
NPAC Technical Report SCCS 739

Parallel Multigrid Computation of the Unsteady

Incompressible Navier-Stokes Equations

A.T.Degani,� G.C.Fox y

Northeast Parallel Architectures Center,

111 College Place, Syracuse, NY 13244-4100

September 15, 1995

Abstract

Parallel computation on distributed-memory machines o�ers the capability of a scalable approach to the

solution of large CFD problems. However, in order to fully realize this capability, it is not only necessary

to devise parallel methodologies, but also to develop numerical schemes for which the computational e�ort

also scales with problem size. To this end, a parallel multigrid scheme for the calculation of the unsteady

incompressible Navier-Stokes equations is considered here. A spatial and temporal second-order accurate

implicit discretization scheme on a staggered grid is employed, and a Full Approximation Storage (FAS)

multigrid method, appropriate for nonlinear problems, is used. A parallel solver is developed which smooths

the equations at each multigrid level in a fully-coupled mode. The programming paradigm is Single Program

Multiple Data (SPMD) with message passing. In comparison with single-grid calculations, it is demon-

strated that the convergence rate for multigrid calculations is considerably superior and dominates the slight

degradation in speed up.

1 Introduction

A variety of
uid-
ow phenomena are inherently unsteady and the accurate calculation of
ows at high

Reynolds number is not only important in engineering design, but also in providing an insight into the

�Alex G. Nason Research Fellow

yDirector; Professor, Computer Science and Physics, Syracuse University

1

fundamental mechanisms at play in these complex
ows. However, the computation of unsteady
ows at

high Reynolds number requires a large number of grid points and su�ciently small time steps to resolve

all the important spatial and temporal scales thus demanding imposing computational power and memory

requirements. In the recent past, a consensus seems to have emerged that large-grain distributed-memory

machines are most suitable for the execution of such large problems. Many of the solution methodologies

that are of interest in CFD may be classi�ed as `loosely synchronous' [1] and are thus well-suited for imple-

mentation on these machines. If N denotes the problem size and p the number of processors, good speedups

and e�ciencies are possible for large N=p.

Although it is an important requirement that the parallel implementation scale with p, it is perhaps

more important to develop numerical solution schemes that also scale with N . A simple illustrative example,

where the �rst requirement is satis�ed but not the second, is in the solution of the two-dimensional Poisson

equation using the Gauss-Seidel method. With a red-black ordering scheme and a block distribution of

data, the parallel implementation of the Gauss-Seidel method is known to be scalable [1]; however, the

computational e�ort required to obtain a converged solution is of O(N2logN) which makes this numerical

scheme impractical for large problems. Thus, it is maintained that the two most desirable features of

computational algorithms for large problems, typical of those in CFD, are: (i) the computational e�ort

required by the numerical scheme to solve a problem of size N is, say, no more than O(N logN), and (ii) the

parallel implementation of the numerical scheme is scalable with the number of processors p for N=p large

and �xed.

Since the early pioneering work by Brandt [2], multigrid methods have been used in a wide variety of

problems and a well-designed multigrid method has at most an operation count of O(N logN) [3]. Most

iterative methods are characterized by the fact that they are e�cient in eliminating the high-wave number

component of the error in the solution, but are poor in removing the low-wave number error. The power

of multigrid methods is in their ability to quickly eliminate the low-wave number component of the error

through a succession of mesh coarsenings. In most instances, multigrid methods employ relaxation schemes

which act upon the local data and are thus well-suited for parallel implementation. But as the multigrid

algorithm descends to coarser levels, the parallel e�ciency is expected to degrade because the ratio of the

time of communication to the time of computation increases; however, since the computational e�ort at the

coarser levels is less than at the �ner levels, the overall degradation in e�ciency is expected to be minimal

for large N=p. In order to establish this assertion, consider �rst the calculation on the �nest grid. A two-

dimensional computational domain is assumed here for simplicity although similar results may be obtained

for higher dimensions. In a sequential computation, the overall execution time is given by

tseq = Nftcomp ;

where tseq; N; f and tcomp are the sequential execution time, the total number of points,
oating point

operations per point and the time to execute one
oating point operation, respectively. On a distributed-

memory machine with p processors and a block-data distribution, the overall execution time tpar is given

2

by

tpar = nftcomp + c
p
ntcomm;

where n = N=p, c is a constant of O(1) and tcomm is time to communicate one byte of data. The processors

communicate along the boundary, and, for a block-data distribution, the number of data to be communicated

scales with
p
n. The parallel e�ciency for the calculations on the single grid �single is then given by

��1
single

=
ptpar

tseq
= 1 +

c�

f

1
p
n
; (1)

where � = tcomm=tcomp. Next consider the multigrid calculation. In the sequential implementation, this

involves obtaining the solution on successively coarser grids of size N=4; N=16 : : :. AssumingN large, the sum

of the computational e�ort may be approximated by an in�nite series, in which case, the overall execution

time of the sequential multigrid scheme is given by

tseq =
4

3
Nftcomp:

In the parallel implementation, the computational e�ort and data to be communicated decrease by a factor

of 1
4
and 1

2
, respectively, with each grid coarsening. Once again, assuming an in�nite series, the overall

parallel execution time is

tpar =
4

3
nftcomp + 2c

p
ntcomm;

and consequently the parallel multigrid e�ciency �multi is given by

��1
multi

= 1 +
3c�

2f

1
p
n
: (2)

Thus, although the multigrid e�ciency is lower, the degradation occurs in the higher-order term and only

by a factor of 3=2. In three dimensions, it may be easily shown that the degradation factor is 7=6 with
p
n

replaced by 3
p
n. Although the above development is an over-simpli�cation, it serves to illustrate that the

parallel implementation of multigrid schemes on large-grain distributed-memory machines is scalable.

The application of multigrids to the calculation of steady incompressible
ow has been successfully

demonstrated in a number of studies. Ghia et al. [4] employed the strongly-implicit relaxation scheme to solve

the vorticity and associated Poisson equations in a coupled manner and reported a reduction in the execution

time by a factor of 4 by using multigrids. Vanka [5] developed the so-called Symmetrical Coupled Gauss-

Seidel (SCGS) relaxation scheme appropriate for a staggered mesh [6]. A primitive variable formulation

is adopted and the equations are solved in a fully-coupled mode without forming the intermediate Poisson

equation for the pressure. It is reported that this scheme has better stability and smoothing properties

than the Distributed Gauss-Seidel (DGS) method originally proposed by Brandt [7]. Variants of the SCGS

method were also used in later studies [8, 9]. Multigrid calculations based on a staggered curvilinear mesh and

employing a decoupled pressure-correction based relaxation scheme have also been carried out [10]. Recently,

results on three-dimensional
ow calculations in generalized curvilinear coordinates were reported [11].

Here, the parallel implementation of the multigridmethod is applied to the time-accurate calculation of

the unsteady, incompressible Navier-Stokes equations. As a �rst step, a regular structured two-dimensional

3

cartesian coordinate system is considered; however, since a primitive variable formulation is adopted, an

extension to three-dimensional
ow is possible. The multigrid algorithmwas �rst implemented on a sequential

machine in FORTRAN 77 but designed in such a fashion so as to allow the subsequent development of a

parallel version using message passing with a minimum number of modi�cations. This process considerably

simpli�es the overall development and debugging of the code.

2 Numerical Scheme

Discretization

Consider the nondimensionalized unsteady incompressible Navier-Stokes equations given by

@u

@t
+ u � ru = g �rp+

1

Re
r2
u; (3)

r � u = 0: (4)

A spatial and temporal second-order accurate upwind-downwind discretization scheme, originally developed

for the calculation of boundary-layer equations [12], is extended here for the computation of the unsteady

incompressible Navier-Stokes equations on a staggered grid shown in Fig. 1. A temporal discretization of

the momentum equations (3) at the mid-time plane, i.e. at t +�t=2, yields

un+1 � un

�t
= g

n+ 1

2

x + Qx

@u

@x
+ Px

@u

@y
�

@p

@x

n+ 1

2

+
1

Re

"
@2u

@x2
+
@2u

@y2

#
; (5)

and

vn+1 � vn

�t
= g

n+ 1

2

y +Qy

@v

@x
+ Py

@v

@y
�
@p

@y

n+ 1

2

+
1

Re

"
@2v

@x2
+
@2v

@y2

#
; (6)

where the overbar denotes the evaluation of the quantities at the mid-time plane, and the superscripts n,

n+ 1 and n+ 1
2
indicate the values of the associated variables at times t, t+�t and t+�t=2, respectively.

The quantities Qx = �u, Qy = �u, Px = �v and Py = �v are introduced here to facilitate the subsequent

description of the discretization scheme. Note that the pressure is de�ned only at the mid-time plane.

A uniform computational mesh is assumed and the x- and y-momentum equations are discretized at

(x + �x=2; y) and (x; y + �y=2), respectively; these locations are denoted by the subscripts (i + 1
2
; j) and

(i; j+ 1
2
) in Fig. 1. To illustrate the upwind-downwind scheme for the convection terms, consider for example,

the discretization of Qx@u=@x on a staggered mesh. It may be con�rmed that

Qx

@u

@x

����
i+ 1

2
;j

=
�
Qx

	
i+ 1

2
;j

2
41
2

0
@un+1

i+ 3

2
;j
� un+1

i+ 1

2
;j

�x
+
un
i+ 1

2
;j
� un

i�
1

2
;j

�x

1
A
3
5 ; �

Qx

	
i+ 1

2
;j
> 0;

Qx

@u

@x

����
i+ 1

2
;j

=
�
Qx

	
i+ 1

2
;j

2
41
2

0
@un+1

i+ 1

2
;j
� un+1

i�
1

2
;j

�x
+
un
i+ 3

2
;j
� un

i+ 1

2
;j

�x

1
A
3
5 ; �

Qx

	
i+ 1

2
;j
< 0;

4

provides a spatial and temporal second-order accurate upwind-downwind discretization. The quantity

Qx = �u evaluated at the mid-time plane and at location (x+�x=2; y) is given by

Qx = ��tu;

where � denotes the averaging operator. A similar scheme is also used for Qy@v=@x; however, the quantity

Qy = �u is not de�ned at the location where the y-momentum equation is discretized, i.e. at (x; y+�y=2).

In this instance, the required value is obtained from

Qy = ��t�x�yu:

The other two convection terms are treated in a similar manner and appropriate second-order central dif-

ferences are employed for the di�usion and pressure-gradient terms. The resulting momentum di�erence

equations are given by

Mx

1+u
n+1

i+ 3

2
;j
+Mx

2+u
n+1

i+ 1

2
;j+1

+Mx

3+u
n+1

i+ 1

2
;j
+Mx

4+u
n+1

i+ 1

2
;j�1

+Mx

5+u
n+1

i�
1

2
;j
+Dx

1p
n+ 1

2

i;j
+Dx

2p
n+ 1

2

i+1;j =

Mx

1�u
n

i+ 3

2
;j
+Mx

2�u
n

i+ 1

2
;j+1

+Mx

3�u
n

i+ 1

2
;j
+Mx

4�u
n

i+ 1

2
;j�1

+Mx

5�u
n

i�
1

2
;j
+Gu; (7)

and

M
y

1+v
n+1

i+1;j+ 1

2

+M
y

2+v
n+1

i;j+ 3

2

+M
y

3+v
n+1

i;j+ 1

2

+M
y

4+v
n+1

i;j�
1

2

+M
y

5+v
n+1

i�1;j+1

2

+D
y

1p
n+ 1

2

i;j
+D

y

2p
n+ 1

2

i;j+1 =

M
y

1�v
n

i+1;j+ 1

2

+M
y

2�v
n

i;j+3

2

+M
y

3�v
n

i;j+1

2

+M
y

4�v
n

i;j�
1

2

+M
y

5�v
n

i�1;j+1

2

+Gv: (8)

The coe�cients in (7) and (8) are evaluated at (i + 1
2
; j) and (i; j + 1

2
), respectively, and are given in the

Appendix. Note that for boundary cells, the above di�erence equations involve quantities that lie outside the

computational domain; this issue is taken up later in the discussion of the implementation of the boundary

conditions. The discretized momentum equations may be compactly written as

Mx

+u+Dxp = Mx

�

u� +Gu = Fu;

M
y

+v +Dyp = M
y

�

v� + Gv = Fv:

Note that (u; v) and p are evaluated at t+�t and t+�t=2, respectively, and the superscript `�' denotes the

evaluation at the previous time t. The continuity equation (4) is left in its original form, and a second-order

discretization at the cell center at time t+�t yieldsn
Dx

1u
n+1

i�
1

2
;j
+Dx

2u
n+1

i+ 1

2
;j
+D

y

1v
n+1

i;j�
1

2

+D
y

2v
n+1

i;j+1

2

o
= 0; (9)

which may be compactly expressed as

Dxu+Dyv = Gp = 0:

Upon de�ning

q =

2
664

u

v

p

3
775 ;G =

2
664

Gu

Gv

Gp

3
775 ;F =

2
664

Fu

Fv

Fp

3
775 ;

5

M+ =

2
664

Mx

+ 0 Dx

0 M
y

+ Dy

Dx Dy 0

3
775 ;M�

=

2
664

Mx

�

0 0

0 M
y

�

0

0 0 0

3
775 ;

the di�erence equations for the unsteady incompressible Navier-Stokes equations may be expressed as

M+q = F =M
�
q
� +G: (10)

The implementation of the boundary conditions is taken up next. For simplicity, only Dirichlet bound-

ary conditions on the velocity are considered here in which case no boundary conditions on the pressure are

necessary. Although the normal velocity boundary condition can be satis�ed exactly, such is not the case

for the no-slip condition; however, a second-order accurate discretization of the latter yields

f�yug
n+1

i+ 1

2
;
1

2

=
un+1

i+ 1

2
;0
+ un+1

i+ 1

2
;1

2
= fuggi+ 1

2
;
1

2

; (11)

where the bottom horizontal wall is considered for illustration and ug is the speci�ed wall speed. Thus, upon

applying the no-slip condition in a similar manner all along the boundary, as many equations are generated

as the number of �ctitious points required in the discretized momentum equations (10). A general form of

the speci�ed boundary conditions may be represented by

�q = �; (12)

where � is an operator and � is speci�ed. In a typical solution procedure, (10) and (12) are relaxed

alternately until convergence.

FAS Multigrid Algorithm

The discretized di�erence equations and boundary conditions are given by

M
k

+q
k = F

k; �
k
q
k = �

k: (13)

where the superscript k denotes discretization on a grid level k. The quantity Fk on the �nest grid k = M

is obtained from (10) and is given by

F
k =M

k

�

q
�k +G

k; k = M: (14)

At the �nest grid k = M , (13) are relaxed before a subsequent coarsening process outlined next. In the Full

Approximation Storage (FAS) method, a coarse-grid approximate solution, which is the sum of the error

and the base approximation on the �ner grid, is calculated. The resulting equations have the same form as

(13), but the right-hand side is now given by

F
k =M

k

+q
k + Ik

k+1R
k+1 k < M;

�
k = �

k
q
k + I

k

k+1�
k+1; k < M; (15)

6

where R and � denote the residuals in the interior and boundary equations, respectively, and Ik
k+1 is the

restriction operator. The residuals are given by

R
k+1 = F

k+1 �Mk+1
+ q

k+1;

�
k+1 = �

k+1 � �k+1
q
k+1; (16)

and qk is obtained from

q
k = I

k

k+1q
k+1: (17)

Inspection of the coe�cients in (10) in the Appendix indicates that both (uk; vk) and (u�k; v�k) are required

in order to evaluate the nonlinear operatorMk

+; the former is obtained from (17) and the latter is obtained by

storing the velocities at the previous time step at all levels. The resulting equations, with an initial estimate

of qk given by (17), are relaxed once again and the coarsening process continues until the grid k = 1 is

reached. In the backward sweep, it is the error in the solution, not the solution itself, that is projected from

the coarser grid to the �ner grid; thus, the corrected �ner grid k solution is calculated by

q
k q

k + Ik
k�1

�
q
k�1 � Ik�1

k
q
k
	
; k 6= 1; (18)

where Ik
k�1 denotes the projection operator. The equations in (13) are relaxed before the next correction

step and this process continues until the �nest grid k = M is reached thus completing one \V" cycle iteration

of the FAS multigrid algorithm. A V(2,1) cycling scheme is adopted here, i.e. (13) are relaxed twice and

once in the forward and backward sweeps, respectively.

On the staggered mesh considered here, the Dirichlet conditions on the normal velocity can be satis�ed

exactly and thus the boundary residual at any level is identically zero. For this subset of the boundary

conditions, an explicit use of the second of (15) is not necessary since the normal velocity at the coarser

grid is obtained from (17). In e�ect, the Dirichlet conditions on a grid k < M are obtained by restricting

the speci�ed values of the normal velocity from the �ner grid. A similar approach may also be used for the

implementation of the no-slip condition by replacing the appropriate subset of � in the second of (15) by

the restricted values of the wall speed, i.e.,

�
k

�
= I

k

k+1�
k+1
�

;

where �� is the subset of � that speci�es the wall speed. However, this simpler approach is inferior since

it does not account for a non-zero boundary residual in the no-slip condition on the �ner grid. Indeed,

numerical experiments indicate a marked increase in the number of iterations required for convergence when

this simpler approach is adopted.

In general, the restriction operators for the residuals and the dependent variables q may be di�erent;

however, in this study, they are assumed to be identical. Due to the nature of the staggered grid, di�erent

restriction formulae are necessary for the individual components of the residual R = (Ru; Rv; Rp) and q.

For the pressure p and continuity residual Rp, the restriction operator is chosen to be a simple average of

the four adjacent values, viz.

fIpg
k

k+1
= �k+1

x
�k+1
y

: (19)

7

There are two commonly used formulae for restricting u and Ru in the interior of the computational domain,

viz.

fIug
k

k+1 = �k+1
y

; (20)

fIug
k

k+1 = �k+1
x

�k+1
x

�k+1
y

: (21)

Equations (20) and (21) result in 2-point and 6-point formulae, respectively; the former has been used in [5]

and the latter in [9, 10]. The relative merit of the two alternatives is discussed further in section 3. The

velocity u also needs to be restricted along the boundary � and a 2-point formula is appropriate for sections

of � where u is the normal velocity. From the second of (15), it follows that for the implementation of the

no-slip condition considered here, both the boundary residual and �ctitious velocity need to be restricted.

Thus, along the sections of � where u is the tangential velocity, the standard 3-point average is used to

restrict the appropriate values. The restriction formulae for the velocity v and y-momentum residual Rv is

obtained by a simple 90o rotation of the formulae for u and Ru.

Bilinear interpolation is commonly used to obtain the correction to q [5, 7, 10]. Although the projected

corrections are easily obtained for all the interior cells, some modi�cation to the formulae is necessary in

the boundary cells due to the nature of the staggered grid. To address this, a number of options were tried:

(i) using the bilinear interpolation stencil to extrapolate the appropriate values in the boundary cells, (ii)

assuming a zero normal pressure gradient at the boundary (following the procedure in [5, 10]), (iii) using the

values of the �ctitious velocity to extend the range of interpolation to include boundary cells, and (iv) 6-point

interpolation formulae. However, no consistent and signi�cant di�erences were observed in the convergence

rate of the multigrid algorithm and eventually the simplest option (i) was adopted.

Smoother

The Symmetrical-CoupledGauss-Seidel (SCGS) solver [5] is employed here to smooth the system of di�erence

equations (10) in a fully-coupled mode. In this scheme, the four velocities at the faces of each cell and the

pressure, de�ned at the cell center, are updated simultaneously in an iterative process that traverses all

the cells in the computational domain usually in a lexicographic order. This is accomplished by inverting a

5� 5 (for two-dimensional
ow) matrix. In this manner, the velocity is updated twice and the pressure once

in each sweep. Furthermore, as in the simple Gauss-Seidel method for scalar equations, the most recently

updated values are used.

The SCGS method is brie
y summarized here, but the details may be found in [5]. Assume that the

iterative process is at cell (i; j) in its sweep through the computational domain and denote �u, �v and �p

as the di�erence in the updated and old values of u; v; p, respectively. If the x-momentum equation (7) at

(x+�x=2; y) is used to update only u
i+ 1

2
;j
and pi;j, then it follows that in terms of �u and �p,

�
Mx

3+

	
i+ 1

2
;j
�un+1

i+ 1

2
;j
+ fDx

1gi+ 1

2
;j
�p

n+ 1

2

i;j
= fRugi+ 1

2
;j
;

8

where fRugi+ 1

2
;j
is the residual calculated prior to the update and is the di�erence of the right- and left-hand

side of (7). Similarly, the x-momentum equation at location (x��x=2; y) is written as�
Mx

3+

	
i�

1

2
;j
�un+1

i�
1

2
;j
+ fDx

2gi�1

2
;j
�p

n+ 1

2

i;j
= fRugi� 1

2
;j
:

Expressing the y-momentum equation (8) at the top and bottom faces of the cell and the continuity equation

(9) in a similar manner results in a sparse system of 5 equations in 5 unknowns which is inverted analytically

and the resulting formulae are used to obtain the changes in the four velocities and pressure.

In the computation of steady incompressible
ow, it was found [5] that the SCGS scheme is either

slowly convergent or divergent when applied to calculate high Reynolds number
ows on �ne grids. In this

instance, it becomes necessary to provide damping to stabilize the SCGS scheme. This is accomplished by

multiplying the diagonal terms of the 5� 5 system of equations by constants which are greater than unity.

In this study, which considers unsteady
ow, it was not found necessary to include damping factors in the

calculation of the results presented here. This may be attributed to the appearance of �t�1 in the terms

along the diagonal of the 5� 5 system of equations which enhances the diagonal dominance of the iterative

scheme. Although the present methodology is not tailored toward calculating steady
ow, it is possible to

achieve this objective by considering large time steps. In this instance, the undamped SCGS scheme was

found to become unstable for high Reynolds number and �ne grids.

3 Parallel Implementation

Prior to discussing the speci�cs of a parallel implementation of the multigrid calculation of the unsteady

incompressible Navier-Stokes equations, some general comments are made �rst on the development and

structure of the parallel code. The multigrid method was �rst developed on a sequential machine in FOR-

TRAN 77. For e�cient memory utilization, the two-dimensional arrays at all levels are mapped onto a single

one-dimensional array and a table is generated containing pointers to the �rst element at each level. This

is convenient in FORTRAN 77 since arrays are passed to functions based on assumed size. Anticipating the

subsequent implementation of a parallel version, the sequential code was designed to allow a smooth transi-

tion to the development of a Single Program Multiple Data (SPMD) code in FORTRAN 77 with message

passing. The SPMD code, which uses synchronous collective communication, was developed by interspersing

calls to routines in an interface layer at appropriate locations in the sequential code; the original FORTRAN

77 statements required very few changes. The routines in the interface layer between the main code and the

message-passing library, compose and decompose messages that are sent and received, respectively, make

calls to the appropriate routines in the message-passing library, and perform peripheral book-keeping tasks.

Thus, when porting to other systems, only the interface layer, and not the main code, needs to be modi�ed

which considerably simpli�es the transition. Portability was a main design consideration in constructing the

parallel code.

The data are distributed in blocks on a two-dimensional mesh of abstract processors and the local data

in each processor are mapped onto a local 1D array. The second-order accurate discretized equations (7) and

9

(8) and the projection and restriction operators considered here indicate that each processor requires data

from the boundary cells of the adjacent processors. Consequently, the two-dimensional array of cells in each

processor is augmented by a bu�ered boundary of one cell thickness for all the multigrid levels. Appropriate

ags are set in each processor to indicate whether it lies adjacent to the boundary or in the interior of the

computational domain. By choosing the number of cells in the �nest grid such that each processor has an

equal number of cells, the issue of load balancing is not considered here.

The parallel code was developed on the 32-node CM-5 installed at the Northeast Parallel Architectures

Center using the message-passing library CMMD. Since the code is written in FORTRAN 77, the four

vector units (VU's) on each node may be accessed only by writing non-portable assembly language code [13].

CMMD also provides Virtual Channels and an Active Message Interface which considerably reduce the

message latency. However, in keeping with the main design consideration of constructing portable code,

none of the above functionalities were incorporated.

The details of the parallel implementation of the multigrid method are now taken up. Consider �rst

the idle-processor problem which occurs at coarse multigrid levels where the total number of cells is less

than the number of processors. To simplify the subsequent discussion, let the �nest grid contain N cells

which are arranged in a two-dimensional array
p
N �

p
N on a processor mesh of

p
p � pp; furthermore,

let
p
N = 2� and

p
p = 2�. It is assumed that the coarsest grid consists of an array of 2� 2 cells; thus the

total number of multigrid levels is �. In a sequential multigrid, the total computational time for � levels is

given by tseq = 4=3ftcomp(N � 1), where an in�nite series approximation has not been used. In a parallel

implementation, each processor is assigned a grid of
p
n�
p
n cells at the �nest level, where n = N=p. The

multigrid calculations may be continued until each processor contains 2�2 cells, which occurs at level �+1.

The computational time required for the �rst � � � �nest grids is given by tf
par

= 4=3ftcomp(n � 1). The

simplest approach for all levels at and coarser than � is to have each processor solve the same problem.

In this case, subsequent to an all-to-all broadcast, each processor contains
p
p � pp cells at level �. The

computational time required to solve this problem is given by tc
par

= 4=3ftcomp(p � 1). Thus, for this

approach, the ideal parallel e�ciency (i.e. discounting all communication overhead) may be shown to be

given by

��1
ideal

= 1 +
(p� 1)2

np� 1
: (22)

The two limiting cases of interest here are:

(a) n� p ��1
ideal

� 1 +O(1
n
); (b) n; p� 1 ��1

ideal
� 1 +O(p

n
):

Thus this approach is appropriate for the solution of large problems on a modest number of processors such

as a network of workstations. An added advantage of this approach is that besides the all-to-all broadcast,

no communication is required for the coarse-grid levels which is an important consideration in this situation

where typically the communication latencies are high. On the other hand, the degradation in e�ciency is

unacceptable when p � O(n) and thus this approach is not scalable.

An alternative approach is adopted here for multigrid levels at and coarser than � which is appropriate

10

for cases in which both n and p are large. Let the coordinates of an abstract processor in the two-dimensional

mesh be denoted by (ip; jp) where 0 � ip; jp � pp � 1. At level �, the four processors identi�ed by the

coordinates (ip; jp), (ip + 1; jp), (ip; jp + 1),(ip+ 1; jp+ 1), where ip; jp mod 2 = 0, coalesce their data onto

a 2�2 cell grid and each of these processors solves the same problem; in e�ect only 1=4th of the processors are

active. The `adjacent' neighbors are now a stride of 2 away in each of the coordinate directions. Similarly, at

the next coarser level, a group of 16 processors solve the same problem and so on. This may be summarized

by

for f1 � k � �g

stride = 2�+1�k

coalesce (ip+ i; jp+ j)

8<
: (ip; jp) mod stride = 0

0 � i; j � stride� 1

In this manner, the computational e�ort for each processor is the same for all grid levels at and coarser than

�. Thus, the overall computational time for the coarsest � levels is given by tc
par

= 4�ftcomp . Noting that

� = 1=2 logp, the ideal parallel e�ciency may be shown to be given by

��1
ideal

= 1 +
p
�
3
2
log p� 1

�
+ 1

np� 1
: (23)

Considering the two limiting cases once again, we get

(a) n� p ��1
ideal

� 1 +O(1
n
); (b) n; p� 1 ��1

ideal
� 1 +O(log p

n
):

Thus, the degradation in the ideal parallel e�ciency is reduced to an acceptable level in comparison with the

previous method for the case where both n and p are large. Although the order of degradation in the ideal

e�ciency is the same for both approaches considered here for the case where n� p, the former is preferable

especially in a high-latency environment such as a network of workstations.

The parallel implementation of the smoother is discussed next. The overriding theme here is to paral-

lelize the Symmetrical Coupled Gauss-Seidel (SCGS) scheme [5] with minimal modi�cations to the original

algorithm. With this objective in mind, a parallel version, PAR-SCGS, is developed which is appropriate

for distributed-memory machines using message passing. The red-black ordering scheme, commonly em-

ployed to solve the discretized second-order Laplace equation with a Gauss-Seidel smoother, is also the basis

for PAR-SCGS; however, a two-color scheme is adopted here for a di�erent reason and this is elaborated

upon subsequently. Consider Fig. 2(a) which shows a two-dimensional mesh of cells in a processor along

with the augmented bu�er boundary of one cell thickness. The processor boundary is indicated by a thick

line and assume that through prior communication, all data values in the bu�ered boundary have been

obtained from the adjacent processors. The red and black cells may be identi�ed by (i + j) mod 2 = 0 and

(i + j) mod 2 = 1, respectively, where (i; j) denotes the location of a cell in the global mesh; furthermore,

assume that the bottom left cell within the processor is red. In step 1, all the red cells are relaxed. Note

that for the cells along the interior boundary of the processor, (7) and (8) indicate that data in the bu�ered

boundary is required. Within the processor, the updated values are shown in `red'. In one sweep of the

11

SCGS scheme, the pressure is updated once and the velocity twice. Thus only one-half of the velocity sym-

bols are shaded `red' to indicate that the velocity has been updated once by the relaxation of the red cells.

Simultaneously, the red cells are also relaxed in the neighboring processors, but the updated values are not

yet available and are distinguished by a cross-hatch. The relaxation of the red cells is followed by step 2

which involves two stages of communication with neighboring processors. In the �rst stage, step 2(a), shown

in Fig. 2(b), each processor sends the updated data on the left interior boundary to the left processor and

receives the cross-hatched data in the bu�ered right boundary from the right processor using a synchronous

send-and-receive. In a similar manner, the cross-hatched data on the left boundary is received from the left

processor. Thus after two send-and-receives, each processor has the updated data shown in Fig. 2(c). The

second stage in the communication is similar to the �rst, but now, each processor communicates with its

top and bottom neighbor. Note, however, that some data obtained from both the left and right processors

in step 2(a) are also communicated. In this manner, as indicated in Fig. 2(d), data may be obtained from

the diagonal neighbors without any explicit communication with them. Step 3 involves the relaxation of

the black cells, and once again, the cells relaxed in the neighboring processors but whose updated values

are not yet available are indicated by a cross-hatch. In step 4, the black data values are communicated in

an analogous manner to that in step 2 and at its conclusion, all the data, including those in the bu�ered

boundary, are updated. This sets the stage for the next iteration at the start of step 1.

Consider now the di�ering roles of the two-color schemes in the solution of the second-order accurate

Laplace equation and the PAR-SCGS algorithm. If a one-color scheme is adopted for the Laplace equation, a

Jacobi-type iteration will result at the processor boundary, a limitation that is easily overcome by a two-color

scheme. With a red-black point ordering scheme, the update of the potential at a point depends only on the

values of the potential at adjacent points of the other color, and the smoothing rate remains independent

of the number of processors. If a one-color scheme is used for the SCGS smoother, it may be con�rmed

that the values of the velocity on the processor boundary will be di�erent in the neighboring processors

at the end of the iteration. Thus, in the PAR-SCGS method described here, a two-color scheme is used

because the velocity is updated twice in each sweep. However, this does not prevent a Jacobi-type iteration

at the processor boundary since red (black) values also depend on the red (black) values, and consequently,

a degradation in the smoothing rate of PAR-SCGS may be expected as the number of processors p increase

for �xed N . However, as is demonstrated later, this degradation in the smoothing rate for the multigrid

computation of the Navier-Stokes equations is very small.

It may be noted that an alternative strategy, that overcomes the potential di�culty with a Jacobi-type

iteration at the processor boundary, is to increase the number of colors. Although the total number of data

to be communicated in one iteration will remain approximately the same as that in the two-color scheme,

smaller messages will be sent more frequently. This will result in an increase in message latency, rendering

this alternative inappropriate in light of the fact that the degradation in smoothing rates for PAR-SCGS

described above is minimal. A similar argument may also be made against the Distributed Gauss-Seidel

(DGS) [7] method in which each equation is smoothed individually thus increasing message latency.

12

Communication is also required in the intergrid transfer of data. Consider �rst the restriction of q and

the residualR in the forward sweep of the V-cycle. As indicated earlier, there are two options commonly used

to restrict u and the x-momentum residual Ru. It may be deduced that (20) introduces no communication,

whereas (21) does. For the test problems considered here, it was empirically determined that the convergence

rate of the multigrid method is insensitive to the choice of restriction operators. Therefore, it would appear

that (20) is clearly preferable in the parallel multigrid method. However, (21), which describes a \full-

weighting" restriction operator, is generally considered to be more robust especially for nonlinear problems

and near boundaries [7]. Therefore, more extensive testing is necessary to determine the relative in
uence

of (20) and (21) on the convergence rate, and thus assess whether the increase (if any) in convergence rate

by using the 6-point formula justi�es the added overhead in communication. In the meantime, the present

implementation uses the 6-point formula and all results have been obtained with this restriction operator;

note that by using the alternative 2-point formula, a reduction in communication time by approximately a

factor of 30% may be achieved. In the backward sweep, communication is required in order to obtain the

value of the error in the bu�ered boundary at the coarser level prior to prolongation to the �ner level. In all

cases where data from the diagonally located processors are required, no explicit message passing with these

processors is necessary since the data may be obtained indirectly as demonstrated by the implementation of

communication in PAR-SCGS. In implementing the approach de�ned by (23) at the coarser levels, a group

of four processors coalesce their data by two successive pairs of data swaps. The only global communication

that is required is in testing convergence at the end of each V-cycle.

4 Results and Discussion

In order to test the parallel multigrid scheme developed here, the classic problem of steady
ow in a square

cavity is considered �rst. Although a time-accurate computation is not an e�cient way to obtain steady-

state solutions, these calculations have been performed here to enable a quantitative comparison with well-

established data in the literature. The sides of the cavity are normalized to unity and the top wall is assumed

to move from right to left at unit speed. Two Reynolds numbers are considered, viz. Re = 100; 1000 and

the time step is chosen to be uniform and equal to �t = 0:1. Fig. 3a shows the horizontal velocity along the

vertical centerline of the cavity, and Fig. 3b shows the vertical velocity along the horizontal centerline. The

computed data by Ghia et al. [4] were obtained on a grid of 128 � 128 using the vorticity-streamfunction

formulation.

The next test case considers the unsteady
ow in a rectangular cavity where the ratio of the vertical

to horizontal sides is 2. The top wall is set into impulsive motion at time t = 0 and moves from right to left

at unit speed. The Reynolds number is Re = 400 and the time step is �t = 0:02. The grid size is 64� 128,

but for clarity only every other point is shown. The instantaneous
ow patterns at four selected times are

shown in Fig. 4 in the same format used by Gustafson and Halasi [14] and show good agreement with their

computed results. A quantitative comparison is not possible since the appropriate data were not tabulated

in the work cited above.

13

Next the e�ectiveness of applying multigrid methods to the solution of the unsteady incompressible

Navier-Stokes equations is considered. Table I shows the residual tolerance error that is speci�ed for various

�ne grids. It is appropriate to choose the tolerance error to be of the same order of magnitude as the

discretization error which for a second-order accurate scheme is of the form Kh2 where h denotes the

mesh spacing and K � O(1). Choosing K = 1, the residual tolerance error is then approximately set

to h�2. Convergence is deemed to have occurred at each time step when the residuals of the continuity

and momentum equations are all less than the residual tolerance. In the context of multigrid methods,

it is convenient to quantify the computational e�ort in terms of work units (WU) [2]. Let the e�ort in

performing one iteration on the �nest grid be 1 WU . In a V-cycle, denoted by V(�1; �2), the number of

iterations in the forward and backward sweeps at each level besides the coarsest are given by �1 and �2. At

the coarsest level, only the forward sweep is performed and thus the number of iterations at this level is �1.

For a two-dimensional domain, the computational e�ort reduces by a factor of 4 for each coarsening of the

mesh. Therefore, the number of WU 's required for one V-cycle with M levels of multigrids is given by

WU1 =
4

3
(�1 + �2)

n
1� 2�2(M�1)

o
+ �12

�2(M�1); (24)

where the subscript on WU denotes the number of iterations of the V-cycle. If the number of iterations of

the V-cycle to obtain a converged solution at a time step is denoted by �, then the computational e�ort in

terms of work units is given by WU� = �WU1. Note that in this study it is assumed that �1 = 2 and �2 = 1.

Consider the sequential implementation on a single processor where the cells are traversed in a lex-

icographic order during the smoothing operation of SCGS. Table II shows the variation of WU� per time

step with resolution of the �nest grid and number of multigrid levels; the results in Table II are obtained by

averaging WU� over the �rst 10 time steps. The
ow con�guration is a square cavity in which the top wall

is set into impulsive motion with unit speed at t = 0 and the Reynolds number and time step are Re = 1000

and �t = 0:01. There is a substantial reduction in computational e�ort as the number of multigrid levels is

increased and this is more pronounced as the number of mesh points in the �nest grid is increased. With the

same
ow conditions and parameters, the computational e�ort for the parallel multigrid calculation is also

obtained. In this case, PAR-SCGS is used as the smoother over a processor mesh of 8�4 and the implemen-

tation de�ned by (23) is used for the coarser levels. Table III shows WU� (summed over all the processors)

and the results indicate similar trends to those observed for the sequential implementation. It may be noted

by comparing the results in Tables II and III that for a grid size and multigrid levels, the number of work

units required by the parallel implementation is generally higher. This is a direct result of the fact that the

smoothing rate of PAR-SCGS is inferior to SCGS since the former utilizes a Jacobi-type iteration at the

processor boundary; however, this degradation is minimal when the full complement of multigrid levels is

utilized.

Finally, the speed up for both single-grid and multigrid calculations is shown in Fig. 5 where the

number of processors is varied from 1 to 32 in steps of 2. The speed up is obtained from t1=tp where

tp and t1 denote the measured execution times for calculations with p processors and a single processor,

respectively. For the multigrid calculations, the maximum number of levels possible is used for a given �ne

14

grid and the approach de�ned by (23) is implemented at the coarser levels. Three expected trends may be

observed: (i) the degradation in speed up for both single-grid and multigrid calculations with increasing

number of processors is more pronounced for smaller-sized problems, (ii) the speed up of multigrid is always

less than single-grid calculations, and, most importantly, (iii) the di�erence in speed up between single-grid

and multigrid calculations diminishes with increasing problem size.

5 Conclusions

A parallel multigrid scheme for the time-accurate calculation of the unsteady incompressible Navier-Stokes

equations in primitive variables has been investigated. The convergence rate of the multigrid method using

the parallel smoother, PAR-SCGS, developed here is comparable to that of a sequential algorithm. It is

shown that good speed ups are attainable for multigrid calculations as the problem size increases. The

reduction in the computational e�ort by incorporating multigrids dominates the degradation in speed up

when compared with single-grid calculations.

Acknowledgements

The authors gratefully acknowledge the support of this work under a research grant from the Alex G. Nason

Foundation.

Appendix

The coe�cients in the momentum equations (7) and (8) and the continuity equation (9) are given by

M z

1+ = �
a1

Re
+ Qza4;

M z

2+ = �
a3

Re
+ Pza7;

M z

3+ = �
1

�t
+

(a1 + a3)

Re
+ Qza5 + Pza8;

M z

4+ = �
a3

Re
+ Pza9;

M z

5+ = �
a1

Re
+ Qza6;

M z

1� =
a1

Re
+Qza6;

M z

2� =
a3

Re
+ Pza9;

M z

3� =
1

�t
�

(a1 + a3)

Re
+Qza5 + Pza8;

15

M z

4� =
a3

Re
+ Pza7;

M z

5� =
a1

Re
+Qza4;

Dz

1 = ��z�1;

Dz

2 = �z�1;

Gu = g
n+ 1

2

x ;

Gv = g
n+ 1

2

y ;

where z = x; y for the x- and y- momentum equations, respectively. The coe�cients ai are given by

a1 =
1

2�x2
;

a3 =
1

2�y2
;

a4 = �
Az

2�x
;

a5 =
(Az � 1

2
)

�x
;

a6 =
1�Az

2�x
;

a7 = �
Bz

2�y
;

a8 =
(Bz � 1

2
)

�y
;

a9 =
1�Bz

2�y
;

and

Az =
1 + sgn(Qz)

2
;

Bz =
1 + sgn(Pz)

2
:

Finally, note that

Qx = ��tu;

Qy = ��t�x�yu;

Px = ��t�x�yv;

Py = ��tv:

References

[1] G. C. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker, Solving Problems on Concurrent

Processors, Vols. I and II (Prentice Hall, Englewoods Cli�s, New Jersey, 1988).

16

[2] A. Brandt, Math. Comput. 31, 333, (1977).

[3] W. L. Briggs, A Multigrid Tutorial (SIAM, Philadelphia, 1987).

[4] U. Ghia, K. N. Ghia, and C. T. Shin, J. Comput. Phys. 48, 387, (1982).

[5] S. P. Vanka, J. Comput. Phys. 65, 138, (1986).

[6] R. Peyret and T. D. Taylor, Computational Methods for Fluid Flow (Springer-Verlag, 1983).

[7] A. Brandt, GMD-Studien 85. (Gesellschaft fur Mathematik und Datenverarbeitung MBH, Bonn, 1984).

[8] M. C. Thompson and J. H. Ferziger, J. Comput. Phys. 82, 94, (1989).

[9] C-H. Bruneau and C. Jouron, J. Comput. Phys. 89, 389, (1990).

[10] W. Shyy and C-S. Sun, Computers and Fluids 22, 51, (1993).

[11] C. Sheng, L. Taylor, and D. Whit�eld, AIAA Paper 94-2335, AIAA 25th Fluid Dynamics Conference,

Colorado Springs, CO, 1994.

[12] T. L. Doligalski and J. D. A. Walker, J. Fluid Mech. 139, 1, (1984).

[13] Thinking Machines Corporation, CMMD Reference Manual (1993).

[14] K. Gustafson and K. Halasi, J. Comput. Phys. 64, 279, (1986).

17

Global Grid

32� 32 64� 64 128� 128 256� 256

Tol 1:0� 10�3 2:5� 10�4 6:0� 10�5 1:5� 10�5

Table I: Residual tolerance error for various grid sizes.

Levels Global Grid

32� 32 64� 64 128� 128 256� 256

1 60 - - -

2 24 350 - -

3 10 99 825 -

4 8 27 220 -

5 8 13 58 315

6 - 13 17 82

7 - - 17 22

8 - - - 21

Table II: Number of work units WU� on a sequential machine (Re=1000, �t=0.01).

Levels Global Grid

32� 32 64� 64 128� 128 256� 256

1 86 - - -

2 30 452 - -

3 10 119 966 -

4 6 29 243 -

5 - 15 59 347

6 - - 23 82

7 - - - 25

Table III: Number of work units WU� on a processor mesh of 8� 4 (Re=1000, �t=0.01).

18

(i,j)

(i,j+1/2)

(i,j- 1/2)

(i+1/2,j)(i- 1/2,j)

Figure 1: The staggered mesh showing location of the velocity and pressure; 2 u-velocity, 3 v-velocity,

pressure.

19

88 88 8

88
88

@@
@@

@@
@@

@@
@@

@@
@@

88
88

@@
@@

@@
@@

@@
@@

@@
@@

8
8

88
88

88
88

88
88

8
8

@
@

@@
@@

@
@

@
@

@@
@@

@
@

@
@

@
@

@
@

@@
@@

@
@

@
@

@
@

@@
@@

@
@

@
@

@@ @@

@@ @@

@@
@@

@@
@@

@@ @@

@@ @@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

88
88

88
88

88888

88
88

88
88

88
88

8
8

8
8

8
8

88
88

88888

88
88

88
88

88
88

88
88

8
8

88
88

88
88

88
88

8

8
8

8
8

88
88

88
88

88

88

88
88

88
88

88
88

8

8
8

8
8

88
88

88
88

88
88

88
88

8
8

8
8

8
8

8

8
8

8
8

88
88

88
88

8
8

88 88 88

(a) Step 1: Relaxation of `red' cells. Cells relaxed in the neighboring processors are identi�ed by

a cross-hatch.

Figure 2: Stages in the execution of Parallel SCGS.

20

8
8

@@
@@

@@
@@

@@
@@

@@
@@

8 @@ @@

@@
@@

@@
@@

88
88

88
88

@
@

@
@

@@

@
@

@
@

@@
@@

@
@

@

@
@

@
@

@@ @

@
@

@
@

@@
@@

@
@

@@ @@

@@
@@

@@
@@

@@ @@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

88
88

88
88

8
8

8

88
88

88
88

88
88

88
88

88

88

88
88

8888

88
88

8
8

8
8

8
8

8
8

8
8

8
8

(b) The values at the end of step 1 are shown in `red'. In step 2(a), the `red' hatched values are

obtained from the left and right neighboring processors.

Figure 2: contd.

21

88
88

88
88

88
88

@
@

@@
@@

@@
@@

@@
@@

@@
@@

@ @@ @@

@@
@@

@@
@@

@@
@@

8
8

88
88

88
88

@@
@@

@
@

@
@

@@

@
@

@
@

@@
@@

@
@

@

@
@

@
@

@@ @

@
@

@
@

@@
@@

@
@

@@ @@

@@
@@

@@
@@

@@ @@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@
@

@

@@
@@

@@
@@

@@
@@

@@
@@

@@

@@

@@
@@

@@@@

@@
@@

@
@

@
@

@
@

@
@

@
@

@
@

8
88
88

88
88

88 88 88

88
88

88
88

88
88

88 88 888 88 88

8
8

88
88

88
88

8
8

8
8

8
8

88
88

88
88

88
88

8
8

88
88

88
88

8
8

8
8

8
8

8
8

88
88

(c) The values at the end of step 2(a) are shown in `red'. In step 2(b), the `red' hatched values

are obtained from the bottom and top neighboring processors.

Figure 2: contd.

22

8 @@ 88 @@ 88 @@

@
@

@@
@@

@@
@@

88
88

8
8

@@
@@

@@
@@

@
@

@@
@@

@@
@@

88
88

8
8

@@
@@

@@
@@

@@
@@

@ 88 @@ 88 @@ 88

@@
@@

@
@

@
@

@@
@@

@
@

@@
@@

@
@
88
88

@
@
88
88

@
@
88
88

@
@

@@
@@

@
@

@
@

@@
@@

@
@

@@ @@

@@
@@

@@
@@

@@ @@

@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@
@
88
88

@
@
88
88

@@
@@
8
8

@@
@@
8
8

88
@@
@@

88@@

@@
@@
88
88

@@
88
88

@@
@@

@@
@@

@@
@@
8
8

@@
@@
8
8

@
@
88
88

@
@
88
88

8
8
@
@

8
8
@
@

@
8
8

@8 @@

@
@
88
88

@
@

@@
@@

@@
@@

@@8 @@8 @88

@@8@8@88

@@8 @@8 @8 @88

@88 @88 @@8

@
@
8
8

@@
@@
88
88

@@
@@
88
88

@@
@@
88
88

@@
@@

@@
@@

@88

@
8
8 @@

88
88 @@

88
8888

@@
@@ 88

@@
@@ 88

@@
@@

88
88
@@
@@

88
88
@@
@@

88
88
@@
@@

8
@
@ @@

88
88 @@

88
88

88
88
@@
@@

88
88
@@
@@

(d) At the end of step 2(b), all `red' values are known. In step 3, `black' cells are relaxed and the

cells in the neighboring processors are identi�ed by a cross-hatch.

Figure 2: contd.

23

@@
@@

@@
@@

@@
@@

@
@

@@
@@

@@
@@

88
88

8
8

@@
@@

@@
@@

@ @@ @@ 88

8
8

@@
@@

@@
@@

@@
@@

@
@

@@
@@

@@
@@

@@
@@

@
@

@
@

@@

@
@

@@
@@

@
@
88
88

@88

@
@
88
88

@
@

@@ @

@
@

@@
@@

@
@

@@ @@

@@
@@

@@
@@
@@
@@

@@ @@
@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@
@
88
88

@88

@@
@@
8
8

@@
@@
8
8

88
88
@@
@@

88
88
@@
@@

@@
88
88

@@

@@
@@

@@@@8

@@
@@
8
8

@
@
88
88

@
@
88
88

@
@

8
@
@

@
@
8
8

@
@
8
8

@@
@@

@
@
88
88

@
@

8
@
@

@@
@@

@@
@@

@@
@@

@@
@@

@
@

@@
@@

@
@

@
@

@@
@@

@@
@@

@
@

@
@

@
@

@
@

@@
@@

@
@

@@
@@

@@
@@

@@
88
88@@@@

@
@
@ @@ @@@@ @@ @@

@@
@@

@@
@@

@@
@@

(e) The values at the end of step 3 are shown in `black'. In step 4(a), the `black' hatched values

are obtained from the left and right neighboring processors.

Figure 2: contd.

24

8
8

@@
@@

88
88

@@
@@

88
88

@@
@@

@
@

@@
@@

@@
@@

@@
@@

@@
@@

@ @@ @@

@@
@@

@@
@@

@@
@@

@
@

88
88

@@
@@

88
88

@@
@@

88
88

@@
@@

@
@

@
@

@@

@
@

@@
@@

@
@

@

@
@

@
@

@@ @

@
@

@@
@@

@
@

@@
@@

@@
@@

@
@

@

@@
@@

@@
@@

@@
@@

@@@@

@@
@@

@
@

@
@

@
@

@
@

@@
@@
8
8

@@
@@
8
8

@
@
88
88

@@
@@
8
8

@
@
8
8

@
@
88
88

@@
@@
8
8

@@
@@
8
8

@
@
8
8

@
@
88
88

@
@
88
88

@
@
88
88

@@
@@
8
8

@
@
88
88
@8 @@88 @@88

@@
88
88 @@

88
88 @@

88
88

@
@
8
8

@@
@@
88
88

@@
@@
88
88

88@@ 88@@ 88@@

88
88
@@
@@

88
88
@@
@@

88
88
@@
@@

8
@
@ @@ @@ @@

@
@

@@
@@

@@
@@

@
@

@@
@@

@@
@@

@@@@ @@ @@

88
@@
@@ 88

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@
@

@@
@@
@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@
@

(f) The values at the end of step 4(a) are shown in `black'. In step 4(b), the `black' hatched

values are obtained from the bottom and top neighboring processors.

Figure 2: contd.

25

0

0.2

0.4

0.6

0.8

1

-1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00

y

u

Re=100 Ghia et al.
64 x 64

128 x 128
Re=1000 Ghia et al.

64 x 64
128 x 128

(a) The horizontal velocity along the vertical centerline.

Figure 3: Steady state solution in a square cavity with the top wall moving at unit speed from right to left;

Re = 100; 1000.

26

-1.00

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

0 0.2 0.4 0.6 0.8 1

v

x

Re=100 Ghia et al.
64 x 64

128 x 128
Re=1000 Ghia et al.

64 x 64
128 x 128

(b) The vertical velocity along the horizontal centerline.

Figure 3: contd.

27

(a) t = 6 (b) t = 8

Figure 4: Normalized velocity vector plots in a cavity of aspect ratio 2 with the top wall moving at unit

speed from right to left; Re = 400.

28

(c) t = 10 (d) t = 12

Figure 4: contd.

29

0

1

2

3

4

5

6

0 1 2 3 4 5 6

lo
g(

sp
ee

d
up

)

log p

single grid
multigrid

32 x 32
32 x 32
64 x 64
64 x 64

128 x 128
128 x 128
256 x 256
256 x 256

Figure 5: Variation of speed up with number of processors for single-grid and multigrid calculations.

30

