaries (shown in Figure

20(b)).

To apply the above optimization, the compiler has to evaluate the expression

according the partial order induced by the expression tree (shown Figure 20(a)).

However, Li and Chen [40] show that the problem of determining an optimal static

alignment between the dimension of distinct arrays arrays is NP-complete. Chatterjee

et al. [62] and Bouchitte et al. [63] propose some heuristic algorithms to evaluate the

expression tree with minimal cost.

CHAPTER 6. OPTIMIZATIONS 85

A B C D

+ +

*

E

A B C D

tmp1 tmp2

tmp3

+ +

*

(a) Before (b) After

Figure 6.20: Expression Evaluation Trees

6.7 Communication Parallelization

When a block of source data is replicated, any or all of the processors owning it

can take part in the communication. Alternatively, one of the source processors is

chosen to send to all processors owning the destination block. Ideally, the sends

should be spread out over as many source processors as possible to utilize as full

available communication bandwidth (shown in Figure 21). This idea is observed by

Mark Young [64].

The basic idea is to somehow divide the set of destination processors among the

set of source processors. Each source would do a multicast to its assigned subset of

destinations. The source and destination sets are computable from information in the

template and processor data structures.

CHAPTER 6. OPTIMIZATIONS 86

P1

P2

P3

P4

P1

P2

P3

P4

(a) Before (b) After

Figure 6.21: Parallel Communication

6.8 Communications Union

In many cases, communication required for two di�erent operands can be replaced

by their union. Clearly, the advantage of communication union is that it reduces the

number of communication statements and thus the number of messages. For example,

the following code may require two overlapping shifts. However, with simple analysis,

the compiler can eliminate the shift of size 2.

FORALL(I=1:N) A(I)=B(I+2)+B(I+3)

The communication union optimization can be applied in a statement as well as

inter statement. The compiler needs data-
ow analysis infra-structure to perform

inter statements communication union.

CHAPTER 6. OPTIMIZATIONS 87

6.9 Eliminate Unnecessary Communications

In many cases, some portion of distributed arrays are used more than once with the

same pattern. The compiler can detect that two references to an array section that has

the same pattern if between those references the array is unaltered. The compiler may

eliminate extra communications and use the �rst communication's temporary instead

of the second communication. Again this optimization can be done in a statement

and on as inter statements basis. Section 6.15 shows a Gaussian Elimination sample

program using the eliminate unnecessary communications optimization.

6.10 Reuse of scheduling information

Unstructured communication primitives are required by computations which require

the use of a preprocessor. As discussed in Section 5.5.2, the schedules can be reused

with appropriate analysis [21, 26] The communication routines perform sends and

receives according the scheduling data structure called isch.

The schedule isch can also be used to carry out identical patterns of data exchanges

on several di�erent but identically distributed arrays or array sections. The same

schedule can be reused repeatedly to carry out a particular pattern of data exchange

on a single distributed array. In these cases, the cost of generating the schedules can

be amortized by only executing the schedule generation routine once. This analysis

can be performed at compile time. Hence, if the compiler recognizes that the same

schedule can be reused, it does not generate code for scheduling but it passes a

pointer to an already existing and saved schedule. Furthermore, the preprocessing

computation can be moved up as much as possible by analyzing de�nition-use chains

CHAPTER 6. OPTIMIZATIONS 88

[56]. Reduction in communication overhead can be signi�cant if the scheduling code

can be moved out of one or more nested loops.

6.11 Code movement

The compiler try to move up some communication routines by analyzing de�nition-use

chains [56] as much as possible . This may lead to moving of the scheduling code out

of one or more nested loops which may signi�cantly reduce the amount of overhead.

The code movement may also vectorize some of communication. For example, the

following loop can not be written as an array construct or a forall statement because

the loop contains the user de�ned function FOO.

DO i=1, N-3

B(i) = A(i+3) + FOO(C(:,i))

ENDDO

The compiler may communicate the array element inside the loop. However, if it

applies the optimization, the code becomes:

tmp(1:N-3) = A(4:N)

DO i=1, N-3

B(i) = tmp(i) + FOO(C(:,i))

ENDDO

The communication from A to B is taken outside of loop. And it is vectorized.

6.12 Forall Dependency

A forall dependency implies that the compiler must generate a temporary to preserve

the forall semantic. Temporaries are needed to store dependent expressions (mask

CHAPTER 6. OPTIMIZATIONS 89

and the rhs of assignment statements). This means two temporaries for the worst

case.

The compiler checks to see if the lhs array does not appear in any of the expres-

sions, or if it appears and it has the same subscript every where. In such a case, the

compiler assumes that the forall is not dependent. This is very simple but e�ective

dependency test.

Even if there is a dependency, the Fortran 90D/HPF compiler performs a forall

dependency analysis after communication generation. Because communication phase

may create temporaries, for communication. This may eliminate dependency unin-

tentionally.

If lhs and rhs array has the same subscripts, that means no dependency and no

communication. If subscripts are di�erent, there will be communication, communica-

tion will create temporary so it eliminates dependency. This means that most of the

time no temporary will be created.

6.13 Forall Loop Interchange

Loop interchange is a transformation that exchanges two levels of a nested loop. Loop

interchange rearranges the execution order of the statement instances associated with

a loop. Loop interchange is one of the most powerful restructuring transformations

[65]. It may be used to enhance vectorization, parallelization and memory access of

DO-loops. Since forall is already vectorized and parallelized, our compiler uses loop

interchange to improve memory accesses. The transformation is valid since forall

semantics do not specify execution order.

Fortran language stores array in usual column-major order. The Fortran 90D/HPF

CHAPTER 6. OPTIMIZATIONS 90

compiler orders the forall triplets according to the column major. For example,

forall(i=1:N,j=1:N) a(i,j) = b(i, j)

This should be written

do j=..

do i=..

a(i,j) = b(i, j)

enddo

enddo

The rule is that the �rst index of lhs will be written the last. This can be used

to reduce bank con
icts, to enhance e�ciency, and to decrease the number of page

faults in a virtual memory system by improving the locality of programs.

6.14 Forall Mask Insertion

Recent parallel computers such as Intel Paragon and Thinking Machine CM-5 have

vector units for each processor. However, most vector units does not perform well if

the loop has a branch instruction in the loop. Such loops may not be vectorized. A

forall mask may cause the generated loop to be un-vectorizable. Fortran 90D/HPF

compiler tries to insert the mask with only depended indices not all indices. For

example, Gaussian Elimination code has a forall:

forall (i = 1:N, j = k:NN, indx(i) .EQ. -1)

& a(i,j) = a(i,j) - fac(i)*row(j)

Here, mask does not depend on the j index, it only depends on i, so we transform

as follows:

CHAPTER 6. OPTIMIZATIONS 91

do i=..

if(index(i).eq.-1) then

do j=..

a(i,j)=....

enddo

endif

enddo

The inner loop becomes a vectorizable loop.

6.15 An Example Program for Optimization

We use Gaussian Elimination (GE) with partial pivoting as an example for translating

a Fortran90D/HPF program into a Fortran+MP program to show e�ectiveness of

communication elimination optimization. The Fortran90D/HPF code is shown in

Figure 22. Arrays a and row are partitioned by compiler directives. The second

dimension of a is block-partitioned, while the �rst dimension is not partitioned. Array

row is block-partitioned. This program illustrates now the programmer of working

in Fortran 90D/HPF may easily parallelize a program. Data parallelism is concisely

represented by array operations, while the sequential computation is expressed by do

loops. More importantly, explicit communication primitives do not need to be added

since the program is written for a single address space using Fortran 90D/HPF.

Figure 23 shows how the Fortran 90D/HPF compiler translates the GE code into

Fortran 77+MP form. It is easy to see that the generated code is structured as alter-

nating phases of local computation and global communication. Local computations

consist of operations by each processor on the data in its own memory. Global com-

munication includes any transfer of data among processors. The compiler partitions

the distributed arrays into small sizes and the parallel constructs are sequentialized

CHAPTER 6. OPTIMIZATIONS 92

1. integer, dimension(N) :: indx

2. integer, dimension(1) :: iTmp

3. real, dimension(N,NN) :: a

4. real, dimension(N) :: fac

5. real, dimension(NN) :: row

6. real :: maxNum

7. C$ PROCESSORS PROC(P)

8. C$ DECOMPOSITION TEMPLATE(NN)

9. C$ DISTRIBUTE TEMPLATE(BLOCK)

10. C$ ALIGN row(J) WITH TEMPLATE(J)

11. C$ ALIGN a(*,J) WITH TEMPLATE(J)

12.

13. indx = -1

14. do k = 0, N-1

15. iTmp = MAXLOC(ABS(a(:,k)), MASK = indx .EQ. -1)

16. indxRow = iTmp(1)

17. maxNum = a(indxRow,k)

18. indx(indxRow) = k

19. fac = a(:,k) / maxNum

20.

21. row = a(indxRow,:)

22. forall (i = 0:N-1, j = k:NN-1, indx(i) .EQ. -1)

23. & a(i,j) = a(i,j) - fac(i) * row(j)

24. end do

Figure 6.22: Fortran 90D/HPF code for GE.

CHAPTER 6. OPTIMIZATIONS 93

into do loops.

The compiler generates the appropriate communication primitives depending on

the reference patterns of distributed arrays. For example, the statement:

temp = ABS(a(:,k))

is transformed into a broadcast primitive since the array a is distributed in the second

dimension. All runtime routines are classi�ed according to data types. For example,

R speci�es the data type of the communication as real and V speci�es that it is

vector communication. The primitive set DAD is used to �ll the Distributed Array

Descriptor (DAD) associated with array a so that it can be passed to the broadcast

communication primitive at run-time. The DAD has su�cient information for the

communication primitives to compute all the necessary information including local

lower and upper bounds, distributions, local and global shape etc. In this way the

communication routines also has an option to combine messages for the same source

and destination into a single message to reduce communication overhead. This is the

typical characteristic of our compiler since we are only parallelizing array assignments

and forall statements in Fortran 90D/HPF, there is no data dependency between

di�erent iterations. Thus, all the required communication can be performed before

or after the execution of the loop on each of the processors involved.

The program code shows how the intrinsic function MAXLOC is translated into

the library routineMaxLoc R M. The su�x R speci�es the data type and M speci�es

thatMAXLOC intrinsic has an optional mask array. Once again the array information

passed to the run-time system with the associated DAD data structure.

Fortran 90D/HPF may perform several optimizations to reduce the total cost of

communication. The compiler can generate better code by observing the following

CHAPTER 6. OPTIMIZATIONS 94

B= NN/P

integer indx(N)

real aLoc(N,B)

real fac(N)

real rowLoc(B)

real maxNum

integer source(1)

call grid_1(P)

do i = 1, N

indx(i) = -1

end do

do k = 1, N

do i = 1, N

mask(i) = indx(i) .EQ. -1

end do

source(1)=(k-1)/B

call set_DAD_2(aLoc_DAD, 1, N, N, k-my_id()*B, k-my_id()*B, B)

call set_DAD_1(temp1_DAD, 1, N, N)

call broadcast_R_V (temp1, temp1_DAD, aLoc, aLoc_DAD, source)

call set_DAD_1(temp1_DAD, 1, N, N)

call set_DAD_1(mask_DAD, 1, N, N)

indxRow = MaxLoc_1_R_M(temp1, temp1_DAD, N, mask, mask_DAD)

source(1)=(k-1)/B

call broadcast_R_S(maxNum, aLoc (indxRow, k-my_id()*B), source)

indx(indxRow) = k

call set_DAD_2(a_DAD, 1, N, N, k-my_id()*B, k-my_id()*B, B)

call set_DAD_1(temp2_DAD, 1, N, N)

call broadcast_R_V (temp2, 1, temp2_DAD, aLoc, 2, aLoc_DAD, source)

do i = 1, N

fac (i) = temp2 (i) / maxNum

end do

do i = 1, 10

rowLoc (i) = aLoc (indxRow, i)

end do

Figure 6.23: Fortran 90D/HPF compiler generated Fortran77+MP code for GE.

CHAPTER 6. OPTIMIZATIONS 95

call set_BOUND(k, NN, llb, lub, 1, B)

do j = llb, lub

do i = 1, N

if (indx (i) .EQ. (-1)) THEN

aLoc (i, j) = aLoc (i, j) - fac (i) * rowLoc (j)

end if

end do

end do

end do

Figure 23: Fortran 90D/HPF compiler generated Fortran77+MP code for GE

(cont.)

from Figure 22:

15. Tmp = ABS(a(:,k))

17. maxNum = a(indxRow,k)

19. fac = a(:,k) / maxNum

The distributed array section a(:; k) is used at lines 15,17 and 19. The array a

is not changed between lines 15-19. Each statement causes a broadcast operation.

Because the compiler performs statement level code generation for the above three

statements. However, the compiler can eliminate two of three communication calls

by performing the above dependency analysis. The compiler needs only generate one

broadcast for line 15 which communicates a column of array a. The Lines 17 and 19

can use the same data. The optimized code is shown in Figure 24. We generated

this program by hand since the optimizations have not yet been implemented in

the Fortran 90D/HPF compiler. Currently our compiler performs statement level

CHAPTER 6. OPTIMIZATIONS 96

optimizations. It does not perform basic-block level optimizations.

To validate the performance of optimization on GE which is a part of the For-

tranD/HPF benchmark test suite [66], we tested three codes on the iPSC/860 and

plotted the results. 1-) The code is given Figure 23. This is shown as the dotted line

in Figure 25, and represent the compiler generated code. 2-) The code in Figure 24.

This appears as the dashed line in Figure 25 and represents the hand optimized code

on the compiler generated code as discussed above. 3-) The hand-written GE with

Fortran 77+MP. This appears as the solid line in Figure 25. The code is written

outside of the compiler group at NPAC to be unbiased.

The programs were compiled using Parasoft Express Fortran compiler which calls

Portland Group if77 release 4.0 compiler with all optimization turned on (-O4). We

can observe that the performance of the compiler generated code is within 10% of

the hand-written code. This is due to the fact that the compiler generated code

produces extra communication calls that can be eliminated using optimizations. The

hand optimized code gives performance close to the hand-written code. From this ex-

periment we conclude that Fortran 90D/HPF compiler, incorporated with node-level

optimizations, can compete with hand-crafted code on some signi�cant algorithms,

such as GE.

CHAPTER 6. OPTIMIZATIONS 97

do k = 1, N

do i = 1, N

mask(i) = indx(i) .EQ. -1

end do

source(1)=(k-1)/B

call set_DAD_2(aLoc_DAD, 1, N, N, k-my_id()*B, k-my_id()*B, B)

call set_DAD_1(temp1_DAD, 1, N, N)

call broadcast_R_V (temp1, temp1_DAD, aLoc, aLoc_DAD, source)

call set_DAD_1(temp1_DAD, 1, N, N)

call set_DAD_1(mask_DAD, 1, N, N)

indxRow = MaxLoc_1_R_M(temp1, temp1_DAD, N, mask, mask_DAD)

maxNum=temp1(indxRow)

indx(indxRow) = k

do i = 1, N

fac (i) = temp1 (i) / maxNum

end do

do i = 1, 10

rowLoc (i) = aLoc (indxRow, i)

end do

call set_BOUND(k, NN, llb, lub, 1, B)

do j = llb, lub

do i = 1, N

if (indx (i) .EQ. (-1)) THEN

aLoc (i, j) = aLoc (i, j) - fac (i) * rowLoc (j)

end if

end do

end do

end do

Figure 6.24: GE with communication elimination optimization.

CHAPTER 6. OPTIMIZATIONS 98

0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16

T
im

e

Processors

Gaussian Elimination

F90D/HPF generated
Hand Optimized

Hand-written

Figure 6.25: Performance of three version of GE. Matrix size is 1023x1024 (time in

seconds).

Chapter 7

Experimental Results

This chapter presents benchmark results to illustrate performance obtained using the

Fortran 90D/HPF compiler. The chapter shows the portability and scalability of the

Fortran 90D/HPF compiler. It gives the performance results for di�erent distribu-

tions. The chapter also compares the Fortran 90D/HPF generated code with the

hand-written Fortran 77 + message passing codes to show that overall performance

of Fortran 90D/HPF compiler and its run-time system is comparable to hand-written

codes.

7.1 Test System

Our experiments were performed on a 16-node Intel iPSC/860 at Northeast Parallel

Architecture Center at Syracuse University and on a 16-node Intel Paragon at the

Portland Group, Inc. Most of the measurements reported were done by using our

Fortran 90D/HPF compiler. Our compiler generates Fortran 77 plus message passing

calls. The generated programs were compiled using the Parasoft Express Fortran

compiler, which calls Portland Group if77 release 4.0 compiler with all optimizations

turned on (-O4). The Fortran 90D/HPF runtime primitives use Parasoft's Express

99

CHAPTER 7. EXPERIMENTAL RESULTS 100

Message Passing system, version 3.0. Timings were taken using extime() an Express

function having an accuracy of one microsecond.

7.2 Portability

One of the principal requirements for users of distributed memory MIMD systems is

some \guarantee" of portability for their code. The Express parallel programming

environment [57] guarantees a level of portability on various platforms including, Intel

iPSC/860, nCUBE/2, networks of workstations etc. We should emphasize that we

have implemented a collective communication library which is currently built on the

top of Express message passing primitives. Hence, in order to change to any other

message passing system such as PVM [58] or MPI [59] (which also run on several

platforms), we only need to replace the calls to the communication primitives in our

communication library (not the compiler). However, it should be noted that a penalty

must be paid to achieve portability because portable routines are normally built on

top of the system routines. Therefore, the performance also depends on how e�cient

communication primitives are on top of which the communication library is built.

As a test application we use Gaussian Elimination, which is a part of the Fortran

D/HPF benchmark test suite [66]. Figure 26 shows the execution times obtained

to run the same compiler generated code on a 16-node Intel/860 and nCUBE/2 for

various problem sizes.

CHAPTER 7. EXPERIMENTAL RESULTS 101

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300

Time

Array size N (Nx(N+1) real)

Gaussian Elimination

iPSC/860 3

3 3 3
3

3
3

3
3

nCUBE/2 +

+
+

+

+

+

+

+

+

Figure 7.26: Gaussian Elimination on a 16-node Intel iPSC/860 and nCUBE/2 (time

in seconds).

CHAPTER 7. EXPERIMENTAL RESULTS 102

7.3 Scalibility

Distributed memory computers are characterized by their scalable architectures. These

distributed-memory systems are expandable and can achieve a proportional perfor-

mance increase without changing the basic architecture. In order to take full advan-

tage of scalable hardware, the software must also be scalable to exploit the increased

computing capability. This section presents benchmark results to illustrate that For-

tran 90D/HPF generates scalable codes to exploit the scalable distributed memory

machine.

All of these benchmarks were run on a 15-processor Intel Paragon. The processors

run at 50 MHz, and each node has 32 MBytes of physical memory. The programs

were compiled using the Fortran 90D/HPF compiler with all optimization turned on,

including the i860 vectorizer which exploits single node parallelism.

The shallow water (shallow) benchmark is a small program (300 lines) abstracting

a 2-dimensional
ow system. The data is distributed in block fashion in one dimen-

sion, (*, block). The generated code consists of many computations of order N2 with

communication mostly consisting of overlap-shifts of order N. Figure 27 shows the

performance of shallow. The super-linear speed-up on the large data set dramati-

cally exhibits the ability of the Fortran 90D/HPF compiler to make large problems

more tractable simply through e�cient use of the larger available core memory on a

multi-processor system.

The partial di�erential equation benchmark (pde1) is a small program (360 lines)

from the Genesis Parallel Benchmark Suite that implements a 3D Poisson Solver

using red-black relaxation through �ve iterations. Figure 29 shows the performance

of pde1. The data is distributed block fashion in one dimension, (*,*,block). Good

CHAPTER 7. EXPERIMENTAL RESULTS 103

scalability is exhibited. The communication mostly consists of overlap-shifts due to

the stencil computations of pde1.

The hyd
o benchmark is a small hydrodynamics program (2000 lines). Figure

28 shows the performance of hyd
o. The data is distributed block fashion in one

dimension, (*,*,block). Good scalability is exhibited. The communication mostly

consists of copy-section and collective-communication.

As shown by the data, benchmark programs written in Fortran 90D/HPF can

achieve reasonable e�ciency given a problem of reasonable size. The �gures show

reasonably good scalability when increasing numbers of processors are used.

7.4 Scalability of Intrinsics

It is desirable that a library be scalable. This section shows that Fortran 90D/HPF li-

brary provides a corresponding performance improvement as the number of processors

increases.

Nproc ALL ANY MAXVAL PRODUCT TRANSPOSE

(1K x 1K) (1K x 1K) (1K x 1K) (256K) (512 x 512)

1 580.6 606.2 658.8 90.1 299.0
2 291.0 303.7 330.4 50.0 575.0

4 146.2 152.6 166.1 25.1 395.0

8 73.84 77.1 84.1 13.1 213.0
16 37.9 39.4 43.4 7.2 121.0

32 19.9 20.7 23.2 4.2 69.0

Table 7.5: Performance of Intrinsic Functions (time in milliseconds).

Table 5 presents a sample of performance numbers for a subset of the intrinsic

functions on iPSC/860. A detailed performance study is presented in [51]. The

times in the table include both the computation and communication times for each

CHAPTER 7. EXPERIMENTAL RESULTS 104

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16

T
im

e
in

 s
ec

on
ds

Processors

shallow size=512x512

Figure 7.27: Shallow Performance

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8

T
im

e
in

 s
ec

on
ds

Processors

hydflo NQ=30

HPF hydflo

Figure 7.28: Hyd
o Performance

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

1 2 3 4 5 6 7 8

T
im

e
in

 s
ec

on
ds

Processors

PDE1 size 64**3

HPF pde1

CHAPTER 7. EXPERIMENTAL RESULTS 105

function. For most of the functions we were able to obtain almost linear speedups.

In the case of the TRANSPOSE function, going from one processor to two or four

actually results in an increase in the time due to the communication requirements.

However, for larger size multiprocessors the times decrease as expected.

7.5 An Experiment with Distributions

A signi�cant advantage of coding in Fortran 90D/HPF is the ability to specify dif-

ferent distribution directives and measure performance di�erences without extensive

recoding. Block distribution strategy for allocating elements to a processor is ideal for

computations that reference adjacent elements along an axis, as is the case in many

relaxation methods [67]. The number of references to non-local variables for a given

number of local variables is minimized when the volume to surface ratio is maximized.

However, block distribution may result in poor load balance. Some experimentation

along these lines was performed on the Gauss benchmark (gauss), which is a program

designed to measure the performance of a Gaussian elimination algorithm.

Figure 7.5 gives the main factorization loop of gauss which converts matrix a to

upper triangular form. This Gaussian elimination algorithm is sub-optimal due to a

mask in the inner loop which prevents vectorization.

Figure 31 (a) shows the updated values of matrix a in the shaded region after the

factorization loop. Since the compiler uses the owner computes rule to assign compu-

tations, only owners of data in the shaded region will participate in the computation.

The remaining processors are masked out of the computation. Figures 31 (b) and

(c) show the computation distribution on four processors in block and cyclic fashions

respectively. X axes shows that how the data is distributed on four processor grids.

CHAPTER 7. EXPERIMENTAL RESULTS 106

do k = 1, N

...

forall (i = 1:N, j = k:N, indx(i) .EQ. -1)

& a(i,j) = a(i,j) - fac(i)*row(j)

endo

Figure 7.30: Main factorization loop in gauss.

In this particular benchmark, cyclic distribution results in better load balancing than

block distribution.

Computation for factorization Distribute (*, block) Distribute (*,cyclic)

(b)(a) (c)

0 1 2 3 0 1 2 3 0 1 2 3

Figure 7.31: Load balancing for gauss

Figure 32 presents the performance using cyclic as well as block distributions

on Intel Paragon. As expected, the cyclic distribution exhibits better performance

because of load balancing. The communication requirements for these distributions

are identical. Both use multicast.

CHAPTER 7. EXPERIMENTAL RESULTS 107

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14

T
im

e
in

 s
ec

on
ds

Processors

gauss 1024x1024

HPF block gauss
HPF cyclic gauss

Figure 7.32: Gauss Performance

7.6 Hand-written Comparison

To illustrate the performance of our compiler, we present benchmark results from four

programs and the �rst 10 Livermore loop kernels. Gauss solves a system of linear

equations with partial pivoting. Nbody program simulates the universe using the

algorithm in [49]. Option program predicts the stock option pricing using stochastic

volatility European model [68]. Pi program calculates the value of �, using numerical

integration. The Livermore kernels are 24 loops abstracted from actual production

codes that have been widely used to evaluate the performance of various computer

systems. Data for all programs were block distributed and were written outside of

the compiler group at NPAC by experienced message passing programmers.

Tables 6 and 7 show the performance of compiler generated codes (F90D=HPF)

CHAPTER 7. EXPERIMENTAL RESULTS 108

Table 7.6: Fortran 90D/HPF versus the hand-written code for several applications.

(Intel iPSC/860, time in seconds).

Number of PEs

Program Problem Size 1 2 4 8 16

Gauss Hand 1023x1024 623.16 446.60 235.37 134.89 79.48

Gauss F90D 1023x1024 618.79 451.93 261.87 147.25 87.44

Nbody Hand 1024x1024 6.82 1.74 1.29. 0.76 0.42

Nbody F90D 1024x1024 13.82 5.95 2.40 1.31 0.86

Option Hand 8192 4.20 3.14 1.60 0.83 0.43

Option F90D 8192 4.30 3.19 1.64 0.84 0.44

Pi Hand 65536 0.398 0.200 0.101 0.053 0.030

Pi F90D 65536 0.411 0.207 0.104 0.054 0.032

and hand-written f77+ MP code. The tables contain data from running these pro-

grams with a varying number of processors on Intel iPSC/860.

We observe that the performance of the compiler generated codes are usually

within a factor of 2 of the hand-written codes. This is due to the fact that an expe-

rienced programmer can incorporate more optimizations than our compiler currently

does. For example, a programmer can combine or eliminate some of the communi-

cation or some of the intra-processor temporary copying. The compiler uses a more

generic packing routine, whereas a programmer working by handcan combine commu-

nication for the same source and destination for di�erent arrays. Another observation

is that our run-time system shift routine is slower than the programmer's shift rou-

tines.

CHAPTER 7. EXPERIMENTAL RESULTS 109

Table 7.7: Fortran 90D/HPF versus the hand-written code for the �rst 10 Livermore

loop kernels. Data size is 16K real. (a 16 node Intel iPSC/860, time is in milliseconds).

Loop number Type of Application F90D/HPF Hand Ratio

1. Hydrodynamics 2.545 2.550 0.9980

2. Incomplete Cholesky 11.783 10.440 1.1286

3. Inner product 3.253 3.249 1.0012

4. Banded linear equations 5.139 3.212 1.600

5. Tridiagonal elimination 30928.6 30897.7 1.001

6. Linear recurrence relations 1849.1 1886.5 0.9801

7. Equation of state 11.346 3.704 3.0632

8. A.D.I 38.656 20.038 1.9291

9. Numerical Integration 2.255 2.441 0.9238

10. Numerical Di�erentiation 9.814 4.589 2.1386

Chapter 8

Conclusions

HPF is rapidly gaining acceptance as an easy-to-use and portable programming lan-

guage for high performance scienti�c applications. The wide variety of current parallel

system architecture, however, presents a signi�cant challenge to HPF compiler imple-

mentors. Here, we have explored some of the issues and outlined Fortran 90D/HPF

compilation and execution techniques. Fortran 90D/HPF compiler demonstrates that

with language and run-time support, advanced compilation technology can produce

e�cient programs for distributed memory machine. In this chapter, we summarize

the research embodied in this thesis. We conclude by considering areas for future

work.

8.1 Compiling Fortran 90D/HPF

The Fortran 90D/HPF compiler is organized around several major units: parsing the

language, partitioning data and computation, detecting communication and generat-

ing code.

The compiler transforms data distribution speci�cations found in the Fortran

110

CHAPTER 8. CONCLUSIONS 111

90D/HPF source (decomposition, distribute, align) into prede�ned mathematical dis-

tribution functions that determine the partitioning of data on the distributed memory

system. We developed an algorithm to compile align directives to minimize commu-

nications. The compiler maps the data on abstract processor grids, then maps the

processor grid e�ciently on the underlying hardware topology to reduce the impor-

tance of underlying topology.

The compiler must recognize the presence of communication patterns in the com-

putations in order to generate appropriate communication calls. Speci�cally, this

involves a number of tests on the relationships among subscripts of various arrays in

a statement. We designed an algorithm to detect communications and to generate

appropriate collective communication calls to execute array assignment and forall

statements on distributed memory machines.

The Fortran 90D/HPF compiler relies on a powerful runtime support system. The

compiler replaces some of the explicit parallelism with calls to the parallel runtime

system. The runtime support system consists of functions which can be called from

the node programs of a distributed memory machine. We developed an easy-to-use

interface to the runtime system.

Our compiler performs several types of communication and computation opti-

mization to maximize the performance of the generated code. Communication opti-

mization can be classi�ed as Communication Hierarchy, Vectorized Communication,

Message Aggregation, Evaluating Expression, Communication Parallelization, Com-

munications Union, Eliminate Unnecessary Communications and Reuse of scheduling

CHAPTER 8. CONCLUSIONS 112

information. In addition, some computation optimizations are developed for sequen-

tialization of forall statements such as Dependency, Loop Interchange, Mask Inser-

tion. Some of these optimizations are validated with an example.

Empirical measurements show that the performance of the output of the For-

tran 90D/HPF compiler for real world application programs is comparable to that of

corresponding hand-written codes on the Intel iPSC/860 and Paragon.

We have indicated our con�dence in the performance of the code generated by

the compiler by publishing the absolute execution times of our benchmarks. We be-

lieve that our Fortran 90D/HPF compiler greatly improves programmer productivity.

Fortran 90D/HPF programs are shorter, easier to write, and easier to debug than

programs written in Fortran 77 with message passing. We have found that Fortran

90D/HPF makes it much easier to tune nontrivial programs.

8.2 Future Work

8.2.1 Fortran 90D/HPF on Low Latency Systems

Much of the work on Fortran 90D/HPF has focused on overcoming the limitations

of high latency message based systems. Many existing Massively Parallel Processors

(MPP systems) have relatively high latency, especially when compared to conven-

tional shared memory multi-processors. Even machines that support a shared mem-

ory programming model have latencies that can be up to 500 clock cycles. Clustered

workstations, especially those using o� the shelf interconnect technology, may have

latencies one or two orders of magnitude higher than this.

For high-latency systems it is important to minimize accesses to remote data,

CHAPTER 8. CONCLUSIONS 113

whether it is stored on another processor or in a remote section of shared mem-

ory. Techniques such as message vectorization, collective communication, and inspec-

tor/executor loops (as found in PARTI) can be used on distributed memorymachines.

Techniques such as prefetching and data vectorization can hide latencies on shared

memory systems.

An important challenge for Fortran 90D/HPF is to exploit lower latency systems.

For example, the Meiko CS/2 supports a remote memory access paradigm. Any

processor can read or write any other processor's memory without intervention by

the second processor. The latency for a remote read or write is less than 500 clock

cycles. True shared memory machines like those available from Sun, SGI, and Digital

reduce these latencies even further.

Traditionally, shared memory machines are programmed using multi-threaded

models. One thread is created for each processor; all but one of these threads waits

on a shared memory location, or semaphore, until a parallel region is entered. When

a parallel region is entered each thread is handed a unit of work, often a loop itera-

tion or block of loop iterations, it executes until �nishing its work unit, then obtains

another work unit or returns to the idle state.

The multi-threadedmodel can be highly e�cient in terms of work distribution and

processor utilization; however, the model ignores a very important point: locality.

Even a simple shared memory multiprocessor does not provide uniform access to

memory. Cache hierarchies and bus contention conspire to slow memory access times.

On distributed shared memory machines the problem is the same, but perhaps an

order of magnitude worse. It is here that Fortran 90D/HPF is useful.

Simply put, Fortran 90D/HPF allows the programmer to describe data locality;

CHAPTER 8. CONCLUSIONS 114

on modern multi-processors data locality is the key to performance. One of the most

useful features of HPF is the relaxation of Fortran's storage and sequence association

rules. For example, consider a simple loop:

DO I = 1,N

A(I) = A(I) + B(I)

ENDDO

On a two processor shared memory system, one strategy for this loop would be to

assign even iterations to one processor and odd iterations to the second processor.

Let's assume that elements of A and B are 4-bytes long and that cache lines are

32-bytes wide. Then, each processor could access a cache line owned by the other

processor as many as 4 times, resulting in many unnecessary cache line transfers and

overloading the memory system. This phenomenon is known as false sharing [69].

The loop can also be parallelized by allocating blocks of iterations to the processor.

This eliminates some of the performance di�culties, but still results in potential false

sharing at block boundaries.

On the other hand, Fortran 90D/HPF allows the compiler to break the arrays A

and B into blocks. The compiler can align these blocks on cache line boundaries. This

eliminates the false sharing problem without changing the semantics of the program

and still allows use of the shared memory system's fast memory access.

Our strategy for Fortran 90D/HPF compilation on low-latency systems is as fol-

lows:

� Partition data to eliminate false sharing (on shared memory systems).

� Continue to use fast collective communications routines when the compiler can

CHAPTER 8. CONCLUSIONS 115

recognize their use. These routines will be customized to take full advantage of

fast interconnect or shared memory systems.

� Take advantage of low latency to directly read and write distributed elements

when unstructured communications patterns exist.

8.2.2 InterProcedural Analysis

Interprocedural Analysis (IPA) applies various techniques across procedure bound-

aries and can be used on Fortran 90D/HPF programs to enhance optimizations,

expose parallelism, minimize communication and check program correctness [70].

The most immediate area where IPA is needed is in detecting the compliance of

variables and COMMON blocks with the relaxed storage and sequence association

rules presented in the HPF Language Speci�cation. Compliance needs to be checked

at link time or whenever all the relevant program units are visible. Obviously, ad-

ditional information describing the common blocks and variables needs to be made

available. This can be done through a database mechanism or by embedding the

information within the object �le. The method used may depend on whether the

mode of operation is sourcetosource or source-to-machine language.

However, the need for IPA goes far beyond correctness checking. HPF can be

a successful parallel programming paradigm only when it improves the application's

performance. The transformation from a sequential program to a Single Program

Multiple Data (SPMD) program occurs in three major areas:

1) Loops and array references are transformed in their index range. Other types

of loop transformations may occur such as interchange, splitting and merging.

2) Insertion of message passing calls (communication and synchronization) are

CHAPTER 8. CONCLUSIONS 116

added to handle static and dynamic mapping.

3) Miscellaneous code (including conditional statements) is added in order to reg-

ulate processor control over certain portions of the program. Conditional statements

are added to check for the need for remapping of data.

It is possible to use IPA to reduce the amount of overhead in this sequential to

SPMD transformation.

Constant Propagation across procedure boundaries is probably the easiest and

yet one of the most useful IPA methods. It can aid in reducing all three of the above

areas. Additionally, it can aid in the latter stages of single node optimizations such

as vectorization and software pipelining.

Propagation of mapping information across procedure calls can reduce over-

head involved in areas 1 and 2 in multiple ways. One way is to determine program

correctness when distribution directives are used for variables that assert their map-

ping. Probably the largest gain from IPA of mapping information is in the elimination

of unnecessary distribution checking or redistribution of data across calls. This can

be a signi�cant advantage since the alternative is to redistribute upon entry and upon

exit to a procedure.

Function cloning, when used judiciously, can save signi�cant amounts of over-

head. For example, mapping information may reveal that an argument to a call

has only two mappings possible. If so, it may be bene�cial to clone that function

with each having a di�erent assumption about the mapping of the incoming mapped

argument.

Function inlining is the traditional form of interprocedural analysis and is some-

times referred to as an interprocedural transformation. This technique has enjoyed

CHAPTER 8. CONCLUSIONS 117

some success although results have been inconsistent. Function inlining has the poten-

tial to expose parallelism, reduce calling overhead, increase optimization opportuni-

ties and eliminate redistribution and communications. However, unnecessary function

inlining can often have negative side e�ects as well including code explosion.

Bibliography

[1] G. C. Fox, S. Hiranadani, K. Kenndy, C. Koelbel, U. Kremer, C. Tseng, and

M. Wu. Fortran D Language Speci�cation. Technical report, Rice and Syracuse

University, 1992.

[2] High Performance Fortran Forum. High performance fortran language speci�ca-

tion. Technical Report, Version 1.0, Rice University., May 1993.

[3] G.C. Fox. Parallel computing comes of age: Supercomputer level parallel com-

putations at Caltech. Concurrency: Practice and Experience, pages 63{103,

September 1989.

[4] StevenW. Otto, Adam Kolawa, and Anthony Hey. Performance of the MarkII

Caltech/JPL hypercube. Technical Report C3P-188, California Institute of Tech-

nology, August 1985.

[5] J.Boyle, R.Butler, T.Disz, B.Glickfeld, E.Lusk, R.Overbeek, J.Patterson, and

R.Stevens. Portable Programs for Parallel Processors. Holt, Rinehart and Win-

ston, Inc., 1987.

[6] A.H. Karp. Programming for parallelism. IEEE Computer, pages 43{57, May

1987.

[7] A.H. Karp and R.G. Babb II. A comparison of 12 parallel Fortran dialects. IEEE

Software, pages 52{67, September 1988.

[8] C.D.Polychronopoulos et al. Parafrase-2 : An environment for parallelizing,

partitioning, synchronizing, and scheduling programs on multiprocessors. Proc.

Int'l Conf. on Parallel Processing, pages 39{48, August 1989.

118

BIBLIOGRAPHY 119

[9] J.R. Allen and K.Kennedy. PFC: A program to convert Fortran to parallel form.

Supercomputers: Design and Applications, pages 186{205, 1984.

[10] L.W. Tucker and G.G. Robertson. Architecture and applications of the Connec-

tion Machine. IEEE Computer, pages 26{38, August 1988.

[11] G.C. Fox. What have we learnt from using real parallel machines to solve real

problems? In The Third Conference on Hypercube Concurrent Computers and

Applications, volume 2, pages 897{955, January 1988.

[12] G.C. Fox. Achievements and prospects for parallel computing. Technical Report

SCCS-29, Syracuse University, 1990.

[13] G.C. Fox. FortranD as a portable software system for parallel computers. Tech-

nical Report SCCS-91, Syracuse University, 1991.

[14] G.C. Fox. The architecture of problems and portable parallel software systems.

Technical Report SCCS-78b, Syracuse University, 1991.

[15] S. Hiranandani, K. Kennedy, and C. Tseng. Compiler optimization for Fortran

D on MIMD distributed-memory machines. Proc. Supercomputing'91, Nov 1991.

[16] S. Hiranandani, K. Kennedy, and C.W. Tseng. Compiler support for machine-

indepentet Parallel Programming in Fortran D. Compiler and Runtime Software

for Scalable Multiprocessors, 1991.

[17] C. Tseng. An Optimizing Fortran D Compiler for MIMD Distributed-Memory

Machines. PhD thesis, Rice University, January 1993.

[18] C. Koelbel, D. Loveman, R. Schreiber, G. Steele, and M. Zosel. The High Per-

formance Handbook. MIT Press, 1994.

[19] H. Zima, H. Bast, and M. Gerndt. Superb: A tool for semi Automatic

SIMD/MIMD Parallelization. Parallel Computing, January 1988.

[20] C. Koelbel, P. Mehrotra, and J. V. Rosendale. Supporting Shared Data Struc-

tures on Distributed Memory Architectures. PPoPP, March 1990.

BIBLIOGRAPHY 120

[21] C. Koelbel and P. Mehrotra. Supporting Compiling Global Name-Space Parallel

Loops for Distributed Execution. IEEE Transactions on Parallel and Distributed

Systems, October 1991.

[22] K. Ikudome, G. Fox, A. Kolawa, and J. Flower. An Automatic and symbolic

parallelization system for distributed memory parallel computers. the 5th Dis-

tributed Memory Computing Conference, April 1990.

[23] M. Quinn, P. Hatcher, and K. Jourdenais. Compiling C* Programs for a Hyper-

cube Multicomputer. Parallel Computing Laboratory, University of New Hamp-

shire, PCL-87-12, December 1987.

[24] P. Hatcher, A. Lapadula, R. Jones, M. Quinn, and R. Anderson. A Production-

Quality C* Compiler for Hypercube Multicomputers. Third ACM SIGPLAN

symposium on PPOPP, 26:73{82, July 1991.

[25] J. Saltz, H. Berryman, and J. Wu. Multiprocessors and run-time compilation.

Concurrency: Practice and Experience, December 1991.

[26] J. Saltz, K. Crowley, R. Mirchandaney, and H. Berryman. Run-time scheduling

and execution of loops on message passing machines. Journal of Parallel and

Distributed Computing, December 1991.

[27] J. Saltz, J. Wu, H. Berryman, and S. Hiranandani. Distributed MemoryCompiler

Design for Sparse Problems. Interim Report ICASE, NASA Langley Research

Center, 1991.

[28] J. Saltz R. Das and H. Berryman. A Manual For PARTI Runtime Primitives.

NASA,ICASE Interim Report 17, May 1991.

[29] K. Knobe, J. D. Lukas, and G. L. Steele. Compiling Fortran 8x Array Features for

the Connection Machine Computer Systemication on SIMD machines. the ACM

SIGPLAN Symposium on Parallel Programming: Experience with Applications,

Languages, and Systems, 1988.

[30] The Thinking Machine Corporation. CM Fortran User's Guide version 0.7-f,

July 1990.

BIBLIOGRAPHY 121

[31] G. Sabot. A Compiler for a Massively Parallel Distributed Memory MIMD

Computer. The Fourth Symposium on the Frointiers of Massively Parallel Com-

putation, 1992.

[32] Thinking Machines Corporation. In The Connection Machine CM-5 Technical

Summary, October 1991.

[33] D. M. Pase, T. MacDonald, and Andrew Meltzer. MPP Fortran Programming

Model. Technical report, Cray Research, Inc., 1992.

[34] M. Y. Wu and D. D. Gajski. A programming aid for message-passing systems.

Parallel Processing for Scienti�c Computing, pages 328{332, 1989.

[35] J.H Merlin. Techniques for the Automatic Parallelisation of 'Distributed Fortran

90'. Technical Report SNARC 92-02, Southampton Novel Architecture Research

Centre, 1992.

[36] T. Brandes. ADAPTOR Language Reference Manual. Technical Report

ADAPTOR-3, German National Research Center for Computer Science, 1992.

[37] J. Li and M. Chen. Compiling Communication -E�cient Programs for Massively

Parallel Machines. IEEE Transactions on Parallel and Distributed Systems, pages

361{376, July 1991.

[38] M. Chen and J.J Wu. Optimizing FORTRAN-90 Programs for Data Motion

on Massivelly Parallel Systems. Technical Report YALEU/DCS/TR-882, Yale

University, Dep. of Comp. Sci., 1992.

[39] W.D. Hillis. The Connection Machine. MIT Press, 1985.

[40] J. Li and M. Chen. The data alignment phase in compiling programs for

distributed-memory machines. Journal of Parallel and Distributed Computing,

pages 213{221, Oct 1991.

[41] M. Gupta and P. Banerjee. Demonstration of Automatic Data Partitioning Tech-

niques for Parallelizing Compilers on Multicomputers. IEEE: Transaction on

Parallel and Distributed Systems, pages 179{193, March 1992.

BIBLIOGRAPHY 122

[42] V. Balasundaram, G. C. Fox, K. Kennedy, and U. Kremer. An Interactive En-

vironment for Data Partitioning and Distribution. In Fifth Distributed Memory

Compu. Conf., Apr 1990.

[43] R. Allen. Dependency analysis for Subscripted Variables and its Application to

Program Transformation. Technical Report PhD thesis, Rice University, 1983.

[44] J. Ng, V. Sarkar, and J.F. Shaw. Optimized execution of Fortran 90 array

constructs on supercomputer architectures. In Supercomputing'91, 1991.

[45] B. Chapman, H. Herbeck, and H. Zima. Automatic Support for Data Distribu-

tion. IEEE: Transaction on Computers, pages 51{57, 1991.

[46] S. Chatterjee, J.R. Gilbert, R. Schreiber, and S.H Tseng. Automatic Array Align-

ment in Data-Parallel Programs. Twentieth Annual ACM SIGACT/SIGPLAN

Symposium on Principles of Programming Languages, January 1993.

[47] K. Knobe, J. D. Lukas, and G. L. Steele. Data optimization: Allocation of arrays

to reduce communication on SIMD machines. Journal of Parallel and Distributed

Computing, pages 102{118, Feb 1990.

[48] J. Ramanujam and P. Sadayappan. Compile-Time Techniques for Data Distri-

bution in Distributed Memory Machines. IEEE: Transaction on Parallel and

Distributed Systems, pages 472{482, October 1991.

[49] G. C. Fox, M.A. Johnson, G.A. Lyzenga, S. W. Otto, J.K. Salmon, and D. W.

Walker. Solving Problems on Concurent Processors, volume 1-2. Prentice Hall,

May 1988.

[50] Z. Bozkus et al. Compiling the FORALL statement on MIMD parallel computers.

Technical Report SCCS-389, Northeast Parallel Architectures Center, July 1992.

[51] I. Ahmad, R. Bordawekar, Z. Bozkus, A. Choudhary, G. Fox, K. Parasuram,

R. Ponnusamy, S. Ranka, and R. Thakur. Fortran 90D Intrinsic Functions on

Distributed Memory Machines: Implementation and Scalability. Technical Re-

port SCCS-256, Northeast Parallel Architectures Center, March 1992.

[52] Z. Bozkus, S. Ranka, and G. C. Fox. Benchmarking the CM-5 multicomputer

. The Fourth Symposium on the Frointiers of Massively Parallel Computation,

1992.

BIBLIOGRAPHY 123

[53] D. Callahan and K. Kennedy. Compiling programs for Distributed Memory

Multiprocessors. The Journal of Supercomputing, pages 171{207, 1988.

[54] M. Wu and G. Fox et al. Compiling Fortran 90 programs for distributed mem-

ory MIMD paralelel computers. Technical Report SCCS-88, Northeast Parallel

Architectures Center, May 1991.

[55] M. Gerndt. Updating distributed variables in local computations. Concurrency:

Practice and Experience, September 1990.

[56] A.V. Aho, R. Sethi, and J.D Ullman. Compilers Principles, Techniques and

Tools. Addison-Wesley, March 1988.

[57] ParaSoft Corp. Express Fortran refernce guide Version 3.0, 1990.

[58] A. Beguelin, J. Dongarra, A. Geist, R. Mancheck, and V. Sunderam. A Users

Guide to PVM Parallel Virtual Machine. Technical Report ORNL/TM-11826,

Oak Ridge National Laboratory, July 1991.

[59] J. Dongara, R. Hempel, A. Hey, , and D. Walker. Message Passing Interface.

Technical Report TM-12231, ORNL, 1992.

[60] R. Hempel, H.C. Hoppe, U. Keller, and W. Krotz. Parmacs v6.0 speci�cation,

interface descriptionon. Pallas GMBH, Bruhl., Nov. 1993.

[61] D. Palermo, E. Su, J. Chandy, and P. Banarjee. Communication Optimizations

Used in the Paradigm Compiler For Distributed-Memory Multicomputers. In-

ternational Conference on Parallel Processing, 1994.

[62] S. Chatterjee, J.R. Gilbert, and R. Schreiber. Optimal Evaluation of Array

Expression on Massively Parallel Machines. Boulder, CO, October 1992. The

Second Workshop on Languages, Compilers, and Runtime Environments For

Distributed Memory Multicomputers.

[63] V. Bouchitte, P. Boulet, A. Darte, and Y. Robert. Evaluating Array Expres-

sions on Massivelly Parallel Machines with Communication/Computation Over-

lap. Technical Report 94-10, Ecole Normale Superieure de Lyon, 1994.

[64] M. Young. Personal Communication. Technical report, The Portland Group,

Inc., 1994.

BIBLIOGRAPHY 124

[65] H. Zima and B. Chapman. Supercompilers for Parallel and Vector Computers.

Addison-Wesley, 1990.

[66] A. G. Mohamed, G. C. Fox, G. V. Laszewski, M. Parashar, T. Haupt, K. Mills,

Y. Lu, N. Lin, and N. Yeh. Application Benchmark Set for Fortran-D and High

Performance Fortran. Technical Report SCCS-327, Northeast Parallel Architec-

tures Center, May 1992.

[67] S. L. Johnsson. Performance Modeling of Distributed Memory Architectures.

Journal of Parallel and Distributed Computing, pages 300{312, August 1991.

[68] K. Mills, M. Vinson, and G. Cheng. A Large Scale Comparison of Option Pricing

Models with Historical Market Data. The Fourth Symposium on the Frointiers

of Massively Parallel Computation, 1992.

[69] G.C.Fox. Domain decomposition in distributed and shared memory environments

I. Technical Report C3P-392, California Institute of Technology, 1987.

[70] R. Ponnusamy, J. Saltz, and A. Choudhary. Compilation Techniques for Data

Partitioning and Communication Schedule Reuse. Supercomputing '93, IEEE

Computer Society Press, 1993.

Vita

Biographic Data

Name: Zeki Bozkus

Date and Place of Birth: June 15, 1964
Kahramanmara�s, Turkey

College: Middle East Technical University, Ankara
B.S. in Computer Engineering (1988)

Graduate Work: Syracuse University, Syracuse, New York
M.S. in Computer and Information Science (1990)

Syracuse University, Syracuse, New York

Ph.D. in Computer and Information Science (1995)

Work Experience: Computer Programmer
Military Electronics Industries, Ankara, Turkey
1987 to 1988
Research Assistant

Syracuse University, Syracuse, New York

1991 to 1993
Software Engineer

The Portland Group, Inc., Wilsonwille, Oregon
1993 to present

125

