
SCCS-736

Basic Issues and Current Status of Parallel Computing|1995

Geo�rey C. Fox

gcf@npac.syr.edu

http://www.npac.syr.edu

Northeast Parallel Architectures Center

111 College Place

Syracuse University

Syracuse, New York 13244-4100

Technology

The best enterprises have both a compelling need pulling them forward and

an innovative technological solution pushing them on. In high-performance

computing, we have the need for increased computational power in many

applications and the inevitable long-term solution is massive parallelism. In

the short term, the relation between pull and push may seem unclear as

novel algorithms and software are needed to support parallel computing.

However, eventually parallelism will be present in all computers|including

those in your children's video game, your personal computer or workstation,

and the central supercomputer.

The technological driving force is VLSI, or very large scale integration|

the same technology that has created the personal computer and workstation

market over the last decade. In 1980, the Intel 8086 used 50,000 transis-

tors while in 1992 the latest Digital alpha RISC chip contains 1:7 � 106

transistors|a factor of 30 increase. In 1995, the 167 Mhz Ultrasparc con-

tained 5:2 � 106 transistors divided roughtly 2:1 btween CPU and cache.

The dramatic improvement in chip density comes together with an increase

in clock speed and improved design so that today's leading chips deliver

over a factor of 5,000 better performance on scienti�c problems than the

8086{8087 chip pair of the early 1980's.

The increasing density of transistors on a chip follows directly from a

decreasing feature size which was 0:75� for the alpha in 1992, and 0:5� for

1

the 1995 Ultrasparc. Feature size will continue to decrease, and by the year

2000, chips with 50,000,000 transistors are expected to be available. What

can we do with all these transistors?

With around a million transistors on a chip, designers were able to move

most mainframe functionality to about 2 cm2 of a chip. This enabled the

personal computing and workstation revolutions. The next factors of 10

increase in transistor density must go into some form of parallelism by repli-

cating several CPU's on a single chip.

By the year 2000, parallelism is thus inevitable in all computers. Today,

we see it in the larger machines, as we replicate many chips and many printed

circuit boards to build systems as arrays of nodes; each unit of which is

some variant of the microprocessor. This is illustrated in Figure 1, which

shows a nCUBE parallel supercomputer with 64 identical nodes on each

board|each node is a single chip CPU with additional memory chips. To

be useful, these nodes must be linked in some way, and this is still a matter

of much research and experimentation. Further, we can argue as to the

most appropriate node to replicate; is it a \small" nodes as in the nCUBE

of Figure 1, or is it more powerful \fat" nodes, such as those o�ered in

IBM SP-2, CRAY T3D, Thinking Machines CM-5, and Intel Paragon where

each node is a sophisticated multichip printed circuit board. Another major

debate is the choice of communication system to link the nodes together.

This can vary from the closely coupled hypercube network in the nCUBE to

the use of existing or specialized local area networks to link nodes that are

conventional computers. However, these detailed issues should not obscure

the basic point; parallelism allows one to build the world's fastest and most

cost e�ective supercomputers. Figure 2 illustrates this as a function of time

showing, already today, an approximate factor of 10 advantage for parallel

versus conventional supercomputers.

Parallelism may only be critical today for supercomputer vendors and

users. By the year 2000, all supercomputers will have to address the hard-

ware, algorithmic, and software issues implied by parallelism. The reward

will be amazing performance and the opening up of new �elds; the price will

be a major rethinking and reimplementation of software, algorithms, and

applications.

2

Figure 1: The nCUBE-2 Node and Its Integration into a Board. Up to 128

of these boards can be combined into a single supercomputer.

3

Massively Parallel
-Microprocessor
Nodes

Modestly Parallel
-Supercomputer
Performance Nodes

Sequential
-Supercomuter
Performance
Nodes

INTEL Paragon(6768)

nCUBE-2

Cray C-90
(parallel)

Transputer

nCUBE-1

CRAY-YMP

C-90

ETA-10E
 High End
Workstation

TMC CM5 (1024)

CRAY-2S

CRAY-XMP

CRAY-1S

IBM 3090VF

CDC 6600

CDC 7600

STRETCH

IBM 704

MANIAC

SEAC

Accounting Machines

Year
1940 1950 1960 1970 1990 20001980

TERAFLOP
(Trillion
Operations
per second)

GIGAFLOP
(Billion
Operations
per second)

MEGAFLOP
(Million
Operations
per second)

P
E
R
F
O
R
M
A
N
C
E

INTEL DoE (9000 P6)

Cray T3D(1024)

Fujitsu VPP500(80)

IBM SP2 (512)

ETA-10G

Figure 2: Performance of Parallel and Sequential Supercomputers

4

Grand Challenges

The President instituted, in 1992, the �ve-year federal High Performance

Computing and Communications Initiative. This has spurred the devel-

opment of the technology described above and was initially focused on the

solution of grand challenges shown in Figure 3. These are fundamental prob-

lems in science and engineering, with broad economic and scienti�c impact,

whose solution could be advanced by applying high performance computing

techniques and resources.

The activities of several federal agencies have been coordinated in this

initiative. ARPA is developing the basic technology, which are applied to

the grand challenges by DOE, NASA, NSF, NIH, EPA, and NOAA. Many

of these agencies are also playing a critical role in technology development,

while DoD has initiated a major computer modernization program to inte-

grate HPCC technology into their infrastructure. Selected activities include

the mapping of the human genome in DOE, climate modeling in DOE and

NOAA, coupled structural and airow simulations of advanced powered lift,

and a high-speed civil transport by NASA.

The successes with grand challenges are well documented in the Federal

1996 \blue book", which is available on the Web. However, much atten-

tion has shifted recently to a set of companion problems|the so called

National Challenges|which emphasize large scale information processing

and distributed systems. These areas include digital libraries, health care,

education, manufacturing, and crisis management, and we expect compa-

rable major impact from the use of HPCC technologies, even though raw

number-crunching performance will not be the critical issue.

Well-Known Parallel Computers

We can learn quite a bit about the use and design of parallel computers by

studying parallelism in nature and society. In fact, one can view society or

culture as a set of rules and conventions to allow people to work together,

i.e., in parallel, e�ectively, and harmoniously.

A simple illustration is the way we tackle a large project|the construc-

tion of the space shuttle. It would be attractive to solve this sequentially

by hiring a single superman to complete this project. This is prohibited by

current physical phenomenology, and so instead one puts together a team,

maybe in this case involving 100,000 \ordinary" people. These people work

5

INTEL PARAGON(6768)

nCUBE-2

CRAY C-90 (Parallel)

Transputer

nCUBE-1

CRAY-2S

CRAY-XMP CRAY-YMP

C-90

 72 HOUR
 WEATHER
PREDICTION

 48 HOUR
 WEATHER
PREDICTION

AIRFOIL
DESIGN

TERAFLOP
(Trillion Operations
per second)

100 GIGAFLOPS

10 GIGAFLOPS

GIGAFLOP
(Billion
Operations
per second)

100 MEGAFLOPS
(Million Operations
per second)

P
E
R
F
O
R
M
A
N
C
E

YEAR
1980 1985 1990 1995 2000

 GRAND CHALLENGES
Integrated fluid and structural
airframe simulation,
Climate Modeling
Fluid Trubulence
Pollution Dispersion
Human Genome
Ocean Circulation
Pharmaceutical Design
Quantum Chromodynamics
Semiconductor Modeling
Supercomputer Modeling
Combustion Systems
Vision and Cognition

Massively Parallel
-Microprocessor
Nodes

Modestly Parallel
-Supercomputer
Performance Nodes

Sequential
-Supercomputer
Performance Nodes

First Teraflop Machine
(Intel for DoE -- 9000 P6
Chips)

Fujitsu VPP500(80)
Cray T3D(1024)

TMC CM5(1024)

IBM SP2(512)

High End Workstation

Figure 3: Grand Challenge Applications. Some major applications that will

be enabled by parallel supercomputers.

6

in parallel to complete the shuttle. A parallel computer is quite similar, we

might use 1015 digital computers working together to simulate airow over

a new shuttle design. Key in NASA's shuttle project is the management

structure. This becomes, for the analogy, the issue of computer hardware

and software architecture; a key research area in computer science.

We can view the brain as a parallel computer with some 1012 neurons

working together to solve information processing and decision-making prob-

lems. The neurons are analogous to the node shown in Figure 1(a); nature

links neurons by axons and dendrites, not wires and printed circuit board

traces used by nCUBE. However, the basic design|interconnected elements

communicating by message passing|is the same and further both nature's

and digital parallel computer use the same mechanism of data parallelism

to solve problems concurrently.

Data Parallelism

Parallel computing is general purpose because there is a single unifying

mechanism on which it is based|this is called domain decomposition or

data parallelism. Nature solves complex problems by dividing them up and

assigning particular neurons, or group of neurons, to di�erent parts of the

problem. This is illustrated in Figure 4, which shows that di�erent areas of

the brain are responsible for disentangling tactile information from di�erent

parts of the body. Again, vision is a major task for the brain and there is

direct spatial mapping of received pixels of light at the retina to neurons in

the brain.

Parallel simulation of interacting particles, shown in Figure 5, is handled

by data parallelism with individual particles being assigned to a particular

node in the parallel machine. The astrophysical simulation of Figure 5 is

very inhomogeneous and corresponding the spatial regions assigned to a

node are irregular and indeed time dependent. This complexity was chal-

lenging for the implementation, but the resultant program achieved excellent

performance with a speedup of over 800 on a 1024-node nCUBE.

Many large scale computations, such as those from the �elds of chem-

istry and electromagnetism, involve generation and manipulation of large

full matrices that represent the interaction Hamiltonian. Energy level cal-

culations involve eigenvalue determination while scattering can use matrix

multiplication and linear equation solution. The same concept of data par-

allelism is used with, as seen in Figure 6, a simple regular decomposition of

7

Figure 4: Three Parallel Computing Strategies Found in the Brain (of a

Rat). Each �gure depicts brain activity corresponding to various functions:

(A) continuous map of a tactile inputs in somatosensory cortex, (B) patchy

map of tactile inputs to cerebellar cortex, and (C) scattered mapping of

olfactory cortex as represented by the unstructured pattern of 2DG update

in a single section of this cortex [Nelson:90b].

8

Figure 5: A Two-dimensional Projection of a Model Universe in which Two

Galaxies are on a Collision Course. This is a simpli�ed version with 18,000

\stars" of a large simulation reported in [Salmon:89b]. The irregular decom-

position onto a 16-node machine is illustrated above.

9

Figure 6: 16�16 Matrix Decomposed onto a 4�4 Parallel Computer Array

the matrix onto the processors. Parallelism is present both for generation

of the matrix elements that proceed independently in each node, and the

eigenvalue and other matrix operations. A general matrix library, SCALA-

PACK is available for a broad class of high-performance vector and parallel

computers.

Problems consist of algorithms applied to a large data domain. Data

parallelism achieves parallelism by splitting up domain and applying the

computational algorithm concurrently to each point.

Current Parallel Machines

The �eld of parallel computing changes rapidly with, as in the workstation

market, vendors leapfrogging each other with new models. Further, any

given model is essentially obsolete after some three years, with new machines

having very di�erent design and software support. Here, we will discuss some

of the machines that are interesting in 1995. There are three broad classes

of machines. The �rst is the so-called SIMD, Single Instruction Multiple

Data or synchronous machine, where we have a coupled array of computers

10

with distributed memory and processing units, i.e., each processor unit is

associated with its own memory. On SIMD machines, each node executes

the same instruction stream. The MP-2 has up to 16K 32-bit processors and

one Gigabyte (109 bytes) of memory and approximately six GigaFLOPS (109

oating point operations per second) peak performance. The Connection

Machine CM-1, CM-2, and CM-200 from Thinking Machines, and the AMT

DAP are also SIMD distributed memory machines.

The MIMD distributed memory architecture is the second major impor-

tance architecture, and recent large MPPs (Massively Parallel Processors)

have all been of this design where both memory and processing capability

are physically distributed. An inuential machine of this class is the CM-5

from Thinking Machines, shown in Figure 7, which was a radical depar-

ture from their previous SIMD architectures, and this symbolized a growing

realization that MIMD architectures were the design of choice for general

applications that required the key MIMD characteristic that each node can

execute its own instruction stream. The largest CM-5 con�guration has

1,024 nodes, 32 Gigabytes of memory, and on some applications, can realize

80 GigaFLOPS. However, the more recent 512-node IBM SP-2 installed at

Cornell will outperform the larger number of nodes on the Los Alamos CM-5

system. This illustrates the importance of using the best available sequential

node|in IBM's case a powerful RS6000 RISC chip. The CM-5 was handi-

capped by its custom VLSI on the node. Even if the hardware design was

optimal (problematical for the custom CM-5 vector node), we are on a very

short technology cycle, and we cannot build the necessary software (in this

case compilers) to support idiosyncratic hardware. Any new custom archi-

tecture must recognize that its competition|current designs implemented

with decreasing feature size|automatically double their performance every

18 months without architecture innovation. All current machines, except the

nCUBE, have �rmly centered their MIMD parallel systems on pervasive PC

or workstation technology|IBM (RS6000), CRAY (Digital alpha), Meiko

(Sun), SGI (MIPS) and Convex (HP). Intel just announced that they will

deliver to DoE, a TeraFLOPS computer built around their new P6 proces-

sor, which has over 10 million transistors packaged in a two-chip (processor

and CPU) module. This follows a successful set of machines built around

the i860 chip set, which includes a major 1,840-node system at Sandia with

the Intel \Delta Touchstone" shown in Figure 8 being particularly inuen-

tial as the �rst large-scale production MPP supercomputer. Interestingly,

DoE is targeting the Intel TeraFLOPS system at simulations of existing nu-

clear weapons whose continued performance and maintenance is unclear in

11

Figure 7: The CM-5 Produced by Thinking Machines

a world where experimental testing is forbidden.

All the parallel machines discussed above are \scalable" and available in

con�gurations that vary from small $100,000 systems to a full size supercom-

puter at approximately $30,000,000; the number of nodes and performance

scales approximately linearly with the price. In fact, as all the machines use

similar VLSI technology, albeit with designs that are optimized in di�erent

ways, they very crudely have similar price performance. This, as shown in

Figure 2, is much better than that of conventional vector supercomputers,

such as those from Cray, IBM, and Japanese vendors. These current Cray

and Japanese vector supercomputers are also parallel with up to 16 proces-

sors in the very successful CRAY C-90. Their architecture is MIMD shared

memory with a group of processors accessing a single global memory.

This shared memory MIMD design is the third major class of parallel

architecture. In the vector supercomputer, one builds the fastest possible

12

Figure 8: The \Delta Touchstone" Parallel Supercomputer Installed at Cal-

tech and Produced by Intel. This system uses a mesh architecture linking

512 nodes, and was a prototype for the Paragon.

13

processor node. This minimizes the number of nodes in the �nal system (for

given cost), but given that parallelism is inevitable and that most problems

are not restricted in number of nodes that can be used e�ectively, an at-

tractive choice is to use the most cost-e�ective nodes. These are precisely

nodes used in the most successful distributed memory MIMD machines.

This class of shared memory machine includes the Silicon Graphics (SGI)

Power Challenge Systems, whose major sales at the low end of the market

have led to a rapid growth in the importance of SGI as a key player in the

high-performance computing arena. Correspondingly, the shared memory

architecture is receiving increasing attention, which can be examined in a

little more detail. Shared memory systems were always considered limited,

as the technology such as the bus needed to implement it, would not scale,

and indeed, such (bus based) systems are limited to at most 16{32 nodes.

However, nodes have increased in power so much that a \modest" 32-node

shared memory system costing around $2 million is a major supercomputer

for most users. Shared-memory systems have always had the advantage that

it is easier to implement attractive software environments. The net result is

that many expect shared memory to continue to grow in importance and be-

come a dominant feature of mainstream MPP systems. Burton Smith's new

Tera shared-memory supercomputer implements this with a special pipelin-

ing algorithm so that all processors can access all memory locations in a

uniform time. However, most expect a clustered or virtual shared memory

architecture with NUMA|nonuniform memory access time. Here machines,

such as the Convex Exemplar, new SGI systems, the Stanford experimental

DASH, and the now defunct Kendall Square KSR-1,2 are built with a dis-

tributed memory, but special hardware and software makes the distributed

memory \act" as though it is globally available to all processors.

Currently, the dominant parallel computer vendors are American with

only modest competition from Europe, with systems built around the trans-

puter chip from Inmos. Japanese manufacturers have so far made little

contribution to this �eld, but as the technology matures, we can expect

them to provide formidable competition.

Clusters of Workstations|The Informal

Supercomputer

Above, we discussed carefully designed systems with special high-speed net-

works linking nodes usually derived from commercial PC or workstation

14

technology. However, many have explored using workstations linked with

conventional networks, such as Ethernet, fddi, or ATM as an informal paral-

lel system. Such COWs or NOWs (clusters or networks of workstations) are

clearly MIMD-NUMA distributed memory parallel machines. They should

be able to run any software or parallel algorithm designed for machines

such as the IBM SP2 or Intel Paragon. However, the latter machines have

higher bandwidth and lower latency communication. Thus, they can support

many more applications with high e�ciency. However COWs are attractive

because experience has shown that they do perform many parallel tasks ef-

fectively. They o�er many political and �scal advantages. COWs can be

formed from existing \idle" workstations and PCs overnight and on week-

ends. In principle, no cost is involved other than that already incurred for

desktop computers to support the organization.

These ideas can be generalized tometacomputing where any arbitrary set

of heterogeneous computers are linked together to address a single problem.

The Best Architecture?

Each of the machines and architectures described above have both strong

and weak point, as they have been optimized in di�erent ways.

The shared and virtual shared memory architectures have been designed

for easier software, and in particular, for easier porting of existing Fortran

codes. It has, however, proved di�cult to scale them to large systems, and

retain good cost performance. However, many believe that new hardware

developments may change this. This MPP trend to shared memory should

be contrasted with the opposite tendency seen with metacomputing, which

is probably the most rapidly growing area and clearly distributed memory.

The data parallel methodology described earlier �ts well with distributed

memory machines, but substantial reworking of software is needed so that

compilers can exploit the inherent parallelism of the problem. However, dis-

tributed memory machines are clearly scalable to very large systems, and

with the appropriate software, the vast majority of large-scale problems will

run on them. The trade-o� between SIMD and MIMD is also reasonably well

understood in terms of a problem classi�cation introduced by Fox. Regular

applications, such as the matrix operations seen in Figure 6 are suitable for

SIMD machines; MIMD computers can perform well on both these and the

irregular problems typi�ed by the particle dynamics simulation in Figure 5.

We estimated in 1990 that roughly half of existing large supercomputer

15

simulations could use SIMD e�ciently with the other half needing the extra

exibility of the MIMD architecture. The increasing interest in adaptive ir-

regular algorithms which require MIMD systems, is decreasing the relevance

of SIMD machines.

The hardware and software are evolving so as to integrate the various

architectures. In the future, the user will hopefully be presented with a

uniform interface to the di�erent parallel machines. Although it is not clear

that MPPs and heterogenous metacomputers can e�ectively be supported

with the same software model. One will be able to make choices, as for

conventional machines, based on the parallel computer's performance on

one's application mix. One will not be faced, as in the past, with radically

di�erent software environments on each design. Future architectural devel-

opments will improve performance by moving critical functionality, such as

the illusion of shared memory, from software to hardware; this will o�er the

user increased performance from an unchanged software model.

Software

The adoption of parallel machines as a mainstream computing tool is held up

by the lack of application codes that can run on them. Most successful uses

of parallel machines have come from academic and research applications with

less than 10,000 lines of code and where the software and parallel algorithm

have been developed from scratch. The task of reimplementing large codes,

such as the important 100,000 to over 1,000,000 line industrial applications

for parallel machines, is highly nontrivial.

The need to rework the software is clearly the major inhibitor to the

rapid adoption of parallel machines. However, there has been signi�cant

progress in developing \portable scalable languages and software environ-

ments." These allow us to reimplement or develop new applications with

the assurance that the resultant software will run well on all the current and

projected parallel machines for which the problem is suitable.

There are no compelling new \parallel languages," but rather the suc-

cessful approaches have extended existing languages. We will briey discuss

16

Fortran here, but similar remarks can also be made for C, C++, Ada, Lisp,

etc. There are two classes of extensions to Fortran, which we discuss in turn.

Data Parallel Fortran

Here, parallelism is represented by a sequence of array operations where

each element is calculated independently by user de�ned or system library

functions|these allow one to add or multiply arrays and vectors, �nd max-

ima and combine such elemental operations. The user aids the compiler

in implementing parallel array operations with commands that lay out the

arrays over the nodes of the parallel machine. SIMD machines from AMT,

Maspar, and Thinking Machines �rst popularized this approach with lan-

guages, such as CM Fortran. These ideas were extended to MIMD systems,

and the latest research data parallel languages can handle complex irregu-

lar applications. An industry standard HPF or High-Performance Fortran

has been adopted, and the �rst commercial compilers are now becoming

available. High Performance Fortran o�ers a uniform software environment,

which will allow the user to develop applications independently of the dif-

ferent hardware architectures discussed above|this is what we mean by a

scalable portable software system.

Message Passing Fortran

We expect that data parallel versions of Fortran will eventually be able to

e�ciently support a large fraction of large science and engineering simu-

lations. However, more general and less demanding on the compiler, are

extensions of Fortran which allow the user to explicitly generate the mes-

sages needed on MIMD machines. The resultant \Fortran plus message

passing model" (Fortran + MP), is suitable for all problems for which For-

tran is a reasonable language on a conventional computer. Fortran + MP

is usually more time consuming for the user to develop than data parallel

Fortran, and is only suitable for MIMD machines. However, in this broad

class (MIMD) of distributed or shared memory machines, Fortran + MP

is portable and scalable using such message passing systems as PVM and

the new industray standard MPI (Message Passing Interface). Some meta-

computing and, in particular, use of novel World Wide Web technology is

driving much interesting work in this area.

17

Distributed Computing and Operating Systems

A \real" software environment for parallel machines must o�er many other

services besides the parallel language to meet expectations of users of con-

ventional (super)computers. Operating services for SIMD machines are pro-

vided by the UNIX host and MIMD machines have also used this \host-

node" mechanism until recently. The IBM SP-2, from the start, adopted

a di�erent strategy with full UNIX available democratically on each node.

This allows the machine to either be viewed as a highly coupled parallel or

as a distributed system. These are still important software issues remaining

in the integration of these two faces of parallelism. However, this appears to

be the way of the future, and naturally links COWS, metacomputing, and

MPPs.

Operating System Services

Modern parallel computers o�er parallel disk systems, which will allow many

applications to match the high compute performance of Figure 2 with scaling

disk I/O (input/output) performance. The software and methodology for

accessing these parallel disks is still rudimentary and more experience is

needed to develop this. A major initiative|the Scalable I/O Initiative|is

being led by Messina from Caltech in this area. Particularly interesting is the

introduction of a commercial relational database, ORACLE, on distributed

memory multicomputers with the IBM SP-2 implementation particularly

attractive as IBM has already such a strong presence in the (conventional

computer) commercial world.

Parallel debuggers are available, and these are clear extensions from

the sequential environment for the data parallel applications that dominate

science and engineering simulations. Monitoring and evaluation of the per-

formance of the computer is particularly important for parallel machines as

it can signal poor decomposition and other inhibitors to good use of the

machine. Other software tools can automatically decompose and distribute

problems over the nodes of a parallel machine.

Applications

Most experience on parallel machines has been with academic and research

problems. However, the �eld can only realize its full potential and be com-

18

mercially successful if it is accepted in the real world of industry and govern-

ment applications. Some of these are seen in the grand challenges described

earlier.

However, more generally, parallel computing o�ers U.S. industry the op-

portunity of a global competitive advantage. This is a technology where the

U.S. has a clear lead over Europe and Japan, and this technology leader-

ship can be turned into a potent \weapon" in the global economic \war" we

expect in the 1990s.

We have explored industrial applications of HPCC, and this is discussed

in another article in this book. This work|funded by a New York State

technology transfer activity, InfoMall|emphasizes that we expect that the

dominant industrial use of MPPs will be in information related areas with

large-scale MPP numerical simulations playing a secondary role.

19

References

[Andrews:91a] Andrews, G. R. Concurrent Programming: Principles and

Practice. The Benjamin/Cummings Publishing Company, Inc., Red-

wood City, CA, 1991.

[Almasi:94a] Almasi, G. S., and Gottlieb, A. Highly Parallel Computing.

The Benjamin/Cummings Publishing Company, Inc., Redwood City,

CA, 1994. second edition.

[Angus:90a] Angus, I. G., Fox, G. C., Kim, J. S., and Walker, D. W. Solving

Problems on Concurrent Processors: Software for Concurrent Proces-

sors, volume 2. Prentice-Hall, Inc., Englewood Cli�s, NJ, 1990.

[Arbib:90a] Arbib, M., and Robinson, J. A., editors. Natural and Arti�cial

Parallel Computation. The MIT Press, Cambridge, MA, 1990.

[Brawer:89a] Brawer, S. Introduction to Parallel Programming. Academic

Press, Inc. Ltd., London, 1989.

[Chandy:92b] Chandy, K. M., and Taylor, S. An Introduction to Parallel

Programming. Jones and Bartlett, 1992.

[CSEP:95a] \Computational science educational project." Web address

http://csep1.phy.ornl.gov/csep.html.

[Dongarra:94a] Dongarra, J., van de Geign, R., and Walker, D. \Scalability

issues a�ecting the design of a dense linear algebra library," J. Parallel

and Distributed Computing, 22(3):523{537, 1994.

[Doyle:91a] Doyle, J. \Serial, parallel, and neural computers," Futures,

23(6):577{593, 1991. (July/August).

[Duncan:90a] Duncan, R. \A survey of parallel computer architectures,"

Computer, 23(2):5{16, 1990.

[Foster:95a] Foster, I. Designing and Building Parallel Programs. Addison-

Wesley, 1995. http://www.mcs.acl.gov/dbpp/.

[Fox:88a] Fox, G. C., Johnson, M. A., Lyzenga, G. A., Otto, S. W., Salmon,

J. K., and Walker, D. W. Solving Problems on Concurrent Processors,

volume 1. Prentice-Hall, Inc., Englewood Cli�s, NJ, 1988.

20

[Fox:94a] Fox, G. C., Messina, P. C., and Williams, R. D., editors. Parallel

Computing Works! Morgan Kaufmann Publishers, San Francisco, CA,

1994. http://www.infomall.org/npac/pcw/.

[Golub:89a] Golub, G. H., and van Loan, C. F. Matrix Computations. Johns

Hopkins University Press, Baltimore, MD, 1989. 2nd Edition.

[Gropp:95a] Gropp, W., Lusk, E., and Skjellum, A. Using MPI: Portable

Parallel Programming with the Message Passing Interface. MIT Press,

1995.

[Hayes:89a] Hayes, J. P., and Mudge, T. \Hypercube supercomputers,"

Proceedings of the IEEE, 77(12):1829{1841, 1989.

[Hennessy:91a] Hennessy, J. J., and Jouppi, N. P. \Computer technology

and architectures: An evolving interaction," IEEE Computer, pages

18{29, 1991.

[Hillis:85a] Hillis, W. D. The Connection Machine. MIT Press, Cambridge,

MA, 1985.

[HPCC:96a] National Science and Technology Council, \High performance

computing and communications," 1996. 1996 Federal Blue Book. A

report by the Committee on Information and Communications. Web

address http://www.hpcc.gov/blue96/.

[HPF:93a] High Performance Fortran Forum. \High performance Fortran

language speci�cation." Technical Report CRPC-TR92225, Center for

Research on Parallel Computation, Rice University, Houston, Texas,

1993.

[Hockney:81b] Hockney, R. W., and Jesshope, C. R. Parallel Computers.

Adam Hilger, Ltd., Bristol, Great Britain, 1981.

[Koelbel:94a] Koelbel, C., Loveman, D., Schreiber, R., Steele, G., and Zosel,

M. The High Performance Fortran Handbook. MIT Press, 1994.

[Lazou:87a] Lazou, C. Supercomputers and Their Use. Oxford University

Press, Oxford, Great Britain, 1987.

[Messina:91d] Messina, P., and Murli, A., editors. Practical Parallel Com-

puting: Status and Prospects. John Wiley and Sons, Ltd., Sussex, Eng-

land, 1991. Caltech Report CCSF-13-91.

21

[McBryan:94a] McBryan, O. \An overview of message passing environ-

ments," Parallel Computing, 20(4):417{444, 1994.

[Nelson:90b] Nelson, M. E., Furmanski, W., and Bower, J. M. \Brain maps

and parallel computers," Trends Neurosci., 10:403{408, 1990.

[Salmon:89b] Salmon, J., Quinn, P., and Warren, M. \Using parallel com-

puters for very large N-body simulations: Shell formation using 180K

particles," in A. Toomre and R. Wielen, editors, Proceedings of the

Heidelberg Conference on the Dynamics and Interactions of Galaxies.

Springer-Verlag, April 1989. Caltech Report C3P-780b.

[Skerrett:92a] Skerrett, P. J. \Future computers: The Tera Flop race,"

Popular Science, page 55, 1992.

[Stone:91a] Stone, H. S., and Cocke, J. \Computer architecture in the

1990s," IEEE Computer, pages 30{38, 1991.

[SuperC:91a] Proceedings of Supercomputing '91, Los Alamitos, California,

1991. IEEE Computer Society Press.

[SuperC:92a] Proceedings of Supercomputing '92, Los Alamitos, California,

November 1992. IEEE Computer Society Press. Held in Minneapolis,

Minnesota.

[SuperC:93a] Proceedings of Supercomputing '93, Los Alamitos, California,

November 1993. IEEE Computer Society Press. Held in Portland, Ore-

gon.

[SuperC:94a] Proceedings of Supercomputing '94, Los Alamitos, California,

November 1994. IEEE Computer Society Press. Held in Washington,

D.C.

[Trew:91a] Trew, A., and Wilson, G. Past, Present, Parallel: A Survey of

Available Parallel Computing Systems. Springer-Verlag, Berlin, 1991.

[Zima:91a] Zima, H., and Chapman, B. Supercompilers for Parallel and

Vector Computers. ACM Press, New York, 1991.

22

