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Abstract

Recent advances in the application of asymptotic methods to the analysis

of turbulent wall-bounded shear ows in the limit of large Reynolds number

are surveyed. In particular, we consider (i) the turbulent wake downstream
of sharp and wedge-shaped trailing edges, (ii) turbulent boundary-layer

ow under the inuence of a large and adverse pressure gradient and

the related turbulent separation problem, and (iii) three-dimensional

turbulent boundary-layer ow. The above are discussed in the context

of incompressible ow. The emphasis is on contributions from the USA;

however, related work elsewhere is also discussed.

1. Introduction

It is convenient to begin the discussion on wall-bounded shear ows by

summarizing the well-known structure of the two-dimensional attached

turbulent boundary layer �rst. It is assumed here that all lengths and

velocities are nondimensionalized by the characteristic length of the body

and a representative external velocity; the Reynolds number Re is based on

these two quantities and the kinematic viscosity. The boundary-layer edge

velocity and wall shear stress are denoted by Ue and �w, respectively, and

the friction velocity is given by u� =
p
�w. It is well-known (Fendell, 1972;



Mellor, 1972; Yajnik, 1970) that the ow is two-tiered with the streamwise

velocity u and Reynolds stress �u0v0 expanding in the outer layer according

to

u = Ue

�
1 + u�

@F1

@�
+ � � �

�
; �u0v0 = u2

�
� + � � � ; � =

y

�o

; (1)

where the parameter u� is formally of O(1= logRe) and is de�ned (Fendell,

1972) according to u� = u�=Ue for two-dimensional ow. The normal

distance from the wall is y and, for the attached ow considered here,

the outer-layer thickness �o � O(1= logRe).

In the wall layer of thickness O(Re�1u�1
�
), where to leading order the

total shear stress is constant, the streamwise velocity and Reynolds stress

expand as

u = u�U
+(y+); �u0v0 = u2��

+(y+); y+ = Reu�y: (2)

It is well-accepted that in the overlap region between the two layers,

@F1

@�
�

1

�
log �+Co � ! 0; U+(y+) �

1

�
log y+ + Ci y+ !1; (3)

where � is the von K�arm�an constant; this yields the match condition given

by
1

u�
=

1

�
log(ReUeu��o) + Ci � Co: (4)

2. Wake Flow

We �rst consider the nature of the turbulent wake ow downstream of a

sharp trailing edge. The ow past a �nite-length at plate aligned with

the external ow provides a simple con�guration for analysis. Following

Bogucz and Walker (1988), it is convenient to de�ne a small parameter

� � O(1= logRe) with the value of u� at the trailing edge. The sudden

change in the wall boundary condition at the trailing edge of the at plate
is expected to produce a ow structure in which the oncoming outer layer

splits into the near inner and outer wakes. Consider the inner wake �rst

where Bogucz and Walker (1988) de�ne a normal scaled variable z according

to z = y=�n(x), where x denotes the streamwise distance with the origin

at the trailing edge; thus �n is a measure of the growth of the near inner

wake. Noting that Ue = 1, the asymptotic form of the outer-layer velocity

in terms of z is

u � 1 + �

�
1

�
log

�
�n

�o

�
+

1

�
log z + Co

�
z !1; (5)



suggesting that the expansion of u in the inner wake is given by

u = 1+ �

�
Uo(x) +

@f

@z

�
+ � � � : (6)

The expansion above is a slight departure from that used by Bogucz and

Walker (1988), but, to the order considered here, the results are identical

(see also Neish and Smith (1988)). Retaining the expansion for the Reynolds

stress in 1, the governing equation is then given by
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�n

�

@2f

@z@x
: (7)

Self-similarity is invoked (see also Alber (1980)) which requires the

coe�cients in the second and third terms to be constants. Assuming

�0

n=� = �, integration gives

�n = ��(x� xo); (8)

where Bogucz and Walker (1988) show xo � O(Re�1��1). To leading

order, 8 shows that the near inner wake grows linearly, and, from 5,

Uo �
1

�
log

�
�

�o

�x

�
x > 0; (9)

indicating that the centerline velocity increases logarithmically with

distance from the trailing edge. With the result in 8, the similarity equation

becomes

�0 + �zf 00 = 1; (10)

subject to

f(0) = f 00(0) = �(0) = 0; f 0 �
1

�
log z + Co; � � 1 z !1; (11)

where the symmetry condition and a match with the upstream boundary

layer is used to determine the boundary conditions. The validity of the

expansion in 6 as x ! 0 may be determined from 9; it follows from the

match condition in 4 that the expansion is valid only for x� O(Re�1��1)

and thus a local region of extent O(Re�1��1)�O(Re�1��1) at the trailing

edge is required to smooth out the nonuniformity in the solution and no

further simpli�cations are possible in the governing equations in this region.

Next consider the outer wake where the streamwise velocity expands

regularly and Bogucz and Walker (1988) show that

u = 1 + �

�
F 0

1 + x
�

�o

(��F 00

1 ) + � � �
�
: (12)



Note that as � ! 0, the defect function F 0

1 � (1=�) log �+Co thus matching

with the logarithmic behavior in the inner wake solution in 10. Since the

inner wake thickness �n increases linearly with x, the logarithmic overlap

region between the outer and inner wake begins to lift up; see also discussion

below. The normal velocity is shown to be given by

v = ��2
�
1 + F1 � �F 0

1

�
; (13)

which results in a nonuniformity because in the upstream boundary layer,

v = �2(�F 0

1�F1) and therefore v = �2 as � !1 since �F 0

1 ! 0; F1! �1 as
� ! 1; the latter follows from the de�nition of the outer boundary-layer

scale (Fendell, 1972) �o = ��=u�, where �
� is the displacement thickness.

However, in the wake, v = 0 as � ! 1 to the order considered here.

This nonuniformity is resolved in the usual way by consideration of weak-

interaction whereby a second-order O(�2) correction to the external ow

�eld is obtained followed by the introduction of perturbation quantities

for the velocities and pressure of O(�2) in the outer layer. Bogucz and

Walker (1988) are thus able to demonstrate that the nonuniformity in the

normal velocity may be resolved within the scale of the boundary layer in

a square region O(�)� O(�) centered at the trailing edge.

The structure of the ow discussed thus far is consistent with the

results obtained by Alber (1980), Neish and Smith (1988) and Bogucz

and Walker (1988); however, it is in the treatment of the inner wake that

di�erences arise and is due to the di�erent turbulence models adopted.

Alber (1980) and Bogucz and Walker (1988) adopt a simple model for the

eddy viscosity "� for the at-plate outer-layer ow de�ned by

"� = u��o"; " =

8<
:

� � � �

�

�� � < �

�

; (14)

where � is the constant outer-layer Clauser (1956) eddy viscosity and

assumed to be � = 0:016 (Mellor and Gibson, 1966). The model for the

outer layer over the at plate must merge smoothly with the near-wake

model downstream, and, for � ! 0, the eddy viscosity in terms of the

inner-wake variables is given by "� = ��n�z. Thus, � = �zf 00 which is

consistent with the boundary conditions as z ! 1 in 11. Alber (1980)

assumes that the linear variation in the eddy viscosity continues all the way

to the centerline and, in this case, it follows from 10 that f 0 � ao+��1z as

z ! 0 thus violating the symmetry condition. On the other hand, Bogucz

and Walker (1988) argue that this behavior is inconsistent and propose a

model for the inner wake given by

"� = ��n"w; "w =

�
�z z � �̂

��̂ z < �̂
; (15)



where �̂ is a constant and Bogucz and Walker (1988) recommend a

value �̂ = 0:6 based on comparison of calculated similarity pro�les with

experimental data. The model in 15 assures the satisfaction of the symmetry

condition at the centerline. Since �n � ��x, it is clear that the extent of

linear variation in eddy viscosity decreases with downstream distance thus

diminishing the extent of the logarithmic variation in the wake velocity

until at x � (�o�)=(��
2�̂), it is completely extinguished. Unfortunately,

the near-wake model does not asymptote to the model appropriate for the

far wake thus calling for an additional region patching the near and far

wakes.

In constrast to the modeling above, Neish and Smith (1988) use the

Cebeci-Smith (1974) mixing-length model for the upstream surface layer.

The continuation of this model in the inner wake yields � = �2z2jf 00jf 00 and
this form is assumed throughout the inner wake. Although the asymptotic

condition as z ! 1 is satis�ed, it may be inferred from 10 that f 0 �
ao+2�

�1z1=2 as z ! 0. However, this irregular behavior is adjusted through

what is termed the `cuspidal layer' that lies between the inner wake and

the centerline and is of O(Re�2=3��1=3) thickness. Upon de�ning

u = 1 + �(Uo + ao) +Re�1=3�1=3x�1=3û(ŷ); y = Re�2=3��1=3x1=3ŷ; (16)

the governing equation in the cuspidal layer is given by

1

�
=

@

@ŷ

�
@û

@ŷ
+ �2ŷ2(

@û

@ŷ
)2
�
;

@û

@ŷ
= 0 ŷ = 0; û �

2

�3=2
ŷ1=2 ŷ !1;

(17)

where the last condition arises from matching the inner limit of the near

inner wake solution.

Unlike the studies discussed earlier on the wake ow past a at plate,

Melnik and Grossman (1982) consider the nonuniformity at the wedge-

shaped trailing edge of an airfoil pro�le due to a singularity in the outer

external ow. The airfoil pro�le is assumed to be thin, symmetric and

nonlifting and is characterized by a thickness ratio t that is assumed small.

In order to focus on the salient features of the ow, they limit their attention

to incompressible ow.

Consider a velocity expansion according to

u(x; y) = [1 + tu01 + � � �] + �2[u20 + tu21 + � � �]; (18)

v(x; y) = [tv01 + � � �] + �2[v20 + tv21 + � � �]:

The normal velocities v01(x; 0) and v20(x; 0) represent the e�ective

transpiration velocities due to the pro�le shape and the viscous

displacement, respectively. These boundary conditions determine the



external perturbation �eld and, in particular, Melnik and Grossman (1982)

show that

u01(x; 0) =
�te

�
(log jxj+ a1) jxj ! 0; (19)

where the origin in x is assumed to be at the trailing edge; t�te is the

trailing wedge angle and a1 is a constant dependent on the pro�le shape.

This logarithmic singularity in turn causes stronger singularities in v21 and

u21, thus rendering the expansion in 18 inappropriate near the trailing

edge. Moreover, the pressure drop across the boundary layer is shown

to be of O(�3tx�2) which becomes increasingly important as jxj ! 0.

Their subsequent analysis is concerned with the elimination of the above

inviscid singularity by considering viscid-inviscid interaction. To this end,

two methodologies are employed: (i) Interactive boundary-layer theory

(IBLT), and (ii) Strong-Interaction theory (SI).

As is customary in IBLT, the external inviscid and boundary-

layer equations are coupled to produce solutions for the pressure and
displacement thickness, but the normal momentum equation is ignored. The

essential idea that Melnik and Grossman (1982) pursue is to seek a solution

for the displacement-thickness induced velocity that exactly cancels the

logarithmic singularity in the pro�le induced velocity in 19. Thus, both

components of the perturbation streamwise velocity are required to be

of O(t) and their analysis indicates that this may only be accomplished

within a local streamwise length scale that is of O(�2). Melnik and

Grossman (1982) are able to show that the logarithmic singularity in

the external ow may be eliminated; however, they �nd that the normal

pressure-gradient e�ect is signi�cant and, since it cannot be taken into

account within the framework of IBLT, the theory remains incomplete in

correctly describing the wedge trailing-edge ow.

This situation is recti�ed within the SI theory. Within this framework,

the structure of the ow consists of three layers of streamwise extent O(�)

near the trailing edge. In the main deck of normal thickness O(�), the
governing equations include the normal momentum equation but the shear

stress does not enter to leading order. Below the main deck is a `blending'

layer of thickness O(�2), and, �nally, the innermost wall layer of thickness

O(Re�1��1). Also, a square region O(Re�1��1)�O(Re�1��1) at the trailing
edge is required and serves the same function as discussed for the at

plate ow above. Since the shear stress does not enter to leading order,

the solution in the main deck may be obtained without recourse to any

turbulence modeling. Melnik and Grossman (1982) construct an analytical

solution that matches the upstream oncoming ow.



3. Turbulent Separation

We know consider the challenging problem of determining the structure of

a turbulent boundary layer undergoing incipient separation. The theories

put forth in the studies discussed here di�er from one another considerably

attesting to the di�culty of analyzing such ows. We �rst discuss the theory

developed by Melnik (1989) that results from an asymptotic analysis in

terms of a two-parameter expansion, viz. �; � ! 0 but where ���1=2 �
O(1). The unusual aspect of this study is that the small parameter � is
identi�ed with the `constant' in the algebraic Clauser (1956) model for the

outer region of the turbulent boundary layer. At the outset, the Clauser

eddy viscosity model along with the mixing-length formulation closer to

the wall is adopted. The primary objective in Melnik's (1989) approach is

to determine a solution that is uniformly valid in the attached as well as

farther downstream on approach to separation. To this end, Melnik (1989)

introduces an additional region which is termed the `equilibrium layer' of

thickness O(�3=2) between the classical outer and wall layers. The ow in

the new outer layer is no longer considered to be representable as a sum

of the freestream velocity and small defect; rather the ow is governed by

the full nonlinear equations with turbulence modeled by the Clauser eddy

viscosity given by �T = Ue�
�� throughout the extent of the new outer layer.

Thus, the outer solution is smooth as the wall is approached and, in general,

results in a nonzero slip velocity. Note that Melnik's (1989) approach of

introducing an additional layer was also used previously by Sychev (1987);

however, in this case, a defect form for the velocity was considered to be

valid in the outer layer with an intermediate layer of thickness O(�2).

In the thinner equilibrium layer below the outer layer, Melnik (1989)

expands the velocity in a defect form about the nonzero slip velocity

according to

u = us[1 + �1=2sU(Y )]; y = �3=2sb(x)Y; (20)

where �1=2sus = u� . The expansion in 20 ensures that the patch point in

the eddy viscosity lies within the equilibrium layer, and the factor b(x) is

introduced to make it coincide with Y = 1. The Reynolds stress is expanded

as

� u0v0 = �u2
s
2
s
G(Y ); G! 1 Y ! 0; (21)

where the limiting form for G is obtained from a match with the constant

shear stress wall layer. With the above expansions, the governing equation

is given by

G = 1 + �1=2�(x)Y + O(�); (22)



where

G = �2Y 2

����@U@Y
���� @U@Y Y � 1; �(x) =

b

2su2s

d

dx

h
u2
s
� U2

e

i
: (23)

An equation for Y � 1 is also obtained but is not needed for the discussion

here. Since � ! 0, the above equation indicates that the equilibrium

layer may be characterized as a constant shear stress layer. However,

Melnik (1989) argues that as separation is approached, us ! 0 and at

some downstream location � � O(��1=2). It is maintained that by assuming

� = �1=2� � O(1), a solution that is uniformly valid in the attached as well

as separating boundary layer may be obtained. The leading-order solutions

in these regions are then determined by taking the limits �! 0 and �!1,

respectively. As � increases from zero, the equilibrium layer is transformed

from a constant to a linearly-varying shear stress layer. Integration of 22

with � = �1=2� � O(1) gives

U(Y ) =
1

�

�
log

Y
p
1 + �

+ 2
�p

1 + �Y � 1
�
� (24)

2 log

 p
1 + �Y + 1

2

!
�D(�)

#
; Y � 1;

where D(�) is a known, although cumbersome, function of �. The limiting

solution as Y ! 0 with � � O(1) is given by ��1[log Y � D(�)] and is

matched to the log-law velocity in the thin wall layer which results in an

implicit match condition for the scaled friction velocity s.

It is of interest to determine the limiting behavior of the solution in the

attached (� ! 0) and separating (� ! 1) regions. Melnik (1989) shows

that

U(Y ) �
1

�
[log Y + 1] +O(�); �! 0; (25)

U(Y ) �
2
p
�

�

�
Y 1=2 �

3

4

�
+ O(��1=2); �!1: (26)

Note that the half-power law variation in the latter is not surprising since
this behavior follows from the assumption of a linearly-varying shear stress

layer and a mixing-length formulation for the eddy viscosity. A solution

for Y � 1 is also obtained and matched to the outer-layer solution.

Melnik (1989) shows that the appropriate boundary conditions that arise

for the outer solution are

u(x; y = 0) = us;
@u

@y

����
y=0

=
u2s

2
s

Ue�
�
; y = �y; �� = ��

�

: (27)



The boundary conditions in 27 thus establishes an iterative procedure

whereby the wall shear stress may be calculated by considering the

numerical solution of the outer layer only. Finally, Melnik (1989) considers

the limit us ! 0 to analyze the separation singularity in the outer layer and

determines a Goldstein-like singularity in us, and establishes x � O(�1=2)

as the streamwise scale of turbulent separation.

Durbin and Belcher (1992) also propose a three-layered structure

for what is termed an adverse pressure gradient (APG) boundary layer

appropriate for ow just upstream of separation on a streamwise length

scale of L�1p = �U�1
e
U 0

e
. The expansions are carried out in terms of a small

parameter denoted here by �p and de�ned by

�p =
1

(ReUeLp)1=3
: (28)

The outer layer is of O(Lp�p) where, in agreement with Melnik (1989), the

velocity defect is not considered small and the full nonlinear equations are

used. In contrast, however, the layer adjacent to the wall is postulated to

be only O(�p) smaller than the outer layer and involves a balance of shear

stress and pressure-gradient terms and is thus a layer of linearly-varying

shear stress. In this inner layer, the asymptotic behavior of the streamwise
velocity is assumed to be given by

u

Ue

� �pAuŷ
1=2 ŷ ! 1; y = Lp�

2
p
ŷ; (29)

which is shown not to match the O(1) velocity in the outer layer

necessitating the inclusion of an intermediate layer of thickness O(Lp�
4=3
p ).

This layer is also a region of linearly-varying shear stress where the velocity

is of O(�
2=3
p ).

The structure of the ow, in particular the implicit formula for the

evaluation of the skin friction which involves higher-order terms, is highly

dependent on the turbulence model adopted. A k�" model is used in the

innermost layer, a constant Clauser eddy-viscosity in the outer layer, and
an interpolation between these models in the intermediate layer. Durbin

and Belcher (1992) do not address the issue of asymptotically matching

the oncoming attached boundary layer to their proposed structure and

associated questions on the streamwise length scale over which this may

be accomplished and the manner in which the logarithmic variation in the

streamwise velocity is suppressed.

The above analyses assumed that the outer layer is governed by the

full nonlinear equations. It is perhaps instructional to review Neish and

Smith's (1992) analysis in order to gain an insight into how an upstream



small defect outer layer may be transformed into a nonlinear region farther

downstream. Let the external velocity approach a stagnation point at x = 1

according to

Ue � �̂(1� x) x! 1�: (30)

With the expansions for the outer layer given in 1, the governing equations

are given by (Fendell, 1972)

@�

@�
+

1

u�

d�o

dx
�
@2F1

@�2
+

�o

Ueu�

dUe

dx

"
�
@2F1

@�2
� 2

@F1

@�

#
=

�o

u�

@2F1

@x@�
: (31)

Integration of the above equation across the boundary-layer thickness and

using � � 1, F1 � 0 as � ! 0 and � � 0, �F 0

1 � 0, F1 � F11 as � ! 1
along with the �rst of 3, it may be shown that �(U3

e�oF11)0 = u�U
3
e .

Integration in x along with the use of 30 yields

��oF11 �
Eu�

�̂3(1� x)3
x! 1�; (32)

where E is a constant and represents the contribution farther upstream

where Ue � O(1). From the �rst of 1, it follows that �� = �F11�ou�
and if a Clauser eddy-viscosity model is adopted for the outer layer, then

� = ��F11F 00

1 . Along with the result in 32, it follows from 31 that a

turbulence-inertial balance is possible if

�o � u�(1� x)�1; F1 � (1� x)�2 x! 1�: (33)

Note that the latter indicates a strong increase in the defect function.

Therefore, the expansion for the velocity in 3 ceases to be valid when

(1 � x) � O(u
1=2
� ). Along with the �rst of 33, this implies that a square

region of size O(u
1=2
� ) � O(u

1=2
� ) comes into play in which the external

velocity is of O(u
1=2
� ). Noting that u� � O(�), one may formally de�ne

((x � 1); y) = (�1=2X; �1=2Y ) and (u; v; p) = (�1=2U; �1=2V ; �P ). Therefore,

the governing equations in the new region are not only nonlinear but also

include the normal momentum equation. Upon requiring that V = 0 at

Y = 0 results in a slip velocity U(X; 0) = U s.

Next consider the upstream defect layer where

u = Ue

�
1 + u�

�
1

�
log � + Co

��
� ! 0: (34)

Since F1 ! (1� x)�2 as x! 1�, then the x-dependence must be reected

in Co in a similar fashion, i.e. Co � (1�x)�2. Formally de�ning Co = u�Co



and expressing the quantities in 34 in terms of the new variables, it is seen

that to leading order,

U = U e(1 + Co) Y ! 0; (35)

which is the required slip velocity; the logarithmic behavior is relegated to

a higher-order e�ect. This argument proposed by Neish and Smith (1992)

provides a possible scenario whereby an oncoming small defect outer layer

transforms to a nonlinear region eradicating the logarithmic behavior in

the process. It may perhaps be of interest to investigate the structure of

the ow for other limiting forms of the external velocity.

4. Three-Dimensional Boundary Layers

The three-dimensional boundary layer is best described in a streamline

coordinate system. At the edge of the boundary layer, the external velocity

Ue is aligned with the streamwise coordinate x1. The cross-stream and

normal coordinates, x2 and x3, respectively, complete the orthogonal
system. In general, the external streamline is curved which creates a

cross-stream pressure gradient and, under its inuence, a cross-stream

velocity component u2 develops within the boundary layer. Consequently,

the velocity vector rotates away from its direction at the boundary-layer

edge. Both components of the velocity must satisfy the no-slip condition

at the wall and, therefore, the cross-stream velocity attains its maximum

within the boundary layer. The velocity skew angle is denoted by �, and

its value at the wall, �w , is the wall skew angle.

Goldberg and Reshotko (1984) were the �rst to conduct an asymptotic

analysis of the three-dimensional turbulent boundary layer by extending

the two-dimensional theory of Mellor (1972). The wall-layer quantities

were expanded in powers of � and thus pressure-gradient e�ects, which are

formally of O(Re�1��3), were not taken into account. It was concluded that

the wall layer is a region of constant shear stress to all orders. Moreover, it

was postulated that the maximum in the cross-stream velocity lies in the

outer layer and an empirical formula to represent the characteristic `bulge'

in the cross-stream velocity pro�le was proposed.

Subsequently, Degani et al. (1992; 1993) also analyzed the three-

dimensional turbulent boundary layer and found that the structure of the

streamwise velocity u1 is similar to that in two-dimensional ow. In the

outer layer,

u1 = Ue

�
1 + u�

@F1

@�
+ � � �

�
;

@F1

@�
�

1

�
log � + Co �! 0; (36)



and, in the wall layer,

u1 = Ueu�U
+; U+ �

1

�
log y+ + Ci y+ !1; (37)

where the scaled friction velocity u� is now given by

u� =
u� cos �w

Ue

: (38)

The resulting match condition is identical to that in 4 but with u� given

by 38. On the other hand, the structure of the cross-stream velocity was

found to be more involved and an important result of the analysis is that,

for attached ow, the wall skew angle scales according to

tan �w = ��u�; u� � O(
1

logRe
); �� � O(1); (39)

which indicates that �w � O(1= logRe); �� is the scaled wall skew angle

that is typically obtained as part of the boundary-layer solution. Results

similar to those in 4, 38 and 39 were obtained by Spalart (1989) who

considered a model problem in which the external velocity remains constant

in magnitude but rotates at a uniform frequency. The cross-stream velocity

in the wall layer is expanded according to

u2 = u� sin �wU
+ = Ueu

2
�
��U

+: (40)

In order to match the wall-layer velocity in 40, an expansion to two orders

is necessary in the outer layer where u2 is given by

u2 = Ueu���

�
@G1

@�
+ u�

@G2

@�
+ � � �

�
; (41)

with
@G1

@�
� 1;

@G2

@�
�

1

�
log � + Co � ! 0: (42)

The above expansions and asymptotic forms for the cross-stream velocity

lead naturally to the characteristic pro�le shape. Speci�cally, in the outer

layer close to the boundary-layer edge, the cross-stream velocity u2 is

dominated by the contribution from the leading-order term, @G1=@�, which

continuously increases in magnitude with decreasing distance from the wall.

As the overlap region between the outer and wall layers is approached,

the second-order term, @G2=@�, begins to make an increasingly negative

contribution until the cross-stream velocity reaches its maximum value. A

further decrease in distance from the wall reduces the sum of the O(u�)



and O(u2
�
) terms to O(u2

�
) in the wall layer in much the same fashion as

the sum of the O(1) and O(u�) terms reduce the streamwise velocity in the

outer layer to O(u�) in the wall layer.

It thus follows from the above argument that the maximum in the cross-

stream velocity is neither in the outer nor in the wall layers but within the

overlap region between the two layers. A precise length scale of the location

of the maximum from the wall may be obtained by assuming that the cross-

stream shear stress may be related to the normal cross-stream velocity

gradient through an eddy viscosity; it then follows that the maximum in

u2 lies at the point where the cross-stream shear stress is zero. With this,

Degani et al. (1992; 1993) are able to show that

ymax � O

�
�ou�

� log u�

�
; (43)

where ymax denotes the normal distance from the wall to the location of

the maximum in u2. Furthermore, the maximum value of the cross-stream

velocity is given by

u2

Ue tan �w

����
max

� 1 +
1

�
u� log u� + � � � y ! ymax: (44)

Pressure-gradient e�ects, which are formally of O(Re�1u�3
�
) in the wall

layer, are expected to have a greater e�ect on the cross-stream ow which

is O(u�) smaller than the streamwise ow. Denoting the skew angle of the

total shear stress (i.e. the sum of laminar and Reynolds stresses) by �s, it

emerges that

tan �s = tan �w

�
1 +

�n

��

1

Re��u2�
y+ + � � �

�
: (45)

Here Re�� = ReUe�
� and �n is a cross-stream pressure-gradient parameter

de�ned by

�n = �
��

u2
�
cos �w

K2U
2
e ; (46)

where K2 denotes the curvature of the external streamline. Furthermore,

the velocity skew angle is shown to be given by

tan �v =
u2

u1
= tan �w

�
1 +

�n

��

1

Re��u2�
f(y+) + � � �

�
; (47)

where f(y+) is an unknown function that may be determined upon

assuming a turbulence model. If a linear eddy viscosity model is assumed,

the function f(y+) � y+= log y+ as y+ ! 1; then 46 and 47 indicate



that the total shear stress skews more rapidly than the velocity. Degani

et al. (1992; 1993) argue that although the pressure-gradient e�ects are of

higher order and tend to zero in the limit of in�nite Reynolds number, they

are not negligible at the large but �nite Reynolds numbers encountered in

practice.

5. Conclusions

In this survey, recent analyses and summary of the salient results obtained

from the application of asymptotic methods to turbulent wall-bounded

shear ows are highlighted and provide valuable insight into a fundamental

understanding of such ows. It is evident that asymptotic methods

enable the extraction of a fairly comprehensive set of results from the

governing equations, and, in many instances, without incorporating a

speci�c turbulence model a priori. This is exempli�ed by the analyses

discussed here for the near-wake ow past an aligned at plate and the

three-dimensional boundary layer. The structure of turbulent separation

is not clearly de�ned yet, but recent progress and interest in analyzing

this ow is encouraging. It is imperative to continue this advance and also

address the challenging problem of three-dimensional turbulent separation

due to its considerable practical signi�cance.
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