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ABSTRACT

Large-scale Monte Carlo simulations require high-quality random number generators to

ensure correct results. The contrapositive of this statement is also true { the quality

of random number generators can be tested by using them in large-scale Monte Carlo

simulations. We have tested many commonly-used random number generators with high

precisionMonte Carlo simulationsof the 2-d Isingmodel using theMetropolis, Swendsen-

Wang, and Wol� algorithms. This work is being extended to the testing of random

number generators for parallel computers. The results of these tests are presented, along

with recommendations for random number generators for high-performance computers,

particularly for lattice Monte Carlo simulations.
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1. Introduction

Random number generators are widely used for simulations in computational science and engi-

neering, in particular for large-scale Monte Carlo simulations on high-performance computers, for

which good randomness properties are essential. A poor random number generator can produce

incorrect results from the simulation, which has been seen many times in the computational physics

literature.1;2;3;4;5;6;7 Monte Carlo simulations can therefore provide sensitive tests of the random-

ness properties of random number generators. In the past, a common test has been the Metropolis

Monte Carlo simulation of the 2D Ising model,8 for which exact results are known.9 Recently it was

found that the Swendsen-Wang and Wol� cluster algorithms can also provide very sensitive tests of

random number generators.5;7;10

Large-scale Monte Carlo simulations are now commonly performed on high-performance parallel

computers. Although many parallel algorithms for random number generation have been proposed,

little testing has been done on these algorithms, which is a very dangerous situation. The many

problems caused in the past by inadequate random number generators are likely to be repeated in

a new generation of simulations using parallel computers, unless these generators are very carefully

studied and tested.

In this paper, we summarize the results of Monte Carlo tests of random number generators on

sequential computers,7 and provide preliminary results on tests of random number generators for

parallel machines.11 We �rst present the di�erent algorithms used for standard sequential random

number generators, and the various methods used to parallelize these algorithms. We then briey

describe the Monte Carlo methods used to test the generators, and summarize the results of these

tests. Finally, we discuss the various random number generators in the light of these results, and

make recommendations on generators for use on high-performance computers, particularly for lattice

Monte Carlo simulations.
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2. Random Number Generators

2.1. Linear Congruential Generators

Probably the most commonly-used random number generators are linear congruential generators

(LCGs).12;13;14 The standard C and Unix generators RAND (32-bit precision) and DRAND48 and RANF

(48-bit precision) are of this type. Note that for 32-bit integers the period of these generators is at

most 232, or of order 109. On modern workstations, capable of 107 { 108 oating point operations

per second, this period can be exhausted in a matter of minutes, so generators with 48-bit or 64-bit

precision must be used.

LCGs work very well for most applications but have two major defects. The �rst is that

the least signi�cant bits of the numbers produced are highly correlated, and a resultant \scatter-

plot" of ordered pairs of random oating point numbers in the interval (0,1) shows regular lattice

structure.15;16;17;18 They are also known to have long-range correlations, in particular for intervals

which are a power of 2.1;3;19;20

2.2. Lagged Fibonnaci and Shift Register Generators

Lagged Fibonacci generators (LFGs)12;14;15 are becoming increasingly popular, since they o�er

a simple method of obtaining very large periods. The standard C and Unix generator RANDOM is of

this type. Di�erent versions of this generator are denoted by F(p; q;�), where p and q (the lags)

refer to previous elements of the sequence that are combined using the binary arithmetic operation

�, which can be +;�; � or � (XOR). The period can be made arbitrarily large by increasing the

lag, which also improves the randomness properties.15;7

Shift register (or Tausworthe) generators12;15;21;22;23 can be considered as a special case of a

lagged Fibonacci generator using XOR. Because XOR is such a simple operation, it gives the worst

randomness properties of any operation for an LFG.15;7 However this simplicity means that these

generators are very fast and thus still popular in spite of their serious drawbacks.

The randomness properties of these generators can be greatly improved by using multiple \taps",23;24

i.e. by combining four or more previous elements of the sequence, rather than two.

2.3. Combined Generators

Combining two di�erent generators has been shown (both theoretically and empirically) to pro-

duce an improved quality generator in many circumstances.15;17;25 L'Ecuyer17 has shown how to

additively combine two di�erent 32-bit LCGs to produce a mixed generator which passes the scatter-

plot test and has a long period of around 1018, thus overcoming some of the drawbacks of standard

LCGs. More recently L'Ecuyer et al.
26 have proposed 48-bit and 64-bit combined generators, with

even larger periods and presumably better randomness properties.

Marsaglia has suggested combining a fast, simple Weyl (or arithmetic sequence) generator with

a lagged Fibonacci generator, which is the basis for the popular RANMAR generator.14;27

3. Parallel Random Number Generators

3.1. The Leapfrog Method

Ideally we would like a parallel random number generator to produce the same sequence of

random numbers for di�erent numbers of processors, which makes the parallel code more portable

and much easier to debug. A simple way of achieving this is for processor P of an N processor
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machine to generate the sub-sequence X
P
; X

P+N ; XP+2N , : : : , so that the sequence is spread across

processors in the same way as a deck of cards is dealt in turn to players in a card game. This is

known as the leapfrog technique,28;29 since each processor \leapfrogs" by N in the sequence. In

order to use this method we need to be able to easily jump ahead by N in the sequence. This can

be done for linear congruential generators,28;29 combined LCGs30;31 and shift-register generators.32

One would expect that a large period (at least 48-bit) parallel linear congruential generator using

the leapfrog method should be adequate for most purposes. However there is a problem { linear

congruential generators are known to have correlations between elements in the sequence that are

a power of 2 apart. For many parallel or vector machines the number of processors or the vector

length is a power of 2, and this is also often the case for the size of the arrays used in a simulation

(e.g. grid size or lattice size). This means that the pseudo-random numbers generated on a given

processor may be more strongly correlated than the sequence on a single processor. In fact this type

of leapfrog linear congruential algorithm, when used on vector machines, has led to spurious results

in some Monte Carlo calculations.1;3

3.2. Sequence Splitting

Another way of parallelizing linear congruential generators is to split the sequence into non-

overlapping parts, each generated by a di�erent processor.30;31 This also requires the ability to jump

ahead in the sequence by a given amount. For example, one could divide the period of the generator

by the number of processors, and jump ahead in the sequence by this amount for each processor.

A program for a generator of this type using sequence splitting of a combined LCG is given by

L'Ecuyer and Côt�e.31

One disadvantage of this type of generator is that it does not produce the same sequence for

di�erent numbers of processors. However in a data parallel programmingmodel (for example, as used

by High Performance Fortran33) it is possible to split the sequence among \abstract processors", or

distributed data elements, such that the sequences will be the same for any number of processors.34

3.3. Independent Generators

The simplest method for using lagged Fibonacci generators in parallel is to just run the same

sequential generator on each processor, but with di�erent initial lag tables (or seed tables).35;36

In order for this method to work successfully, it is crucial that the seed tables on each processor

are random and independent, since any initial correlations may be preserved and adversely a�ect

the random numbers that are produced. It has also been observed that correlations between the

seed tables on di�erent processors can also be propagated throughout the sequences of generated

numbers. This was a problem with the initial implementation of this type of generator in the

standard software library for the Maspar (or DECmpp) parallel computer, which gave extremely

poor quality pseudo-random numbers.

Unlike the sequence splitting generator, this method does not guarantee that there is no overlap

between the sequences generated on di�erent processors. However using large lags eliminates this

problem to all practical purposes, since the probability of overlap will be completely negligible.

This algorithm is used in the Connection Machine Scienti�c Software Library (CMSSL) routine

FAST RNG,37 where the interface to the routine allows the user to specify the lags, so in principle the

routine can be extremely good, although the CMSSL documentation suggests using lags which are

much too small to give good randomness properties.

A de�ciency of this method is that is does not produce the same sequence for di�erent numbers

of processors. However, this can be achieved by a simple variation of this method, which is also
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provided in the CMSSL as the VP RNG generator.37 A di�erent generator (i.e. a di�erent lag table)

is assigned to every abstract processor, rather than every processor. This makes the algorithm

independent of the number of processors, however the memory requirement is likely to be exorbitant

with this approach.

3.4. Other Methods

The cellular automata generator is a generalization of the shift register generator, based on

cellular automata rules.38 A parallel version is provided by Thinking Machines39 and is one of the

generators we have tested.

Anderson40 has reviewed a number of di�erent methods for generating random numbers on vector

and parallel machines.

4. Monte Carlo Tests

Various random number generators were tested by using them for Monte Carlo simulation of

the two dimensional Ising model.8 This simple model has been solved exactly for a �nite lattice,9

so that values of the energy and the speci�c heat of the system calculated from the Monte Carlo

simulation can be compared with the known exact values. Three di�erent methods were used for

the simulations: the Metropolis algorithm8 which updates a single site of the lattice; the Swendsen-

Wang algorithm41 which forms clusters of sites to be updated collectively; and the Wol� algorithm42

which updates a single cluster of sites. These methods use the random numbers in very di�erent

ways.

We have developed both sequential and parallel implementations of all three of these Monte Carlo

methods, with both data parallel and message passing implementations of the parallel algorithms.

The Metropolis algorithm is parallelized with standard domain decomposition methods, using a

checkerboard or red/black updating scheme.28 The message passing Swendsen-Wang program uses

the local label propagation or self-labeling technique for parallel cluster labeling.43;44;45This program

has been used for high-precision Monte Carlo studies of Ising and Potts spin models.46 A di�erent,

data parallel version of the Swendsen-Wang algorithm was also used,47 and both message passing

and data parallel Wol� algorithms have been developed.48

Various parallel random number generators were tested using a Thinking Machines CM-2 and

CM-5, Maspar MP-100, nCUBE/2, and Intel iPSC/860. The sequential generators were tested on

a network of workstations. The message passing programs were run on 16 processors, except for

the 32-processor CM-5. The results of the data parallel programs are dependent primarily on the

number of \abstract processors" or data elements (i.e. the lattice size for this application) rather

than the number of physical processors used. This work is still in progress and only preliminary

results are given here. Other parallel random number generators will eventually be tested.11

For each random number generator, 25 independent simulation runs with di�erent initial seeds

were performed at the critical point of the 2-d Ising model.8 A 162 lattice was used for the sequential

algorithms, and a 1282 lattice for the parallel algorithms. In some cases the generators were also

tested using alternate lattice sizes, which can probe possible correlations at di�erent scales. A

number of the parallel generators passed tests for one lattice size and failed for another. The total

amount of random numbers generated in the 25 tests was of order 1011 for both the sequential and

parallel tests.

The sequential generators tested, and the statistical techniques used in testing the generators,

are described in detail in a previous paper.7 In addition, the following parallel random number

generators were tested:
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1. CMF RANDOM, the parallel cellular automata generator used on the Connection Machine.39;38

2. PRAND, the standard 32-bit C and Unix generator RAND, parallelized using a leapfrog technique.28

3. CMSSL FAST RNG, the lagged Fibonacci generator F(17; 5;+) used in the Connection Machine

Scienti�c Software Library (CMSSL), with the lag recommended in the CMSSL user guide.37

4. PRANDOM, the parallel version of the standard Unix and C lagged Fibonacci generator random.

We tested both the older (PRANDOM #1) and more recent (PRANDOM #2) versions implementated

by Maspar. These di�er in how the seed tables are initialized.

5. Results and Recommendations

The results of the tests are summarized in Table 1 for sequential generators and Table 2 for parallel

generators. A check mark indicates the generator passed the particular tests, a cross means that it

failed.

Generator S-W Wol� Met Generator S-W Wol� Met

RCARRY X X X RANMAR
p � p

SWC
p

X
p

F(4423,1393,+)
p p p

F(250,103,�) p
X

p
F(4423,1393,�) p p p

F(250,103,+)
p

X
p

F(218,95,39,11,�) p p p

RAND
p

x x F(55,24,16,8,+)
p p p

CONG
p

x x F(5,2,�) p p p

SWCW
p

x
p

F(43,22,�) p p p

F(1279,1063,�) p
x x RANECU

p p p

F(55,24,16,8,�) p
x

p
RAN2

p p p

F(1279,1063,+)
p � p

DRAND48
p p p

F(2,1,�) + Weyl
p � p

RANF
p p p

Table 1. Results of Monte Carlo simulations of the 2-d Ising model on a 16�16 lattice using

di�erent random number generators. X means the generator failed the test after 106 sweeps, x

means it failed after 107 sweeps, � means it failed, and
p

means it passed, after 5� 107 sweeps

(or 107 sweeps for the Swendsen-Wang algorithm).

The best sequential random number generators tested were the lagged Fibonacci generators

using multiplication, linear congruential generators with at least 48-bit precision, and combined

generators such as RANECU17;14 (L'Ecuyer's combined LCG generator) and RANMAR
27;14 (Marsaglia's

combined LFG and Weyl generator, although the lag used should be much greater than the value of

97 recommended by Marsaglia).

Many of the sequential generators, and most of the parallel generators, failed these Monte Carlo

tests. One lesson from these results is not to trust random number generators provided by computer

vendors. In the past, many inadequate generators have been provided for sequential computers,12;13

and a similar problem is now occurring with generators for parallel and vector machines.

By the year 2000 supercomputers will have Teraop (1012 oating point operations per second)

performance, and a Teraop-year of computation (3�1019 ops) will become realizable for such
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Generator S{W Wol� Metropolis

642 1282 642 1282 642 1282 2562

CMSSL FAST RNG
p

X
p p

X
p

{

F(1279,1063,+) {
p

{
p

{
p

{

PRAND {
p

{ { X X {

CMF RANDOM
p p

{ { X
p

X

PRANDOM #1 { { { { { X {

PRANDOM #2 { { { { { X {

Table 2. Results of Monte Carlo simulations of the 2-d Ising model using various lattice sizes for

di�erent parallel random number generators. X means the generator failed the test, and
p

means

it passed, after 5 � 105 sweeps for Metropolis or 2:5 � 105 sweeps for S-W and Wol�. A dash

means the test has not yet been done.

problems as Monte Carlo simulation of lattice gauge theory and condensed matter physics.49 Such

large scale Monte Carlo simulations will exhaust the period (of roughly 1018) of 64-bit LCGs or

combined 32-bit LCGs. It will thus be necessary in the near future to move to very long period

generators such as large-lagmultiplicative LFGs or combined 64-bit LCGs.26 These generators should

have both the randomness properties and the extremely large period required for applications of the

21st century (the period of these generators is large enough to handle a Petaop-age-of-the-universe

computation).

Shift register generators and additive LFGs have been popular in the past because they were

much faster than generators which use multiplication. However the di�erence in performance is

greatly reduced on modern processors, and since generators using multiplication will generally have

much better randomness properties, they should be used. It should also be noted that the speed of

a random number generator is often irrelevant, since in most applications the amount of time spent

generating the random numbers is insigni�cant compared to the rest of the calculation. The quality

of the random numbers is usually far more important than the speed with which they are generated,

so it's better to be slow than sorry.

The theoretical understanding of random number generators is rather limited, and no amount of

statistical testing can ever determine the quality of a generator. It is therefore recommended that

for any stochastic simulation, at least two very di�erent random number generators are used (for

example, a multiplicative LFG and a combined generator such as RANECU) and the results compared,

in order to be con�dent that the random number generator is not introducing a bias.

Since faster computers and better algorithms are improving the precision of Monte Carlo and

other stochastic simulations at a rapid pace, it is important to continue to search for better ran-

dom number generators with very long periods, and to make more precise and varied tests of the

randomness properties of these generators.
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