
Parallelizing MOPAC on distributed computing

systems within AVS framework

Tseng-Hui Lin Tomasz Haupt Geo�rey C. Fox

Northeast Parallel Architecture Center at Syracuse University

Syracuse, NY 13244-4100

Email: thlin/haupt/gcf@npac.syr.edu

Abstract

MOPAC [1] is a general-purpose semi-empirical molecular orbital package for the study of

chemical structures and reactions. Semiempirical Hamiltonians are used in the electronic part

of the calculation to obtain molecular orbital, the heat of formation and its derivative with

respect to molecular geometry. The computation time increases rapidly as the numbers of

molecules increased. Parallelizing MOPAC on distributed computing systems will improve the

computation time in low costs.

Molecular geometries was described by atoms coordinates in text. 3-D look AVS graphic

molecular geometries will give the users of MOPAC a better image of molecular structures.

Index Terms : MOPAC, molecular, Hamiltonians, heat, derivative, parallelizing, distributed

system, 3-D look, AVS.

1 Introduction

1.1 What is MOPAC?

MOPAC is a general-purpose semi-empirical molecular orbital package for the study of chemical

structures and reactions. Semiempirical Hamiltonians are used in the electronic part of the

calculation to obtain molecular orbitals, the heat of formation and its derivative with respect to

molecular geometry.

Using these results MOPAC calculates the vibrational spectra, thermodynamic quantities,

isotopic substitution e�ects and force constrains for molecules, radicals, ions, and polimers.

For studying chemical reactions, a transition-state location routine and two transition state

optimization routines are available, too.

1.2 Problem

Although MOPAC has been very successfully used in many research projects, its application is

limited to small molecules, typically consisting of no more than 60 atoms. The limitation comes

from the CPU demand that increases with the number of atoms n roughly as n-square. A

possible solution is to port the code to a modern, parallel or distributed computer architecture.

1.3 Project description

Within this project, the computational structure of the program is to be examined in order to

identify opportunities for parallelization and to select an appropriate hardware con�guration

for implementation. A model implementation of selected fragments of code on architecture of

choice will be provided as well.

2 Program Analyzing

2.1 Executive Summary

Analyze of theMOPAC code is not an easy task. The source consist of almost 30,000 lines written

by many authors. The idea behind creating MOPAC was to integrate several independent codes

into a single packet. As a result, MOPAC's control structure is complicated, typically known

only at runtime. Even though the code has been created according to rules that makes software

management easier, we found it necessary to develop dedicated tools to trace and pro�le the

execution for the benchmark data sets. These tools are described in section 2.2.1.

The structure of the MOPAC is described in section 2.3. It can be summarized as follows.

By selecting input parameters, the user may choose one of nine basic paths of execution. Our

benchmark data sets select FLEPO followed by POLAR modules, and we concentrate our analy-

sis on them. FLEPO optimizes a geometry by minimizing the energy, and POLAR calculates the

1

Execution Flow Pattern Finding
MOPAC

UNIX Pipe

Process 2Process 1

Timming and Tracing

Data Collecting

Repeating Pattern Eliminating
Results Output

Figure 1: The tracing process structure

polarizability volumes for a molecule, using SFC calculations. We also looked at other modules,

and we found essentially similar computational pattern.

The main computational burden is carried by the subroutine COMPFG that calculates the

total heat of formation of the supplied geometry, and the derivatives, if requested. COMPFG

consumes typically about 99% of total CPU time and it is called many times at various phases

of computations. The actual computation path inside COMPFG is di�erent for di�erent invoca-

tions of COMPFG. However, the main computational load is always taken either by subroutine

ITER or ITER and DERIV (typically, together they constitute about 97% of the total CPU

time usage).

Subroutine ITER constructs one- and two-electron matrices, and then calculates the fock

and density matrices, and the electronic energy. Most of the computation is concentrated in

subroutines DENSIT (Coulson electron density matrix), HQRII (rapid diagonalization routine)

and DIAG (pseudo-diagonalization). Preliminary analysis indicates that DENSIT can be e�-

ciently parallelized, while diagonalization routines DIAG and HQRII should be replaced by new

ones that will employ algorithms better suited for parallel execution.

Subroutine DERIV calculates the derivatives of the energy w.r.t. the geometric variables.

Its computational structure promises easy parallelization.

To conclude, majority of computation is performed by 4 critical subroutines, and we will

provide parallel implementation of them. To support such a mixed sequential and parallel pro-

gramming paradigm we propose IBM RS6000 workstations (sequential part) and SP-2 (parallel

part written in Fortran77 + PVM) integrated using AVS system. The details of the architecture

are given in section 4.1.

2.2 Execution
ow tracing

The most important data we need is execution
ow which shows how much time each subroutine

uses and how many times they are called. We'd like to know how much time each subroutine

spends and how many times they are called when executing. A tracing utility program is

developed and some code is added into MOPAC source program to collect the execution and

timing information of MOPAC subroutines. We choose 3 test data and run them on di�erent

platforms to see the real execution
ow. The 3 test data may not be general enough for us to

2

�nd out all execution
ow patterns. However, they show us some general idea.

2.2.1 The tracing utility

The structure of the tracing utility is shown in �gure 1. All monitoring programs introduce

some timing error. To minimize the timing error introduced by the tracing utility, we divide our

tracing utility into two parts and run as two processes. When the tracing program starts, it forks

a subprocess. The main process executes MOPAC program and sends tracing information to

the subprocess via a pipe. The subprocess handles all other jobs, data collection, execution
ow

pattern �nding, repeating execution
ow pattern elimination, and results output. The timing

utility calculates only CPU time used by MOPAC subroutines and the timing utility itself. Time

used by subprocess will not be included. Thus minimize the timing error.

2.2.2 Test data

The test data sets are chosen from the Bryan's test sets. They are:

� apsbtest.in

� porphin.in

� tetrabenz.in

2.2.3 Timing Errors

We run the test data sets with and without our tracing utility on several machines to see if the

error introduced by our tracing utility is small enough to re
ect the real execution timings. The

machines we used are :

� nova.npac.syr.edu : Sun Sparc-10 model 31

� oldnova.npac.syr.edu : Sun4-40MHz

� merlin.npac.syr.edu : IBM RISC6000 model 370

� mel.npac.syr.edu : IBM RISC6000 model 550

The total execution time of our test data sets with and without our tracing utility is shown in

table 1 The timing error introduced by our tracing utility for all 3 test data sets on all machines

are all less than 2%. The results of the tracing utility should be accurate enough to re
ect the

real execution timings.

3

apsbtest with trace without trace error

nova 11038.96 10937.87 0.92%

oldnova 17157.69 16953.11 1.21%

merlin 4817.16 4760.03 1.20%

mel 7331.18 7257.36 1.02%

porphin with trace without trace error

nova 1671.85 1653.97 1.08%

oldnova 2625.37 2580.25 1.55%

merlin 734.74 720.35 2.00%

mel 1131.10 1109.45 1.95%

tetrabenzi with trace without trace error

nova 2923.46 2907.54 0.55%

oldnova 2778.68 2757.24 0.78%

merlin 2905.28 2869.90 1.23%

mel 3168.95 3128.21 1.30%

Table 1: Timing error introduced by tracing program

2.3 MOPAC
ow diagram

In this section, we are going to show the program structure of time consuming subroutines and

their timing. We will use the percentages of whole program execution time to show the timing

of subroutines. The results of our test data are similar on di�erent machines. We are going to

describe our analysis by using the results generated on mel.npac.syr.edu.

2.3.1 Computation in main program

Program structure of main program The following is the
ow diagram of MOPAC main

program. The execution
ow is that it reads in a set of keywords and a set of atom geometry,

checks keyword to decide which subroutine to call, and goes back to begin of program if there

are more sets of atom geometry to work on. The main loop in main program is controlled by

the variable "ISOK". ISOK is set to TRUE in the beginning of main program and will be set

to FALSE in deriv.f and readmo.f. However, from the tracing results of all test data sets, ISOK

is never set to FALSE thus execution
ow never normally ends. Instead, it always reaches a

"STOP" statement in subroutine GETTXT called by READMO.

Subroutine GETTXT reach STOP statement when all input atom geometry have been read.

Thus, the main loop in main program loops for only one or several times. In all our test sets,

the main loop loops for only once. It's not the main computation loop we are looking for.

4

mopac

isok=.true.

readmo

input
keywords

react1

grid pathk drc

compfg compfg

POLAR? polar

isok?

END

flepoef

nllsq

powsqpaths force

SADDLE

STEP1 latom<>0 DRC NLLSQ1SCF

SIGMA
STEP

POINT
IRC=

FORCE

THERM

EF

N

Y

Y

N

Figure 2: The
ow diagram of main program

5

apsbtest porphin tetrabenz

Total Caller Times Total Caller Times Total Caller Times

FLEPO 50.44 50.44 1 99.97 99.97 1 99.99 99.99 1

POLAR 49.56 49.56 1 0.00 0.00 0 0.00 0.00 0

Sum 100.00 100.00 99.97 99.97 99.99 99.99

Table 2: Main program timing

apsbtest porphin tetrabenz

Total Caller Times Total Caller Times Total Caller Times

COMPFG 10.01 19 57 35.04 35 49 22.24 22 36

LINMIN/COMPFG 39.91 79 � 99 65 63.90 63 � 99 50 77.09 77 � 99 38

= 78 = 62 = 76

Sum 49.92 97 98.94 97 99.33 98

Table 3: Timing of subroutine COMPFG called from FLEPO and LIMIN

Computation timing of main program All our 3 test data go into the last subroutine,

FLEPO, in main program. Since all 3 test data sets contains only one atom geometry set, the

main loop in main program loops for only once. The execution
ow goes to READMO to read

in a set of atom geometry then FLOPE and POLAR then STOP in READMO/GETTXT when

it �nds the input �le reaches EOF.

The timings of the test sets are shown in table 2. Almost all time is taken by FLEPO

and POLAR. Since they are called for only once, the computation should be inside the two

subroutines. As we have mentioned above, the computation kernel of these subroutines is

COMPFG. We should trace into these two subroutines to see how COMPFG works inside these

two subroutines.

Computation in FLEPO and POLAR

Subroutine FLEPO FLEPO has a main loop which calls COMPFG and LINMIN. The

main loop loops for 53, 40, and 32 times in apsbtest.in, porphin.in, and tetrabenz.in respectively.

The most time is consumed by COMPFG and LINMIN. An interesting timing is observed that

most of time used in LINMIN is to call COMPFG. That means most of time used in FLEPO

is to call COMPFG directly from FLEPO and indirectly from LINMIN. The timing is shown in

table 3

COMPFG takes 97%, 97%, and 98% of computation time out of FLEPO in apsbtest.in,

porphin.in, and tetrabenz.in respectively. Time taken by codes other than COMPFG is almost

6

apsbtest porphin tetrabenz

Total Caller Times Total Caller Times Total Caller Times

COMPFG 4.06 8 1 0.00 0 0 0.00 0 0

FFHPOL/COMPFG 45.49 91 � 99 36 0.00 0 0 0.00 0 0

= 90 0.00 0

Sum 49.55 98 0.00 0 0.00 0

Table 4: Timing of subroutine COMPFG called from POLAR

apsbtest porphin tetrabenz

Total Times Total Times Total Times

FLEPO/COMPFG 10.01 57 35.04 49 22.24 36

FLEPO/LINMIN/COMPFG 39.91 65 63.90 50 77.09 38

POLAR/COMPFG 4.06 1 0.00 0 0.00 0

POLAR/FFHPOL/COMPFG 45.49 36 0.00 0 0.00 0

Sum 99.47 159 98.94 99 99.33 74

Table 5: Timing of subroutine COMPFG called from FLEPO and POLAR

nothing.

Subroutine POLAR POLAR is called only in apsbtest.in. There is no loop in POLAR.

It calls COMPFG and FFHPOL once each. The most time is consumed by COMPFG and

FFHPOL. Just like FLEPO, most of time used in FFHPOL is to call COMPFG. That means

most of time used in POLAR is to call COMPFG directly from POLAR and indirectly from

FFHPOL. The timing is shown in table 4.

COMPFG takes 98% of computation time out of POLAR in apsbtest.in Time taken by codes

other than COMPFG is almost nothing.

Conclusion of computation time The subroutine called in main loop are mutual-exclusive

from each other. Only one of them will be called at a time depending on the input keywords.

Every subroutine called in main loop has similar execution structure.

They call COMPFG directly or indirectly. The codes of these subroutines are mostly

preparing data for calling COMPFG and organizing results generated by COMPFG. Subroutine

COMPFG is the computation kernel of those subroutines.

Lets combine the above timing tables. The most time is taken by directly and indirectly

calls to COMPFG.

We can conclude from table 5 that COMPFG is really the computation kernel of whole

7

apsbtest porphin tetrabenz

Total Times Total Times Total Times

FLEPO/COMPFG/DERIV 7.13 56 12.34 48 8.79 36

FLEPO/COMPFG/ITER 2.83 4 22.35 9 13.31 4

FLEPO/LINMIN/COMPFG/ITER 39.10 65 61.96 50 75.76 38

POLAR/COMPFG/ITER 4.05 1 0.00 0 0.00 0

POLAR/FFHPOL/COMPFG/ITER 45.05 36 0.00 0 0.00 0

Sum 98.16 96.65 97.86

Table 6: Timing of subroutine COMPFG

program. Also, we �nd COMPFG is not called any other place. COMPFG is called for only

159, 99, and 74 times in our test sets. To parallel the loops which call COMPFG is not big deal

since the loop is not big.

From the above results, we have the following conclusions:

� Time taken by codes other than COMPFG is almost nothing.

� To speed-up MOPAC means to speed-up COMPFG.

� Parallelization should be checked inside COMPFG instead of outside COMPFG.

2.3.2 Computation in COMPFG

Program structure of COMPFG Figure 3 shows the COMPFG
ow diagram.

The "Basic Statements" in COMPFG
ow diagram means a set of statements which don't

call any other subroutine and have no loop.

There is no major loop in COMPFG. There are only two small DO loops. The �rst DO loop

just do some basic statements for NUMAT times, which is small (less than 100) in our test sets.

The second DO loop calls DIHED while DIHED never been called in our example. The time

used by the two loops is little and can be ignored in computation
ow tracing.

Since no signi�cant time is consumed by the loops in COMPFG, the real time consuming

parts is not inside COMPFG but inside the subroutines called by COMPFG. COMPFG calls

SYMTRY, GMETRY, HCORE, ITER, DIHED, DERIV, and MECIP. All subroutines except

GMETRY may or may not execute depending on the conditions given by the input parameters

of COMPFG.

Computation timing of COMPFG From the previous session, COMPFG is called from

4 di�erent callers. According to the tracing results, almost all computation time is taken by

DERIV and ITER.

8

Figure 3: The
ow diagram of subroutine COMPFG

9

apsbtest porphin tetrabenz

Total Times Total Times Total Times

FLEPO/COMPFG/DERIV 7.13 56 12.34 48 8.79 36

FLEPO/COMPFG/DERIV/DCART 6.51 56 11.56 48 8.22 36

FLEPO/COMPFG/DERIV/DCART/DHC 6.25 656208 11.09 134976 7.87 272304

Table 7: Timing of subroutine deriv

Table 6 shows the timing of subroutine COMPFG. DERIV is called by FLEPO/COMPFG

only while ITER is called by all four cases. Again, the sum of time spent by DERIV and ITER

is almost everything. We should look inside of DERIV and ITER.

2.3.3 Computation in DERIV and ITER

Subroutine DERIV The timing of DERIV and its subroutines are shown in table 7. DE-

RIV is called in only one location, FLEPO/COMPFG. There is no major computation loop

in DERIV. The most important subroutine called by DERIV is DCART. DCART is called in

only one place in DERIV and takes 91%, 93%, and 93% of computation time from DERIV in

apsbtest.in, porphin.in, and tetrabenz.in respectively. DERIV is almost nothing but DCART.

Go further into DCART, there is a set of loops calling DHC. Our tracing results show that

DHC takes 96%, 95%, and 95% of computation time from DCART in apsbtest.in, porphin.in,

and tetrabenz.in respectively. The most time of DCART is spent on DHC.

Moreover, DHC is called for 656208, 134976, and 272304 times and takes 6:25%, 11:09%, and

7:87% of total CPU time in apsbtest.in, porphin.in, and tetrabenz.in respectively. Those are

big numbers of calls. Although DHC takes 6:25%, 11:09%, and 7:87%, which are 458.33, 125.44,

and 249.27 seconds, each call to DHC takes only 0.7, 0.9, and 0.9 ms. It should be better to

parallelize the loops in DCART than parallelize DHC itself.

Subroutine ITER ITER is called all the time when COMPFG is called in all cases. It takes

much more CPU time than DERIV does. The most time of ITER is used by DENSIT, DIAG

and HQRII. Table 8 shows the timing of DENSIT, DIAG and HQRII called from ITER.

Subroutines DENSIT and HQRII do not call any other subroutine. DIAG calls EPSETA,

which does not call any subroutine. They are the lowest level of subroutines while take most of

CPU time. To speed-up MOPAC need to speed-up these subroutines �rst.

Subroutine DENSIT DENSIT is used to construct Coulson electron density matrix. It

doesn't call any other subroutines. A two level major computation loop eats the most

time. The loop should be parallelized.

10

END
dcart

SUBROUTINE
dcart

jj=1,im1

kl=k3l,k3u

ik=k1l,k1u

ii=jj

Y

N

ANADER?
Y

N analyt

not FORCE

Y

N

dhc

k=1,3

FORCE?

Y

N

dhc

dhc

dihed

dihed

k=1,3
j=1,4
i=1,nnhco

N

Y

nnhco<>0?

ii=1,numat

jk=k2l,k2u

Figure 4: The
ow diagram of subroutine DCART

11

apsbtest porphin tetrabenz

Total Times Total Times Total Times

FLEPO/COMPFG/ITER/DENSIT 0.48 47 4.00 123 2.39 45

FLEPO/LINMIN/COMPFG/ITER/DENSIT 7.03 688 10.14 314 13.44 253

POLAR/COMPFG/ITER/DENSIT 0.57 56 0.00 0 0.00 0

POLAR/FFHPOL/COMPFG/ITER/DENSIT 8.10 799 0.00 0 0.00 0

Sum 16.18 1590 14.14 437 15.83 298

(a) DENSIT

apsbtest porphin tetrabenz

Total Times Total Times Total Times

FLEPO/COMPFG/ITER/DIAG 1.74 42 15.49 118 8.96 42

FLEPO/LINMIN/COMPFG/ITER/DIAG 30.51 688 48.49 314 59.73 253

POLAR/COMPFG/ITER/DIAG 0.90 23 0.00 0 0.00 0

POLAR/FFHPOL/COMPFG/ITER/DIAG 30.02 763 0.00 0 0.00 0

Sum 63.17 1516 63.98 432 68.69 295

(b) DIAG

apsbtest porphin tetrabenz

Total Times Total Times Total Times

FLEPO/COMPFG/ITER/HQRII 0.51 7 1.72 7 1.52 4

FLEPO/LINMIN/COMPFG/ITER/HQRII 0.00 0 0.00 0 0.00 0

POLAR/COMPFG/ITER/HQRII 2.47 34 0.00 0 0.00 0

POLAR/FFHPOL/COMPFG/ITER/HQRII 5.24 72 0.00 0 0.00 0

Sum 8.22 113 1.72 7 1.52 4

(c) HQRII

Table 8: Timing of subroutines called by iter

12

END
densit

k=nl1,nu1

k=nl2,nu2

j=1,i

i=1,norbs

densit
SUBROUTINE

Figure 5: The
ow diagram of subroutine DENSIT

apsbtest porphin tetrabenz

Total Times Total Times Total Times

DCART 6.51 56 11.56 48 8.22 36

DENSIT 16.18 1590 14.14 437 15.83 298

DIAG 63.17 1516 63.98 432 68.69 295

HQRII 8.22 113 1.72 7 1.52 4

Sum 94.08 91.40 94.26

Table 9: Timing of the four most time-consuming subroutines

Subroutine DIAG DIAG is the pseudo-diagonalization program. It contains two major loops.

The �rst loop can be divided into two smaller loops. No special statements or subroutine

calls in the two loops. The two loops should be able to be parallelized.

Subroutine HQRII HQRII is a rapid diagonalization program. It was written in complex

FORTRAN 4 style. It is un-structure and complex. To re-write it may be better than

parallelize it. There are several diagonalization algorithms can be used. Just like DIAG,

we can �nd a good parallel algorithms to rewrite it into parallel version.

2.3.4 Time of DCART, DENSIT, DIAG, and HQRII

The total time spent by the four subroutines is shown in table 9. The four subroutines take

more than 90% of CPU time in all three test data. The four subroutines are the targets of

parallelization.

13

i=lum0,n

j=1,nocc

|fmo(i,j)|<tiny?

Y

N
2x2 rotation

(c/d|<bigeps?

Y

N

rotation of
pseudo eigenvec

diag
END

diag
SUBROUTINE

first?
Y

N

epsta

i=lum0,n

j=1,n k=1,j

j=n?

k=j1,n

j=1,nocc k=1,n

N

Y

Figure 6: The
ow diagram of subroutine DIAG

14

2.3.5 Conclusion

From the above disscussion, we can get the following concludsion:

� The execution of MOPAC depends on the input keywords. The keywords cause the exe-

cution
ow goes through one of several mutual-exclusive execution
ow.

� The CPU time is consumed by several kernel subroutines. Parallelize these subroutines

will improve the execution a lot.

� The kernel subroutines we are going to work on are:

{ DCART : parallelize the main loop

{ DENSIT : parallelize the main loop

{ DIAG : Parallelize the two main loops

{ HQRII : Re-write by using parallel algorithms

3 Parallelization of MOPAC

3.1 Before parallelization

What's not good for parallelization Parallelization is not possible for essentially sequential

codes. A segment of sequential code is a set of program statements which have strong data

dependencies among some of these statements that cause the segment of code need to be execute

one by one. No statement can be executed until its immediate previous statement has been

executed. Statements in a segment of sequential code must be executed one after another and

can not be parallelized.

To divide work load, distribute data, and collect results, we need to introduce some extra

code. These codes are usually small and takes little CPU time. However, some highly optimiza-

tion load balancing algorithms do be very complex and take much CPU time. Sometimes they

take so much time that become useless for real applications. If the parallelable code won't take

long, use a sub-optimized algorithm or even give up parallelization will be better.

Besides CPU time, parallelization introduces communications. When a segment of code is

divided and distributed, every computation node owns only parts of data and results thus it

may need to exchange data with other nodes. Communications are needed to distribute data

and collect results. Communications are expensive since they are slow comparing with CPU

speed and usually take long. Workstation clusters usually use Ethernet for communication. The

bendwith of Ethernet is only 10Mbits/sec. Even for parallel computers which equip with special

high speed communication channels, the communications are still far slower than computing.

Parallel code with much communications may run slower than sequential code.

Communications also imply synchronization. Synchronization means idle and wait. If one

node �nishes its computation early, then it needs to wait for the data it needs from other slower

nodes to continue its computing. All faster nodes need to wait for slower nodes for some time

15

S1 : loop I=1 to 1000

S2 : loop J=1 to I

S3 : Computation

S4 : endloop J

S5 : endloop I

Figure 7: Example program of range of inner loop depends on the index of outer loop.

especially in global operations. Unfortunately, parallel programs usually need to synchronize

all nodes to make sure everybody has reached some check points or has received all data it

needs before they can start a new stage of computation. Only tightly coupled computation

nodes with highly load balanced code can minimize the synchronization idle. [2, 3] [REF:

J.C.Wang's communication scheduling papers] Unless the communication and synchronization

time is very small, �ne grain codes may not worthy for parallelization. In loosely coupled parallel

machines with slow inter-processor communications, parallel codes may even run slower than

their sequential counterparts for �ne grain codes. Only big chunks of computations with few

communications are adequate for parallelization.

According to the reasons above, we may give up parallelizing a segment of code even if it is

easy to parallelize.

Load balance We de�ne a segment of pure parallel code as a segment of code which has no

data dependency among any processors and no inter-processor data exchange required when

executing the segment of code. When we parallelize a segment of pure parallelable code, the

code for dividing the loops and distributing data is added before the pure parallel code and the

code for collecting results is added after the pure parallel code. The sizes of the pure parallel

segments should be as big as possible to keep the communication as few as possible and load

balancing should be considered to minimize the synchronization time. For example, if a two

level loop is parallelable, we will divide the outer loop instead of the inner loop. Also, if the

outer loop is not big enough comparing with the number of computation nodes, say, 20 times

of loop divided for 32 nodes, the inner loops are also considered to make the load balance.

In some cases, the computational space is not regular. For example, the range of inner loop

depends on the index of outer loop. Suppose we have a program shown in �gure 7.

The computational space is a triangle. If we divide only outer loop, the load won't be balance

due to the one computes bigger I 0
s has more heavy load than the one computes smaller I 0

s. If we

divide the inner loop, the size of pure parallel segment will be reduced and more communication

16

S1 : I=1

S2 : J=1

S3 : loop K=1 to 1000*(1000+1)/2

S4 : Computation

S5 : J=J+1

S6 : if J>I then

S7 : J=1

S8 : I=I+1

S9 : endif

S10 : endloop K

Figure 8: Algorithm of moving inner index out

and synchronization will be introduced. In this case, we need to consider both loops. Let's

introduce another variable K and rewrite the program as �gure 8.

We add one increment statement and an if structure in the new program and make it one

level loop. The program looks longer than the original one. In fact, computers deal a loop as

increment the index and check if the index exceeds its range internally. What we did is just

write it explicitly. We lose nothing and make the parallelization much easier.

Overlapping communication with computation Usually, we divide program into several

stages of computations and communications. Results are exchanged after each stage of compu-

tation. Communications are not parts of computations and they are expensive. The communi-

cation channel is idle during computing. Why don't we send partial results when they are ready

and the communication channel is idle. We may overlap communication with computation to

minimize communication time.

The best way to overlap communication with computation is to use asynchronous commu-

nications. However, only few communication library supports asynchronous communications.

Most communication libraries do support non-blocking send. It is also good for overlapping

communication with computation. The only problem is that the receiving node will need to

bu�er a lot of incoming messages. We need to check for incoming messages and consume them

periodically to release the message bu�ers.

Another problem is the performance issue. Sending several small messages will be slower

than packing them into one big message. The smaller the data size, the better the overlapping.

On the other hand, the larger the message, the less the communication time. The best data

17

size depends on the communication and computation speeds. We will need to some tests to �ne

tune the chunk size of messages.

3.2 Parallelizing subroutine DIAG

As we described before, subroutine DIAG takes the most CPU time. It takes 63:17%, 63:98%,and

68:69% of total CPU time in our test sets. It is the most wanted one for parallelization.

3.2.1 Program analysis

We check if it is possible to extend the size of the parallelable segment to the caller of DIAG.

DIAG is called in ITER only. However, there are two calls to DIAG in ITER and they both

have complex if structure surrounding instead of loop. We can not extend the parallel segment

to ITER unless we want to parallelize other sequential parts of subroutine ITER also.

We need to check if the subroutines which are called by DIAG are parallelable. DIAG calls

only one subroutine, EPSETA. EPSETA calculates ETA, the smallest representable number,

and EPS, the smallest number for which 1 + EPS 6= 1. Neither input parameter nor common

block is used in subroutine EPSETA. The only thing which a�ects the values of EPS and ETA

is the
oating point precision of the target machine. As long as the target machine remain the

same, the results of subroutine EPSETA keep the same. That means, we need compute EPS

and ETA once and save them for later calls to EPSETA. There is no computation in EPSETA

except the �rst call. Subroutine EPSETA needs to be re-written instead of parallelizing.

DIAG is a pseudo-diagonalization procedure. It contains two main loops. We need to

examine the data dependency for parallelization.

3.2.2 Data dependency

The only modi�ed non-local data is 2-D array V ECTOR. Common 1-D array FMO is modi�ed

also. However, it is is common block SCRACH which is a working space and the values of all

variables in common block SCRACH won't be used in any other subroutines. V ECTOR is the

only output array.

The result array V ECTOR depends on input parameters N , NOCC and EIG, scratch array

FMO and local variable TINY . The input parameters N , NOCC and EIG are not changed

anywhere in DIAG. FMO and TINY are the results of the �rst loop. Array V ECTOR also

depends on itself. Figure 9 is the simpli�ed program structure:

There are three loops in this part.. There is a conditional structure in S4. Statement S4

will skip some computation. If we distribute over either loop S1 or S2, load balance won't be

guaranteed.

Statements S7 and S8 may reference the results of statements S9 and S10. Also, if we

distribute over either loop S1 or S2, there will be communications required for either S7 and S9

or S8 and S10. The data dependence prevents us from parallelizing loop S1 and S2.

We check the innermost loop S6. There is no data dependency if we distribute over S6.

Elements of array V ECTOR do not dependent on themselves. No communication is required

18

S1 : DO 90 I=LUMO,N

S2 : DO 80 J=1,NOCC

S3 :C Some statements here

S4 : IF(ABS(C/D).LT.BIGEPS) GOTO 80

S5 :C Some statements here

S6 : DO 70 M=1,N

S7 : A=VECTOR(M,J)

S8 : B=VECTOR(M,I)

S9 : VECTOR(M,J)=ALPHA*A+BETA*B

S10 : VECTOR(M,I)=ALPHA*B-BETA*A

S11 : 70 CONTINUE

S12 : 80 CONTINUE

S13 : 90 CONTINUE

Figure 9: Simpli�ed DIAG program structure

in loop S1 or S2 either. We can distribute over loop S6 in front of loop S1 and collect the results

after S13. The loop is distributed easily, the work load is balance, and the communication is

minimized.

The �rst loop of subroutine DIAG generates array FMO and variable TINY . There is no

data dependence for array FMO if we distribute the outermost loop directly. There is no inner

loop ranges depend on the index of the outermost loop either. We can distribute the outermost

loop directly.

Statement S20 generates variable TINY . TINY will be the largest value of ABS(SUM) in

the end of loop S1�S22. We will have local maximum of variable TINY if we distribute over

loop S1. We need to make a global maximum in the end of loop S1�S22.

3.3 Implementation

As described above, we make the following change:

1. We modify subroutine EPSETA such that the value of EPS and ETA are calculated only

when EPSETA is �rst time called. The value of EPS and ETA then be saved. The saved

value are recalled if EPSETA is called again.

2. The �rst loop is distributed over the outermost loop and the communication for data

collection of array FMO is added in the end of the �rst loop.

3. The communication code for �nding global maximum of variable TINY is added also.

19

S1 : DO 60 I=LUMO,N

S2 : KK=0

S3 : DO 30 J=1,N

S4 : SUM=0.D0

S5 : DO 10 K=1,J

S6 : KK=KK+1

S7 : 10 SUM=SUM+FAO(KK)*VECTOR(K,I)

S8 : IF(J.EQ.N) GOTO 30

S9 : J1=J+1

S10 : K2=KK

S11 : DO 20 K=J1,N

S12 : K2=K2+K-1

S13 : 20 SUM=SUM+FAO(K2)*VECTOR(K,I)

S14 : 30 WS(J)=SUM

S15: DO 50 J=1,NOCC

S16 : IJ=IJ+1

S17 : SUM=0.D0

S18 : DO 40 K=1,N

S19 : 40 SUM=SUM+WS(K)*VECTOR(K,J)

S20 : IF(TINY.LT.ABS(SUM)) TINY=ABS(SUM)

S21 : 50 FMO(IJ)=SUM

S22: 60 CONTINUE

Figure 10: Parallel algorithm of DIAG

20

S1 : L=0

S2 : DO 40 I=1,NORBS

S3 : DO 30 J=1,I

S4 : L=L+1

S5 :C Some statements here

S6 : 30 P(L)=(SUM2+SUM1*FRAC)*SIGN

S7 : 40 P(L)=CONST+P(L)

Figure 11: DENSIT looping structure

4. The second loop is distributed over the innermost loop. However the data collection code

is not added immediate after the innermost loop but the end of the outermost loop because

there is no data dependency for array V ECTOR if we do so.

5. We overlap communication with computation in �rst main loop. The computation of

second main loops can not be overlaped because of the data dependence described above.

3.4 Parallelizing subroutine DENIST

Subroutine DENSIT computes the density matrix given the eigenvector matrix, and information

about the M.O. occupancy. It takes about 15% of total CPU time in our test sets.

Program analysis First we check if the size of the parallelable segment can be extended to

the caller of DENSIT. DENSIT is called in subroutines ITER and MULLIK. There are 3 calls

to DENSIT in ITER and one in MULLIK. Like DIAG, all calls to DENSIT are surrounded by if

structures instead of loops. We can not extend the size of the parallelable segment to the caller

of DENSIT.

DENSIT does not call any other subroutine. It contains an if structure and only a set of

loops. The if structure just sets some boundary variables according to the mode parameter.

The computation is in the 3-level loop. Figure 11 is the simpli�ed program of the loop structure

of DENSIT.

The two innermost loop are just accumulating variable SUM1 and SUM2. We do not consider

them at this time. The range of loop S3 depend on the index of loop S2. The outer two loops

S2 and S3 forms a triangular computational space. The variable L is the index of the triangular

computational space. Variable L is assigned 0 in the beginning but increase one immediate enter

the loop. The index L actually starts as 1. As described in previous section, we can rewrite the

code into the algorithm shown as �gure 12

21

S1 : DO 50 L=1,NORBS*(NORBS-1)/2

S2 :C Some statements here

S3 : P(L)=(SUM2+SUM1*FRAC)*SIGN

S4 : IF(J.LT.I)THEN

S5 : J=J+1

S6 : ELSE

S7 : P(L)=CONST+P(L)

S8 : J=1

S9 : I=I+1

S10 : ENDIF

S11 : 50 CONTINUE

Figure 12: Parallel algorithm of DENSIT

Data dependency The only modi�ed non-local data is the 1-D array P which contains the

packed density matrix. There is no data dependency in the rewritten DENSIT loop. It is clear

and easy to distribute over loop S1 because it is only one level and array P uses loop index L

as its data index purely.

implementation It is easy to distribute the re-written 1-D loop. However, we need to keep

variable I and J for statement S2. We need a translation from index L to indices I and J .

Let's see the relation of I, J , and L. L is total count of loops. Since the computational space

is triangular, the formula of L should be:

L = (I � 1)� I=2 + J (1)

The range of inner loop is from 1 to I. The index of inner loop should be less or equal to I.

0 < J � I (2)

From (1) and J > 0, we have:

(I � 1) � I < 2� L

(I � 1=2)2 < 2� L+ 1=4

I < SQRT (2� L+ 1=4) + 1=2

Since I is an integer, the �nal formula for �nding I from L is:

I = INT (SQRT (2� L+ 1=4) + 1=2) (3)

and the formula for �nding J from L and I is:

J = L� (I � 1)� I=2 (4)

By the above formulas (3) and (4). We can distribute the work load over main loop by

22

Figure 13: The MOPAC executiong environment

dividing the range 1 to NORBS � (NORBS� 1)=2 to all computation nodes and calculate the

start indices of I and J from distributed loop index L.

Since there is no data dependence for array P under index L, we can overlap communications

with computations.

4 Running MOPAC

4.1 Environment

The environment for running MOPAC can be divided into 4 parts.

� PCH (Parallel Computation Host) : a parallel computer which handles the computation

of time comsuming modules. For portablity reason, we use PVM communication library.

� SCH (Sequential Computation Host) : a sequential computer which handles �le I/O, data

distribution, and other sequential modules.

� AVSH (AVS server) : an AVS server which handles graphic output and controls the exe-

cution of modules.

� XDH (X-windows Display Host) : a color workstation or X-terminal which displays the

graphic output.

The structure of the 4 components are shown in �gure 13.

4.2 Preparing MOPAC

MOPAC directory tree looks like �gure 14

23

MOPAC-top-dir

|

|| Make�le

|| Pvm

| |

| || Make�le

| || Other-MOPAC-source-�les

|

|| Avs

| |

| || Make�le.avs

| || Make�le.term

| || Other-User-interface-source-�les

|

|| $(PV M ARCH)

|

|| mopacnode

|| mopacterm

|| mopacavs

|| geomcntl

|| Other-object-�les

Figure 14: MOPAC directory structure

24

The top level MOPAC directory tree contains a top-level Make�le, subdirectory Pvm, Avs,

and a working directory. Subdirectory Pvm contains the MOPAC parallelized code. Subdi-

rectory Avs contains the user interfaces of MOPAC. We o�er two user interfaces. One is for

AVS display and the other is for non-graphic terminals. The working directory, which is named

after the environment variable $(PV MARCH), is used for compiling the above source �les. For

example, if you are using Suns, then the working directory will be SUN4. This naming scheme

allows MOPAC to be installed on di�erent platforms without con
ict.

We support two versions of MOPAC user interface. One requires AVS to display graphic

atom structures, the other does not require AVS and can run MOPAC on a regular terminal.

Four executables will be generated in the working directory.

� mopacnode: The parallelized kernel MOPAC program.

� mopacterm: The MOPAC user interface for terminal users.

� mopacavs: The MOPAC user interface for AVS users.

� geomcntl: The atom control module for AVS MOPAC user interface.

4.3 Running MOPAC

We have two di�erent user interfaces for users with and without AVS. AVS is a visual system

which supports nice graphic display. The AVS MOPAC user interface will show the atom

geometric when MOPAC is running. For users who do not have AVS, the terminal version of

MOPAC save the atom structures in a disk �le in text format.

Both user interfaces require PVM since the distributed tasks use PVM to communicate with

other tasks. PVM supports heterogeneous con�gurations. Our MOPAC also allow heterogeneous

con�gurations. Currently, we supports Sun4 running SunOs, RS6000 and SP2 running AIX,

Alpha running OSF/1, and [345]86 IBM PC running Linux or BSDs. You need to con�gure the

participating hosts and start PVM before you run MOPAC.

4.3.1 Running MOPAC through AVS user interface

Our user interface is divided into two modules, mopacavs and geomcntl. Module mopacavs is

the real user interface. It serves as the controller and server of the parallelized MOPAC tasks.

It is also the bridge between MOPAC and AVS. It receives the internal atom geometric infor-

mation and send them to module geomcntl. Module geomcntl transforms the atom geometric

information into AVS geometry objects. The AVS build-in module geometry view takes the

objects and displays them on then screen.

To make the modules work, you need to connect them into an AVS network. We have save

the necessary connections into a disk �le. You can click on the network tool menu to get it

activated or you can do it manually. The network shown in �gure 15 will appear on the AVS

network editor panel.

25

Figure 15: AVS module network

Figure 16: MOPAC execution control pannel

After the network has connected, a blank geometry viewer window and a MOPAC execution

control panel will pop up. The MOPAC execution control panel shown in �gure 16 asks for

the input �le name and number of tasks you want to distribute. The default number of tasks

is 0 which means the MOPAC program will detect the number of participating machines and

distribute one task for each participating machines.

When MOPAC reads in a new atom geometry or changes an existing one, the atom geometry

will be displayed in the geometry viewer window. User can use the MOPAC geometry control

panel to scale, move, or rotate the atom graphic object.

For data which generates multi atom geometries, module geomcntl keeps all atom geometries.

Users can view any one by clicking on the MOPAC geometry control panel. User can also click

on the "slide show" button on the MOPAC geometry control panel to view all atom geometries

one after another.

4.3.2 Running MOPAC through terminal user interface

Although AVS display is attractive, it is not possible for users who has no color X display

and AVS. For those who can not run MOPAC through AVS user interface, we have a terminal

26

Figure 17: MOPAC atom structure examples

27

apsbtest porphin tetrabenz

Tp 85.86% 89.68% 92.74%

P = 2 1.75 1.81 1.86

P = 4 2.81 3.05 3.28

Table 10: The maximum speed-up of the test set

user interface. All important MOPAC results are written into disk �les. Users still can examine

results by checking those �les. The only di�erence between the two user interfaces is the graphic

display. The atom geometry information is saved into a �le. A tool program is developed to

read the �le and feeds the data into AVS to display graphic atom structures.

4.3.3 Some results

It is di�cult to measure the real performance of parallel programs on a workstation cluster.

You need exclusive access to those workstations and the network. We'd like to know how much

speed-up can be achieved by our parallelization.

Parallelization usually need to add some code to handle distributing work and data. It will

kill some speed-up. Communication is the most terrible speed-up killer. We gain more speed-up

by using more computation nodes but the communication time raises at the same time. It limits

the speed-up we can achieve signi�cantly.

Theoretical speed-up The maximum speed-up we can achieve depends on the portion of

parallelized code. The more the portion of parallelized code, the higher the speed-up. Suppose

the time needed for parallelized code before parallelization is Tp, the time needed for sequential

code before parallelization is (1 � Tp), the number of computation nodes is P . The maximum

speed-up is:

Speed� up =
1

(1� Tp) + Tp

P

Single node PVM can spawn processes on one computer to simulate the parallel environment.

The only di�erence between the multi-processes-on-one-machine and one-process-per-machine

is that the former uses UNIX inter-process communication instead of real network. The com-

putation time is the same and the communication time should be faster due to the UNIX

inter-process communication is faster than the real network. The major di�erence should be the

synchronization time. CPU won't stay idle to wait for data. It switches to the one who lagged

behind instead. Timer won't count during the time CPU switch to another processes. Thus no

synchronization time is counted. The results will look better than they should. We will run full

benchmarker as soon as all four kernel subroutines have been parallelized.

28

apsbtest porphin tetrabenz

Seq Para Speed-up Seq Para Speed-up Seq Para Speed-up

merlin(SP-2) 2382 930 2.56 363 139 2.61 1421 487 2.91

mel(550) 6086 2507 2.42 980 372 2.63 3685 1292 2.85

Table 11: Timing of running MOPAC on RS6000s in simulation mode

apsbtest porphin tetrabenz

Seq Para Speed-up Seq Para Speed-up Seq Para Speed-up

P = 1 31672 31672 1.00 4869 4869 1.00 19007 19007 1.00

P = 2 31672 20125 1.57 4896 3123 1.56 19007 10804 1.76

P = 4 31672 17204 1.84 4896 2533 1.93 19007 8588 2.21

Table 12: Timing of running MOPAC on RS6000s

Table 11 shows the results of running MOPAC on two kinds of IBM Rs6000s. We spawn

4 processes, that means we simulate a 4 node system. The following table shows the time (in

seconds) of running sequential version, the time (in seconds) of running parallel version and the

speed-up.

From the table in previous section, our results are very close to the expected speed-up.

Real network We also run the parallelized code on 4 Sun4 SLCs connected by Ethernet.

Table 12 shows the results. Although we run our experiences after mid-night, the workstations

still have some light load and the network is still used by some other machines. Thus the

speed-up will be lower than above.

5 Future work

apsbtest porphin tetrabenz

Tp 96.08% 91.40% 94.26%

P = 2 1.92 1.84 1.89

P = 4 3.58 3.18 3.41

P = 8 6.28 4.99 5.71

Table 13: The maximum speed-up of the test set with HQRII

29

1. Re-write subroutine HQRII into a parallel diagonalisation routine. After parallelizing

HQRII, the theoretical speed-up should be raised as shown in table 13

2. We use only 3 test data to choose the most time consuming subroutines to parallelize. We

should check if other subroutines are also good for parallelization.

3. The Sun4 experience speed-up gets smaller than expected. The problem maybe on net-

work. Run some experiences on machines with better network, e.g. SP2, to see if the

speed-up won't reduce so fast.

4. Run experiences on a bigger machine to see how many computation nodes is the best

con�guration for workstation cluster parallel machine.

5. Display more visual data.

References

[1] Frank J. Seiler Research Laboratory, United States Air Force Academy, CO 80840. MOPAC

Manual, dec-3100 edition edition, December 1990.

[2] Sanjay Ranka, Jhy-Chun Wang, and Geo�rey C. Fox. Static and Runtime Algorithms for

All-to-Many Personalized Communications on Permutation Networks. In Proceedings of

the 1992 International Conference on Parallel and Distributed Systems, pages pp. 211{218,

HsinChu, Taiwan, December 1992.

[3] Jhy-Chun Wang, Tseng-Hui Lin, and Sanjay Ranka. Distributed Scheduling of Unstructured

Collective Communication on the CM5. In Proceedings of the 27th Hawaii International

Conference on System Sciences, Hawaii, January 1994. To appear.

30

