
Abstract

Parallel computing has been quite successful in solving problems that have very

regular structure, because the structure naturally leads to a balanced allocation

of data and computations across the processors and to e�cient communication

between them. Examples of such problems can be found in matrix computations,

signal/image processing, and the natural sciences. However, in many important

mathematical, scienti�c, and industrial problems, data access patterns are irregular

and evolve during the computation. The parallelization of these problems poses

di�culties related to data partitioning, data communication, and load balancing.

This dissertation examines particular types of irregular problems, known as hi-

erarchical clustering applications, and identi�es the language and runtime support

needed for their e�cient execution on distributed memory machines.

Hierarchical clustering applications are found in a variety of disciplines, includ-

ing physics, image processing, document retrieval, biology, and the social sciences.

These applications start with a set of objects and a set of variables describing these

objects. The aim is to divide the objects into groups or clusters that satisfy certain

constraints. The clusters are built gradually by putting the most similar objects

together and producing a nested sequence or hierarchy of partitions that can be

represented by trees or dendrograms.

The language and runtime support needed for the execution of hierarchical

clustering applications on distributed memory machines is determined as follows.

Starting with a de�nition of hierarchical clustering, a graph-theoretic formulation

of hierarchical clustering, using the multigraph concept, is presented. This for-



mulation is used to describe a programming paradigm for hierarchical clustering.

The paradigm is applied to a representative clustering application, region growing,

and is implemented on a distributed memory machine in both the data parallel

and message passing models. The parallel implementations provide insight into

the language and runtime support needed for region growing in particular, and for

hierarchical clustering applications in general.

The language and runtime support needed for the execution of hierarchical clus-

tering applications is described using High Performance Fortran (HPF) and is di-

vided into the following categories: data distribution, runtime data re-distribution,

unstructured communication, processors, data structures, and library routines.

The results of the study are useful for the application programmer, parallel lan-

guage designer, as well as the compile-time and runtime systems developer.
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Chapter 1

Introduction and Motivation

Since the 1980's there has been a signi�cant growth in the use of parallel computers

to solve a variety of scienti�c problems. The advent of parallel computing has not

only provided faster solutions to computationally intensive problems, but has also

provided new answers to scienti�c questions [44].

There are two main motivations for using parallel computers. The �rst motiva-

tion is speed. By using more than one processor, more processing power is available

to solve a given problem, and so it may be solved in a shorter length of time. This is

especially important for the so-called Grand Challenge applications [61] such as cli-

mate modeling, quantum chromo-dynamics, structural aerodynamic calculations,

and other applications that require vast computational resources. The second mo-

tivation for using parallel computing is the lower price per unit performance of a

parallel computer in comparison to that of a very fast sequential machine. It is less

costly to obtain a certain level of performance by using a number of moderately

fast processors connected together than by using a very fast sequential machine.

Parallel computing has been quite successful in solving problems that have very

regular structure, because the structure naturally leads to a balanced allocation
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of data and computations across the processors and to e�cient communication

between them. Examples of such problems can be found in matrix computations,

signal/image processing, and the natural sciences.

However, in many important mathematical, scienti�c, and industrial problems,

data access patterns (or data dependencies) are irregular and evolve during the

computation. Examples of these applications include molecular dynamics simula-

tions, N-body simulations, partial di�erential equation solvers using unstructured

or adaptive meshes, and sparse matrix problems. The parallelization of these and

other irregular problems poses further di�culties related to data distribution, data

communication, and load balancing.

There have been many approaches that aim to simplify the task of developing

correct, e�cient parallel programs. These approaches include:

1. The development of parallelizing compilers such as Fortran D [40, 58], FORGE

Explorer/DMP [37], and SUIF [108] that transform a sequential program into

message-passing code that runs on a distributed memory machine.

2. The design of high-level programming languages that hide the details of the

architecture from the programmer. Examples of data parallel languages in-

clude *Lisp [95], CM Fortran [94], C* [97], High Performance Fortran (HPF)

[43, 62, 63, 68], Vienna Fortran [26], and pC++ [15, 16]. Examples of task

or control parallel languages include Joyce [19], SuperPascal [21], Fortran M

[38], and Compositional C++ [24].

3. The development of runtime support libraries. The implementation of a high-

level language, like HPF, on a distributed memory machine requires both a

compile-time and a runtime system. The compile-time system generates the
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low-level code appropriate for the target machine. The runtime system is a

collection of library routines that perform address translations, data move-

ments, and computation partitioning, as well as other useful functions. In

cases when these functions are data dependent and cannot be completely

speci�ed at compile-time, the compiler inserts calls to the library routines at

appropriate points in the object code. Examples of runtime support libraries

include the CHAOS library [81, 80] which provides primitives for distributing

irregular data and computations and for optimizing communication, and the

NICE library [83, 104] which provides primitives for collective communica-

tion. A major research goal is to identify common compile-time and runtime

functions that can be shared by a variety of languages [77].

4. The design of message passing systems such as Express [78], PVM [48], and

MPI [51] that o�er portable communication routines.

5. The identi�cation of parallel programming paradigms [20, 22, 47], skeletons

[30], templates [9], archetypes [4, 25], or programming models that the pro-

grammer can use as building blocks in solving certain classes of problems.

This dissertation contributes to the e�orts aimed at simplifying the task of

developing parallel programs. It examines particular types of irregular problems

known as hierarchical clustering applications and identi�es the language and run-

time support needed for their e�cient execution on distributed memory machines.

The results of this study are useful for the application programmer and the parallel

language designer, as well as the compile-time and runtime systems developer.

Hierarchical clustering applications are representative of types of irregular prob-

lems, known as loosely synchronous problems, whose data objects evolve during
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computation in a time synchronized manner [42]. Examples of these clustering

applications are found in a variety of disciplines, including physics, image process-

ing, document retrieval, biology, and the social sciences. These applications start

with a set of objects and a set of variables describing them. The aim is to divide

the objects into groups or clusters that satisfy certain constraints. The clusters

are built gradually by putting the most similar objects together and producing

a nested sequence or hierarchy of partitions that can be represented by trees or

dendrograms.

The language and runtime support needed for the execution of hierarchical

clustering applications on distributed memory machines is determined as follows.

Starting with a de�nition of hierarchical clustering, a graph-theoretic formulation

of hierarchical clustering using the multigraph concept is presented. This formula-

tion is used to describe a programming paradigm for hierarchical clustering. The

paradigm is applied to a representative clustering application, region growing, and

is implemented on a distributed memory machine in both the data parallel and

message passing models. The parallel implementations provide insight into the

language and runtime support needed for region growing in particular, and for

hierarchical applications in general.

The language and runtime support needed for the execution of hierarchical

clustering applications is described using High Performance Fortran (HPF) and

is divided into the categories of data distribution, runtime data re-distribution,

unstructured communication, processors, data structures, and library routines.
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Data Parallel and 

Message Passing Implementations

Programming Paradigm

Graph-Theoretic Formulation

Definition of Hierarchical Clustering

Language and Run-Time Support

Figure 1.1: Steps in Identifying the Language and Runtime Support Needed for

Clustering Applications
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Chapter 2

Overview of Parallel Processing

Concepts

A parallel computer is comprised of a set of processors that are able to work

cooperatively to solve a single computational problem. This de�nition is broad

enough to include parallel supercomputers, networks of workstations, multiple-

processor workstations, and embedded systems [39].

2.1 Models of Parallel Programming

Many models have been proposed for parallel programming. These models provide

various ways of viewing and representing a parallel computation. They do not do

not necessarily re
ect the underlying physical machine architectures. Foster [?]

presents the following models of parallel programming:

� Shared Memory: In the shared memory programming model, processes

share a common, single address space which they can read and write to
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asynchronously. Mechanisms, such as locks and semaphores may be used to

control access to the data.

� Message Passing: In the message passing programming model (also known

as control or task parallel model), a computation comprises one or more

processes, each with its own private address space. Two processes share data

by sending and receiving messages.

If all processes execute the same program, then the model is referred to as

Single Program Multiple Data (SPMD). If the processes execute di�erent

programs, then the model is referred to as Multiple Program Multiple Data

(MPMD). CMMD [94] and MPI [51] are two communication libraries that

support the SPMD and MPMD models, respectively.

� Data Parallel: In the data parallel programming model, concurrency is

derived from the application of the same operation on many elements of a

data structure. A data parallel program consists of a sequence of such tasks.

Each operation on each element can be viewed as a single process, and hence

the granularity of a data parallel computation is small. Examples of data

parallel languages include CM Fortran [94], High Performance Fortran (HPF)

[43, 62, 63, 68].

2.2 Parallel Machines

Two distributed memory machines, the Connection Machine model CM-5 and a

cluster of DEC Alpha workstations, were used to implement hierarchical clustering.

The machines are described below.
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2.2.1 The Connection Machine Model CM-5

The Connection Machine model CM-5 [93] is an MIMD machine from Thinking

Machines Corporation (TMC). The machine is composed of a control processor

(also known as partition manager) and tens or hundreds of processing nodes con-

nected together in the form of a fat tree [71]. The CM-5 at the Northeast Parallel

Architectures Center (NPAC) at Syracuse University that was used in this study

has 32 such processing nodes.

Every processing node is a general-purpose computer that can fetch and in-

terpret its own instruction stream, execute arithmetic and logical instructions,

calculate memory addresses, and perform inter-processor communication.

The control processor (also known as partition manager) has the same gen-

eral capability as a processing node, but is specialized to perform administrative

functions rather than computational ones. It manages a partition composed of a

number of processing nodes and is responsible for scheduling user tasks, allocating

resources, and servicing I/O requests for that partition.

The CM-5 supports both the data parallel and message passing models of

programming. For the data parallel model, TMC provides the CM Fortran [94],

C* [97], and *Lisp [93, 95] programming languages. In the case of CM Fortran, the

partition manager executes all the Fortran 77 statements, while the nodes execute

all the array extensions drawn from Fortran 90.

For the message passing model, TMC provides the CMMD library [96]. This

library is a collection of routines that permit cooperative message passing among

the processing nodes. CMMD supports a version of message passing known as

host/node programming, where a host program runs on the partition manager and

independent copies of a node program run on each of the processing nodes. The
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programmer must handle all the load balancing, the distribution of data, the divi-

sion of work, and the communication among the nodes.

2.2.2 The DEC Alpha Cluster

The second distributed memory machine used in this study is a cluster of DEC

Alpha workstations. The cluster at the Northeast Parallel Architectures Center

(NPAC) at Syracuse University consists of eight DEC 3000/400 compute servers

from Digital Equipment Corporation, each with 62 MB of memory and one DEC

DEFTA FDDI interface. The FDDI interfaces connect the servers over �ber to a

DEC Gigaswitch, which connects via �ber to a DEC Network Integration Server

(DECNIS). This networking provides full FDDI bandwidth and low-latency switch-

ing to every processor in the cluster.

2.3 Problem Classes

Problems can be classi�ed into the following broad categories [42]:

1. Synchronous Problems: The data associated with these problems have

regular geometries, and values of the data evolve synchronously during the

computation. An example is the �nite di�erence problem using the Jacobi

update strategy.

2. Loosely Synchronous Problems: The data associated with these prob-

lems have irregular geometries. The computation synchronizes at regular

time intervals (after every iteration, for example). Examples include hierar-

chical N-body simulation and region growing.
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3. Asynchronous Problems: The data associated with these problems have

irregular geometries and the computation does not synchronize at regular

time intervals (computation is event-driven). An example is melting in two

dimensions.

2.4 High Performance Fortran

High Performance Fortran (HPF) [43, 62, 63, 68] is Fortran 90 augmented by a set

of extensions intended to facilitate data parallel programming on a wide range of

parallel architectures. The extensions include:

1. Data Distribution and Alignment Directives

These directives advise the compiler on how to distribute data across multiple

processors.

2. New Language Syntax

These are extensions to Fortran 90 to better express parallelism in a program.

They include the FORALL statement which is a more 
exible form of array

assignment.

3. Library Procedures

HPF provides a standard interface to a library of useful procedures. These

include procedures for data reduction, sorting, matrix calculations, etc.

4. Extrinsic Procedures

HPF allows the use of extrinsic procedures written in another language such

as Fortran 77 with message passing. These procedures allow the programmer

to handle problems that are not e�ciently addressed by HPF.

10



In HPF both the programmer and the compiler are responsible for specify-

ing parallelism in a program. The programmer provides high level directives for

distributing the data, while the compiler generates the low-level parallel code ap-

propriate for the target architecture. The strategy behind HPF is that the user

writes a data parallel program which is annotated with data distribution and align-

ment directives. The compiler then generates code that runs on a target parallel

machine. In the case of distributed memory machines, the compiler generates a

multi-threaded message passing code with local data and optimized send/receive

communications.
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Chapter 3

Clustering

Clustering is the process of dividing a set of objects into sensible, useful groupings

or clusters. Objects may be persons, species, cities, pixels, documents, vertices of

a graph, magnetic domains in a ferromagnet, liquid droplets in a gas, monomers

or polymers in solution, conducting domains in a superconductor, etc. The goal is

to group these objects into clusters such that the objects within a cluster have a

high degree of \natural association" among them, while the clusters are \relatively

distinct" from each other. Other names used synonymously with clustering are

classi�cation, numerical taxonomy, botryology, and systematics [2, 1, 7, 13, 11, 12,

14, 32, 33, 36, 49, 50, 54, 52, 59, 64, 65, 70, 73, 84, 86, 103, 89, 102, 109, 111].

3.1 De�nition of Clustering

The clustering problem can be stated as follows: Given a data set of N objects

and a set of M variables or attributes describing each of the objects, the aim is

to partition the N objects into groups or clusters such that the objects within a

group are as \similar" to each other as possible, while the \similarity" between

12



objects of di�erent groups is rather low.

The input to the clustering problem can be represented by an N �M array

of values xi;j, where xi;j denotes the value of the j'th variable describing the i'th

object, as shown in Figure 3.1.

2, 1 2, 2 2, M
xx x

N, 1 N, 2 N, M
x x xValues of variables for N’th 

Values of variables for 1st

Values of variables for 2nd

object:

object:

object:

1, 1 1, 2 1, M
x x x

Figure 3.1: Input to the Clustering Problem

The clustering problem is an optimization problem, since the aim is to �nd the

\best" partition or classi�cation of a set of N objects that satis�es all the given

criteria and constraints. By \best" we mean a clustering that produces the smallest

number of clusters possible (or the largest-size clusters possible). However, the

solution of a given clustering problem may not not be unique, since more than one

partitioning of the objects could satisfy the criteria and constraints and produce

the smallest number of clusters possible.

The criteria for identifying clusters depend on how the investigator chooses to

give meaning to the terms \natural association" and \relatively distinct". Con-

sequently, clustering requires that a measure of dissimilarity (or, equivalently, a

measure of similarity) be established between pairs of objects.
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Suppose S = fO1; O2; � � � ; ONg is a set of N objects, each described by a set

of M variables or attributes. A mapping d : S � S ! [0;1) is a dissimilarity

function if, for any 1 � i; j � N , it satis�es the following three conditions:

d(Oi; Oi) = 0;

d(Oi; Oj) = d(Oj ; Oi);

and

d(Oi; Oj) � 0:

There are many di�erent possible ways of establishing a measure of dissimi-

larity (or similarity) between objects, and the choice between them is subjective.

Sneath and Sokal divided the various measures into four groups: distance mea-

sures, association coe�cients, correlation coe�cients, and probabilistic similarity

coe�cients [89].

One common measure of dissimilarity between a pair of objects is the Euclidean

distance between them. Two objects are said to be more similar, the smaller the

Euclidean distance between them. They become dissimilar if the distance between

them is larger than a given threshold value T . The objects can be represented

as points in an M -dimensional metric space, where each dimension represents a

variable or attribute and the coordinates of a point represent the values of the

M variables or attributes associated with that point. If A and B are two points

with coordinates (a1; � � � ; aM) and (b1; � � � ; bM), respectively, then the Euclidean

distance, D, between A and B is given by:

D(A;B) =

"
MX
i=1

(ai � bi)
2

# 1

2

:

14



In one, two, or three dimensions, this is just the \straight line" distance between

points A and B.

When the variables are measured in di�erent units, it may be necessary to pre-

scale the variables to make their values comparable, or equivalently, to compute a

weighted Euclidean distance:

DW (A;B) =

"
MX
i=1

Wi (ai � bi)
2

# 1

2

;

where Wi is the weight applied to variable i. A discussion of the choice of weights

W can be found in [52, 65].

Figure 3.2 (a){(c) gives a geometrical illustration of clustering. Each point

in the �gure represents an object, and the coordinates of the point represent its

attributes. In general, there will be more than two variables describing each object

and the clusters will not be visually recognizable as in the con�gurations shown in

Figure 3.2.
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(a)

(c)

(b)

Attribute 1

Attribute 2

Attribute 2

Attribute 1

Attribute 2

Attribute 1

(a) Data set with three clusters; (b) Data set with two clusters; (c) Data set with

three clusters, where one of the clusters is composed of a single isolated object

Figure 3.2: A Geometrical Illustration of Clustering
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3.2 Example: Sightings of Minor Planets

The classi�cation of minor planet sightings is an example of a typical clustering

application [52]. There is a very large number of minor planets (or asteroids) in

orbits between Mars and Jupiter. In a photograph against the �xed stars, a minor

planet sighting will appear as a curved streak from which its orbital elements may

be computed.

There are many thousands of sightings of minor planets. An important problem

is deciding which sightings are of the same planet. The objects are the sightings.

Two objects are similar if, considering measurement error, the sightings could

plausibly be of the same planet. A cluster is a group of sightings of the same

planet.

Table 3.1 consists of a number of observations on minor planets. Each sighting

is labeled by the year of the sighting and the initials of the astronomer, and is

described by the two variables Node and Inclination. Node denotes the angle in

the plane of the earth's orbit at which the minor planet crosses the plane of the

earth's orbit, while Inclination denotes the angle between the plane of the earth's

orbit and the plane of the planet's orbit.

Figure 3.3 illustrates the clustering of sightings of minor planets. Each point in

the �gure represents a sighting, and the coordinates of the point represent its two

variables, Node and Inclination. All sightings that are close enough are clustered

together and are assumed to be of the same planet. The clusters are delineated by

dashed lines.
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Table 3.1: Sightings of Minor Planets

Minor Planet Sighting Node (degrees) Inclination(degrees)

1924TZ 59.9 5.7

1931DQ 69.6 4.7

1940YL 338.333 16.773

1941FD 132.2 4.7

1949HM 339.625 16.076

1952DA 55.144 4.542

1955QT 130.07 4.79

20.0

15.0

10.0

5.0

0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0

1924TZ

1931DQ1940YL 1941FD

1955QT

1940YL

1949HM

Node
(degrees)

Inclination
(degrees)

Figure 3.3: Clusters of Minor Planet Sightings
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3.3 Methods of Clustering

There are many competing philosophies as to how groups should be constructed

and how they should be de�ned. Consequently, a wide variety of logical, statis-

tical, mathematical, and heuristic methods have been applied to the problem of

creating groups. According to Blash�eld [12], most clustering methods fall into

two categories: (a) hierarchical methods, and (b) partitional methods.

3.3.1 Hierarchical Methods

Hierarchical methods of clustering have been by far the most commonly used ones

[12], and are the focus of this dissertation. These methods proceed to build clusters

gradually by putting the most similar entities together and producing a nested

sequence or hierarchy of partitions that can be represented by trees or dendrograms.

Figure 3.4 shows an example of a dendrogram.

Hierarchical methods are either agglomerative or divisive. Agglomerative hier-

archical clustering places each object in its own cluster and gradually merges these

atomic clusters into larger and larger clusters. A divisive hierarchical clustering,

on the other hand, reverses the process by starting with all objects in one cluster

and subdividing into smaller pieces.

When using an agglomerative hierarchical method, di�erent criteria can be

used to merge objects together into the same group. The two most commonly

used criteria are single-linkage and complete-linkage:

1. Single-linkage criterion. In single-linkage, two objects are merged into the

same cluster if the dissimilarity between them is smaller than or equal to a

certain threshold value T that is de�ned by the researcher. A single object Oi
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Clusterings:

Figure 3.4: An Example of a Dendrogram

is attached to an already existing cluster Ck if there exists an object Oj 2 Ck

such that the dissimilarity d(Oi; Oj) between Oi and Oj is � T .

2. Complete-linkage criterion. In complete-linkage, two objects are merged

into the same cluster if the dissimilarity between them is smaller than or

equal to the threshold value T . A single object Oi is attached to an already

existing cluster Ck if for every object Oj 2 Ck, d(Oi; Oj) � T .

An algorithm applying the single-linkage criterion may proceed by joining to-

gether the two closest objects to form a cluster (the dissimilarity between the
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objects must be � T ). It then joins together the next two closest objects to form a

cluster, and so on. If the two objects to be joined lie in di�erent clusters obtained

in previous steps, then the two clusters are joined instead. The algorithm termi-

nates when no more objects can be joined together, or when all the objects are

in the same cluster. In complete-linkage, on the other hand, it is not su�cient to

examine the dissimilarity between two objects to determine whether they can be in

the same cluster, but all the objects in the two clusters to which these two objects

belong must be examined. Two clusters are joined if the dissimilarity between

every pair of objects in the two clusters is � T .

The single-linkage criterion produces clusters that are isolated from each other,

paying no attention to their internal cohesion, while the complete-linkage criterion

produces clusters that have strong internal cohesion. Figure 3.5 (a){(c) compares

clusters obtained using the single-linkage and complete-linkage criteria for a given

threshold T . The dissimilarity measure between two points is taken to be the

Euclidean distance between them. Clusters in the �gure are delineated by dashed

lines.

Many other clustering criteria take a middle road between single-linkage and

complete-linkage. For example, the average-linkage criterion characterizes a cluster

by the average of all dissimilarities (or similarities) within it; that average must be

� a given threshold T [89].

3.3.2 Partitional Methods

Partitional methods of clustering generally start with an initial partition of the

data set of objects into some speci�ed number of clusters. Then the boundaries of

these clusters are iteratively re�ned and modi�ed until the required clustering is
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obtained. No nested sequence or hierarchy of partitions is produced in the process.

Several clustering methods belong to this category; three of them are listed below

[49].

1. Optimizationmethods. These methods require a clustering criterion to be

optimized. A commonly used criterion is the within-groups sums of squares.

If S = fO1; O2; � � � ; ONg is the set of objects, C = fC1; C2; � � � ; CPg is a

partition of S into P clusters, and d(Oi; Oj) is the dissimilarity between

objects Oi and Oj , then the quality function g(C) is de�ned by

g(C) =
1

2

PX
k=1

1

nk

X
Oi2Ck

X
Oj2Ck

d(Oi; Oj)
2
;

where nk denotes the number of objects in cluster k.

A partition C that minimizes g(C) is taken as optimum. However, ev-

ery quality function would take its optimum when the objects are classi-

�ed into N one-element clusters, since g(C) = 0 always holds for C =

ffO1g; fO2g; � � � fONgg. Therefore, to prevent these methods from produc-

ing such trivial results, the number of clusters must be de�ned in advance or

some constraints must be imposed on the clusters.

The most straightforward way to discover the optimum partition C is to form

all possible partitions and choose the one that minimizes the quality function.

Unfortunately, the number of partitions that must be examined by this simple

approach may be enormous. Heuristic procedures, which sample a small

subset of the possible partitions, are therefore commonly used. Examples of

this method include [85, 86].

2. Constructive Methods. These methods start from an arbitrarily chosen

object Oi of the data set, which is believed to be a representative of a group.
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This object is the so-called kernel of the cluster. All elements nearest to the

kernel are attached to its group. This process stops if the cluster becomes

too heterogeneous. Another element from the remainder of the data set is

chosen as the kernel of the next cluster, and the process is repeated until all

objects are classi�ed.

3. Analysis of Density Methods. If objects are represented as points in

space, then \clusters" are the connected areas of high point densities. The

maxima of the densities, or modes, de�ne cluster centers. Under ideal con-

ditions, clusters are separated by areas of low densities called valleys of the

distribution. Methods in this category detect the clusters by employing valley

seeking techniques or mode seeking techniques.
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(a)

(c)

(b)

threshold   T

threshold   T

threshold   T

(a) Objects represented as points in the plane; (b) Clusters determined using

single-linkage criterion ; (c) Clusters determined using complete-linkage criterion

Figure 3.5: Single-Linkage vs. Complete-Linkage Clustering Criterion
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Chapter 4

A Graph-Theoretic Formulation

of Hierarchical Clustering

Many real-world situations and relationships may conveniently be described or

modeled by means of a diagram consisting of a set of points, together with lines

joining certain pairs of points. The points represent physical objects and the lines

represent relations among these objects. For example, the points could represent

communication centers and the lines could represent communication links between

these centers. Such a diagram, known as a graph, has proved to be a valuable tool

in modeling these situations [17].

One advantage of using graphs is that the researcher can rely on a large number

of mathematical theorems and results to gain insight into the structure of a real

system. Moreover, graph theory provides researchers of di�erent disciplines with

a single mathematical language.

Many graph-theoretic formulations of clustering have been proposed. These

include removing inconsistent edges of a minimum spanning tree of a graph [111];

�nding maximal connected components or cliques of a graph [64]; constructing one
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or more directed trees that correspond to clusters [70]; constructing graphs based

on limited neighborhood sets [102]; and removing arcs from a graph such that the

largest inter-subgraph 
ow is minimized [109].

This dissertation presents a graph-theoretic formulation of clustering based on

the multigraph concept [49]. This formulation can be applied to a wide variety of

clustering applications and is useful for cases when the dissimilarity between any

two objects of the data set cannot be measured by a single numeric value. More-

over, the formulation allows the researcher to employ di�erent clustering criteria

for di�erent attributes of the objects.

4.1 Graphs and Multigraphs

Formally, a graph G (also called an undirected graph) is de�ned to be a pair (V;E),

where V is a non-empty �nite set of vertices and E is a �nite set of unordered pairs

of elements of V . If pairs of elements in the set of edges E are ordered, then the

graph G is called a directed graph.

Often, it is useful to attach weights to the edges. For example, if the vertices

are points in space we can de�ne the weight of the edge between two points to

be the Euclidean distance between them. We thus get an edge-weighted graph (or

simply a weighted graph). A subgraph of a graph G is a graph whose vertices are a

subset of the vertices of G and whose edges are a subset of the edges of G.

A path from vertex vi to vertex vj in the graph is a list of vertices, starting

with vi and ending with vj, in which successive vertices are connected by edges in

the graph. A graph G is connected if there is a path from every vertex to every

other vertex in the graph. Intuitively, if the vertices of G were physical objects

and the edges were strings connecting them, then a connected graph would stay
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in one piece if picked up by any vertex. A graph that is not connected can be split

up into a number of maximal connected subgraphs called connected components.

A graph is called complete if every pair of its vertices is directly linked by an edge,

i.e., if all possible edges are present. A clique is a complete subgraph [87]. For a

detailed discussion of graph theory, see [17, 35, 92, 99, 100, 101, 107].

Hierarchical clustering can naturally be formulated using graph theory. The

objects O1; O2; � � � ; ON of a data set can be represented by vertices v1; v2; � � � ; vN

of a graph. An edge links two vertices vi and vj of the graph if the dissimilarity

d(Oi; Oj) between the objects Oi and Oj does not exceed a given threshold T . The

weight of the edge between vi and vj is taken to be equal to d(Oi; Oj). The clusters

are found by iteratively grouping together the nodes of the graph to form larger

and larger clusters. Using this interpretation, the single-linkage clusters are simply

the connected components of the graph, while the complete-linkage clusters are the

maximal cliques of the graph.

However, in many cases of multi-dimensional data (i.e., data described by more

than one variable) where the scale levels of the attributes vary considerably, the

dissimilarity between any two objectsOi and Oj of the data set cannot be measured

by a single numeric value d(Oi; Oj). Moreover, the researcher may wish to employ

di�erent clustering criteria for di�erent attributes. For example, the researcher

may wish to use the single-linkage clustering criterion for one attribute, while

using the complete-linkage criterion for another attribute.

In such cases, Godehardt [49] proposes using a special kind of graph, called

a multigraph, to describe clustering. A multigraph is a graph in which a pair

of vertices can be connected by more than one edge. Multigraphs are useful in

describing several distinct relations on the same set of vertices. Pictorially, each
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relation is represented by a \layer" of edges. Figure 4.1 (a){(c) illustrates the

concept of a multigraph. The two graphs (a) and (b) on the same set of vertices

are combined to form the multigraph (c). The vertices of the multigraph are

elongated to show clearly the two layers of edges.

The following de�nitions are derived from those by Godehardt [49]. Formally,

an M-layer multigraph, �M , is de�ned to be an M + 1-tuple (V , E1; � � � ; EM),

where V is a non-empty �nite set of vertices and El, 1 � l � M , is a �nite set of

elements of the form (vi; vj; l), where vi and vj are elements of V . So, El denotes

the set of edges in layer l of the multigraph.

If vertices vi and vj of a multigraph are linked by at least k edges (each edge

lies in a di�erent layer), then the vertices are said to be k-fold connected, and

the k edges are called a k-fold connection between vi and vj. A sub-multigraph

of a multigraph �M is a multigraph whose vertices are a subset of the vertices of

�M and whose edges are a subset of the edges of �M . A k-sub-multigraph is a

sub-multigraph all of whose vertices have k-fold connections between them.

A k-path from vertex vi to vertex vj in a multigraph is a list of vertices starting

with vi and ending with vj in which successive vertices are k-fold connected. A

multigraph is k-connected if there is a k-path from every vertex to every other

vertex in the multigraph. A multigraph that is not k-connected can be split into a

number of maximal k-connected sub-multigraphs called k-connected components.

A graph is called k-complete if every pair of its vertices is directly linked by a k-fold

connection. A k-clique is a k-complete sub-multigraph.

Because of the 
exibility provided by multiple layers of edges, the multigraph

concept can easily be applied to clustering when no single measure of dissimilarity

can be calculated. Suppose we are given a set of N objects, O1; O2; � � � ; ON , and a
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set of M variables describing each of these objects. Instead of computing a single

measure of dissimilarity, d(Oi; Oj), between every pair of objects, Oi and Oj , we

compute M \local" dissimilarities, d1(Oi; Oj); � � � ; dM (Oi; Oj), corresponding to

each of the M variables. Furthermore, we can de�ne M di�erent thresholds for

each of the M variables.

Suppose the thresholds de�ned for the M variables are T1; � � � ; TM . The clus-

tering problem can be formulated using an M -layer multigraph, where the vertices

v1; v2; � � � ; vN of the multigraph correspond to objects O1; O2; � � � ; ON of the data

set, and layer l, 1 � l �M , of edges describes the dissimilarity between the objects

relative to the l'th variable. In a given layer l of the multigraph, an edge links

two vertices vi and vj if the dissimilarity, dl(Oi; Oj), between objects Oi and Oj,

does not exceed the threshold Tl associated with the l'th variable. The weight of

the edge between vi and vj in layer l is taken to be equal to dl(Oi; Oj). Using this

multigraph formulation, the single-linkage clusters are the maximal k-connected

components of the multigraph, while the complete-linkage clusters are the maxi-

mal k-cliques of the multigraph for a given value k, 1 � k �M , that depends on

the application and is set by the researcher.

One advantage of the multigraph-based formulation of clustering is that it ex-

presses dissimilarity between objects in a more natural way by allowing a di�erent

dissimilarity measure for each variable, instead of using a single measure for all the

variables. Moreover, the researcher has an easier task in de�ning various thresholds

for every single variable of the data and in experimenting with them.
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(c) Multigraph, with \layered" edges, on vertices v1; � � � ; v4

Figure 4.1: An Example of a Multigraph
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4.2 Applicability to Clustering Applications

In this section, we examine the applicability of the multigraph-based formulation

to three important clustering applications: cluster labeling in percolation and spin

models, binary image segmentation, and region growing. These three applications

have been chosen because they are important applications that employ di�erent

criteria for clustering.

4.2.1 Cluster Labeling in Percolation and Spin

Models

A percolation model (or a \bond" percolation model) in physics is a D-dimensional

lattice of sites (D � 1), where certain pairs of the sites have bonds or links between

them. The existence of bonds is governed by a random mechanism, the details of

which depend on the context in which the model is used. The word \random" is

to be understood in the mathematical sense that a bond between two sites occurs

with a given probability p. The sites of the lattice may represent the molecules in

a gas, trees in a forest, cells in an organism, etc. [34, 90].

A path is said to exist between two sites A and B of the lattice if a sequence of

sites may be found, beginning with A and ending with B, such that successive sites

in the sequence have a bond between them. There may be many paths between

a given pair of sites; but if there is at least one path, then the sites are said to

be connected. The presence of a path may, for example, allow the 
ow of liquid

or electrical charge between the sites it connects, the spread of �re from one tree

to another in a forest, or the passage of a telephone message from one point to

another.
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The sites of the lattice are to be partitioned into clusters such that pairs of sites

in the same cluster are connected and there is no path between sites in di�erent

clusters. The cluster sizes increase with the number of bonds in the lattice, which

in turn increase with the value chosen for the probability p. At some critical

probability value pc, the system is said to be in a percolating state. For example,

in the case of a forest model, at the critical probability pc a �re started in one edge

of the forest would spread to the opposite edge.

The transition from a non-percolating state to a percolating state is a kind

of phase transition. The study of the distribution of the sizes and shapes of the

clusters aims to achieve an understanding of this transition as well as the general

theory of phase transitions and critical phenomena. A more complete discussion

of percolation models can be found in [34, 90].

The identi�cation or labeling of clusters in a percolation model can be expressed

as a clustering problem, where the objects are the sites in the lattice and each object

is described by the following variables:

1. The position of the site in the lattice.

2. Whether a bond exists between the site and each of its neighbors in the

lattice.

The sites are to be grouped into maximal disjoint clusters that satisfy the

following connectivity requirement:

Connectivity Requirement: The sites in a cluster must

be connected. That is, whenever two sites Oi and Oj belong

to the same cluster, then there must exist a sequence of sites
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beginning with Oi and ending with Oj such that successive

sites in the sequence belong to the cluster and have a bond

between them.

Given the above requirement, the measure of dissimilarity, d, between two

objects (or sites), Oi and Oj , can be de�ned as:

d(Oi; Oj) =

8>>>>>><
>>>>>>:

0; if a bond exists between the two sites OiandOj

1; otherwise,

and the threshold value T can be taken to be equal to 0.

The problem can be represented by an undirected, weighted graph (or a one-

layer multigraph) where the vertices of the graph represent the lattice sites, and an

edge exists between two vertices of the graph if the dissimilarity between them is

� 0, i.e., if there exists a bond between them in the lattice. All the weights of the

edges are identical and are equal to some arbitrary constant, say 1. The single-

linkage criterion is used for clustering, since it satis�es the requirements of the

problem. Thus the clusters in the lattice are precisely the connected components

of the graph, and the clustering problem for percolation models is essentially the

problem of labeling connected components of an undirected graph. Figure 4.2 (a){

(c) shows an example of cluster labeling in percolation models where �ve clusters

are identi�ed in the lattice.
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Figure 4.2: Cluster Labeling in Percolation Models
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Another closely related clustering application in physics is cluster labeling in

spin models of real systems such as magnets. The goal of computer simulations

of spin models is to generate con�gurations of spins typical of statistical equilib-

rium and to measure physical quantities on this ensemble of con�gurations. The

generation of con�gurations is traditionally performed by Monte Carlo algorithms

such as the one by Metropolis et al [74]. However, improved algorithms have been

designed in which clusters of spins, rather than individual spins, are updated at

each step of the Monte Carlo algorithm.

In the Swendsen and Wang algorithm [91], clusters of spins are created by

introducing bonds between neighboring sites with a certain probability. Sites that

are connected together by a sequence of one or more bonds are identi�ed and

assigned a unique cluster label. Each cluster is updated by choosing a random new

spin value for that entire cluster and assigning it to all the spins in that cluster.

In order to implement these algorithms, a method for identifying and labeling the

clusters of connected sites is required. The clustering in this application, like that

in percolation models, is essentially the problem of labeling connected components

of an undirected graph.

A more detailed description of spin models and cluster labeling algorithms can

be found in [8, 10, 28, 44, 69, 75].
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4.2.2 Binary Image Segmentation

Image segmentation is an important initial step in many image-understanding

applications, such as the recognition of objects in robot vision, as well as the study

of satellite pictures for the identi�cation of various types of soils, ocean currents,

storms, etc. [3, 6, 23, 45, 57, 79, 110].

The problem of image segmentation can be stated as follows: We are given

a digital image composed of a two-dimensional array of pixels or pixel elements.

Associated with each pixel is an intensity value. For binary images, the intensity

value is either 0 (white) or 1 (black); for grey-scale images, the value is an integer

commonly between 0 and 255. The goal is to partition the image into disjoint

(non-overlapping) regions or segments such that pixels belonging to a region are

more similar to each other than pixels belonging to di�erent regions. A region

should consist of contiguous or connected pixels.

In this study we assume 4-connectivity of pixels. That is, a pixel in the image

has at most four neighbors located to its north, south, east, and west. (If a pixel

is on the border of an image, then it has two or three neighbors.) Figure 4.3 shows

a 5�5 pixel image, where the four neighbors of the pixel in the center are labeled.

In the case of binary images, the problem of image segmentation simpli�es to

assigning a unique label to a contiguous collection of pixels that have the same

intensity value. The problem can be expressed as a clustering problem, where the

objects to be clustered are the pixels in the image, and each object is described by
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Figure 4.3: Four-Connectivity of Pixels

the following two variables:

1. The position of the pixel (row and column numbers)

2. The intensity value of the pixel

The pixels are to be grouped into maximal disjoint clusters which satisfy both

of the following two requirements:

Connectivity Requirement: The pixels in a cluster must

be connected. That is, whenever two sites Oi and Oj belong

to the same cluster, then there must exist a sequence of sites

beginning with Oi and ending with Oj such that successive
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sites in the sequence belong to the cluster and are adjacent

in the image.

Homogeneity Requirement: All pixels in a cluster must

have the same intensity value (0 or 1).

Given the above requirements, the measure of dissimilarity, d, between two

objects (or pixels), Oi and Oj, can be de�ned as follows:

d(Oi; Oj) =

8>>>>>>>>>><
>>>>>>>>>>:

0; if Oi and Oj are adjacent in the pixel image

and have the same intensity value

1; otherwise

and the threshold value T can be taken to be equal to 0.

The problem can be represented by an undirected, weighted graph (or a one-

layer multigraph) where the vertices of the graph represent the pixels and an

edge exists between two vertices of the graph if the dissimilarity between them is

� 0, i.e., if the corresponding pixels in the image are adjacent and have the same

intensity value. All the weights of the edges are identical and are equal to some

arbitrary constant, say 1. The single-linkage criterion is used for clustering, since

it satis�es the requirements of the problem. Thus the regions in the image are

precisely the connected components of the graph, and binary image segmentation

is essentially the problem of labeling connected components of an undirected graph.

Figure 4.4 (a){(c) shows an example of binary image segmentation, where four

clusters are identi�ed in the image.
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(a) A binary image; (b) Graph representing clustering problem (4-connectivity of

pixels is assumed); (c) Clusters identi�ed in the image, labeled by the integers 1 { 4

Figure 4.4: Clustering in Binary Image Segmentation
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4.2.3 Region Growing

Region growing is a general technique for the segmentation of a grey-scale image,

where the pixel intensities belong to a range of values (commonly between 0 and

255). Image characteristics are used to group or cluster adjacent pixels together to

form regions. Regions are then merged with other regions to \grow" larger regions.

A region corresponds to a real-world object or to a meaningful part of one.

The merging of regions is usually governed by a homogeneity criterion that

must be satis�ed. One homogeneity criterion, known as the pixel range homo-

geneity criterion, requires that the di�erence between the minimum and maximum

intensities of pixels within a region not exceed a given threshold value T .

Region growing can be expressed as a clustering problem, where the objects

to be clustered are the pixels in the image and each object is described by the

following two variables:

1. The position of the pixel (row and column numbers)

2. The intensity of the pixel (a value between 0 and 255)

The pixels are to be grouped into maximal disjoint clusters which satisfy both

of the following two requirements:

Connectivity Requirement: The pixels in a cluster must

be connected. That is, whenever two sites Oi and Oj belong

to the same cluster, then there must exist a sequence of sites

beginning with Oi and ending with Oj such that successive

sites in the sequence belong to the cluster and are adjacent

in the image.
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Homogeneity Requirement: The di�erence between the

minimum and maximum intensities of pixels within a cluster

must not exceed the given threshold value T .

The measure of dissimilarity, d, between two objects (or pixels) Oi and Oj , can

be de�ned as follows:

d(Oi; Oj) =

8>>>>>>>>>><
>>>>>>>>>>:

0; if Oi and Oj are adjacent in the pixel image

and the di�erence between their intensities is � T

1; otherwise.

At �rst, we may attempt to represent the problem by an undirected, weighted

graph (or a one-layer multigraph), where the vertices of the graph represent the

pixels and an edge exists between two vertices if the corresponding pixels are

adjacent in the image and the di�erence between their intensities is � T . We take

the weight of an edge to be equal to the di�erence in intensities of the two pixels

joined by that edge. However, we observe that this graph representation poses a

di�culty: The single-linkage criterion cannot solely be used for clustering, since

it does not guarantee the satisfaction of the homogeneity requirement. Moreover,

the complete-linkage criterion cannot solely be used for clustering, since it only

yields regions composed of at most two pixels.

The multigraph concept proves to be a convenient tool for formulating the

problem and for overcoming this di�culty. A two-layered multigraph can be used

to represent the problem, where the vertices of the multigraph represent the pixels

in the image. The �rst layer of edges re
ects the adjacency relationship between

the pixels, while the second layer represents the di�erences in intensities between
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the pixels.

In the �rst layer we de�ne the measure of dissimilarity, d1, between two objects

Oi and Oj to be:

d1(Oi; Oj) =

8>>>>>><
>>>>>>:

0; if Oi and Oj are adjacent in the pixel image

1; otherwise,

and we take the threshold value T1 to be equal to 0. All the weights of the edges

are identical and are equal to some arbitrary constant, say 1.

In the second layer we de�ne the measure of dissimilarity, d2, between two

objects Oi and Oj to be

d2(Oi; Oj) = the di�erence between the intensities

of Oi and Oj,

and we take the threshold value T2 to be equal to the given threshold value T . An

edge exists between two vertices in the second layer if the di�erence between the

intensities of the two pixels is � the given threshold T . The weights of the edges

are taken to be equal to this di�erence.

The single-linkage criterion in the �rst layer of the multigraph satis�es the con-

nectivity requirement of the problem, since connected components in the �rst layer

are comprised of adjacent pixels. On the other hand, the complete-linkage criterion

in the second layer of the multigraph satis�es the homogeneity requirement, since

a clique in the second layer guarantees that the di�erence between the intensities

of any two pixels does not exceed the threshold T . Combining these two criteria,

we get:
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The regions in the image correspond to the maximal,

disjoint sub-multigraphs whose vertices belong to

a connected subgraph in the �rst layer of the multigraph

and to a clique in the second layer of the multigraph.

It follows that a region is the intersection of a connected subgraph in the �rst

layer of the multigraph and a clique in the second layer of the multigraph.

Figure 4.5 shows an example of clustering in region growing, where four clusters

are identi�ed in the image.

4.3 Complexity

Garey and Johnson [46] provide the following de�nition of the decision problem

of clustering. (A decision problem is one whose solution is either \yes" or \no".)

This de�nition assumes a single dissimilarity (distance) measure between pairs of

objects and the complete-linkage criterion for clustering.

INSTANCE: Finite set of objects X, a distance d(x; y) 2 Z

+
0 for each

pair x; y 2 X, and two positive integers K and B.

QUESTION: Is there a partition of X intoK disjoint setsX1;X2; � � � ;XK,

such that, for 1 � i � K and all pairs x; y 2 Xi, d(x; y) � B?

According to Garey and Johnson [46], the above problem remains NP-complete

even for �xedK = 3. It is solvable in polynomial time forK = 2. Variants in which

we ask that the sum, over all Xi, of maxfd(x; y) : x; y 2 Xig or of
P
x;y2Xi

d(x; y)

be at most B are also NP-complete.

43



A similar complexity result is obtained from the corresponding multigraph for-

mulation. This is composed of a one-layer multigraph where the vertices represent

the objects and an edge joins two objects if the distance between them is � B. The

complete-linkage criterion is used for clustering. The decision problem of clustering

in this case is equivalent to the PARTITION INTO CLIQUES problem de�ned as

follows [46]:

INSTANCE: Graph G = (V;E), positive integer K � jV j

QUESTION: Can the vertices of G be partitioned into k � K disjoint

sets V1; V2; � � � ; Vk such that, for 1 � i � k, the subgraph induced by Vi is a

complete subgraph?

According to Garey and Johnson [46], the above problem remains NP-complete

for all �xed K � 3. It is solvable in polynomial time for K � 2.

Thus when the complete-linkage criterion is employed in one or more layers

of the multigraph, the corresponding decision problem is NP-complete. It follows

that there are no known polynomial-time algorithms for solving the problem, and

the time needed is probably an exponential function of the problem size. To reduce

the execution time, most computer algorithms employ heuristics to �nd a \good

enough" solution that satis�es all the clustering criteria and constraints, but may

not produce the smallest number of clusters [60].

On the other hand, if the single-linkage criterion is employed in every layer of

the multigraph, then the problem of clustering is equivalent to �nding connected

components in a graph and can be solved in polynomial time.
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(a) A grey-scale image; (b) Graph representing clustering problem; (c) Clusters

identi�ed in the image, labeled by the integers 1 { 4

Figure 4.5: Clustering in Region Growing
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Chapter 5

A Paradigm for Hierarchical

Clustering

A programming paradigm [22], also known as skeleton [30], template [9], archetype

[4, 25], or programming model, is a description of a general method for solving a

class of problems that have the same control and data-
ow structures. A paradigm

speci�es the overall structure of the computation, while leaving gaps for the def-

initions of problem-speci�c procedures and declarations. Familiar paradigms in

sequential computation include \divide and conquer", \dynamic programming",

and \simulated annealing".

Paradigms are useful for several reasons. First, a paradigm can be customized

for the particular problem to be solved, thus reducing the e�ort required to develop

correct and e�cient programs. Second, a paradigm allows us to discover and exploit

similarities between seemingly di�erent problems. Third, a paradigm can provide

the language designer with useful insight about the requirements of certain classes

of problems.
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5.1 Sequential Hierarchical Clustering Paradigm

The multigraph formulation of hierarchical clustering provides a basis for a pro-

gramming paradigm that is applicable to a wide variety of hierarchical clustering

applications. At the heart of the paradigm is an iterative procedure that clusters

or merges vertices of a multigraph together while satisfying all the given criteria

and constraints.

The general steps of a sequential, bottom-up hierarchical clustering paradigm

can be described as follows:

1. Input the data describing the clustering application.

2. Perform some preprocessing on the data to identify initial clusters. In the

simplest case, each data object is considered to be an individual cluster.

3. Construct a multigraph that represents the problem.

4. Iteratively merge vertices of the multigraph together into clusters that satisfy

all the given criteria and constraints. The merge continues until no more

merges are possible.

5. Output the results.

5.2 Parallel Hierarchical Clustering Paradigm

The general steps of a parallel hierarchical clustering paradigm executing on a dis-

tributed memory machine in the host-node programming model can be described

as follows:

47



1. The host processor inputs the data describing the clustering application and

distributes it among the node processors.

2. Every node processor performs some preprocessing on its subset of the data

to identify initial clusters within the subset. The preprocessing can be per-

formed in parallel by all the node processors. In the simplest case, each

object is considered to be an individual cluster and is labeled with a unique

integer denoting the cluster number.

3. Every node processor constructs a multigraph that represents its subset of

the data. The multigraphs can be constructed in parallel by all the node

processors. The node processors exchange boundary information to form

edges between their multigraphs.

4. The node processors cooperate to iteratively merge vertices of the multigraph

together into clusters that satisfy all the given criteria and constraints. Often,

many cluster pairs can simultaneously merge together without con
icting

with each other. The merge continues until no more merges are possible.

5. The host processor collects the results from the node processors and outputs

the results.

At a �ner level of detail, the steps of the parallel paradigm are as follows:

Step 1: The host processor inputs the data describing the clustering application.

Usually, the data consists of the following:

(a) A set of N objects O1; � � � ; ON .
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(b) The values of M variables or attributes describing each object.

(c) A set of M threshold values, T1; � � � ; TM , associated with each of the M

variables.

(d) The clustering criterion to be used for each of the M variables (for

example, single-linkage or complete-linkage).

Next, the host processor distributes the data among the node processors

such that each processor receives a subset of the objects, the values of theM

variables associated with that subset, and the clustering criterion to be used

with each variable. Also, each processor receives a copy of the M threshold

values.

Step 2: Every node processor performs some preprocessing on its subset of the data

to identify initial clusters of objects. The aim of this step is to reduce the

overall execution time of the program by using a fast procedure to identify

initial clusters. In the simplest case, each object is considered to be an

individual cluster and is labeled with a unique integer denoting the cluster

number.

Step 3: Every node processor creates an M -layer multigraph representing its subset

of the data. The vertices of the multigraph correspond to the objects (or

initial clusters) belonging to the processor, and layer l, 1 � l �M , of edges

describes the dissimilarity between the objects (or initial clusters) relative

to the l'th variable. In a given layer l of the multigraph, an edge links two

vertices vi and vj if the dissimilarity dl(Oi; Oj) between objects (or initial

clusters) Oi and Oj does not exceed the threshold Tl for the l'th variable.

The weight of the edge between vi and vj in layer l is taken to be equal to
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dl(Oi; Oj).

Next, the node processors exchange boundary information to form the edges

between their multigraphs. When an edge joins two vertices in two di�erent

processors, only one of the two processors retains a copy of that edge.

Step 4: Every cluster i, 1 � i � number of clusters determined so far, examines all

clusters that are adjacent to it in layer 1 of the multigraph and determines

which of these clusters it can merge with, while simultaneously satisfying

the clustering criteria of layers 1; 2; 3; � � � ;M . The clusters that satisfy the

clustering criterion of every layer are candidates for merging with cluster i.

If a neighboring cluster lies in a di�erent processor, then processor commu-

nication is required.

Every cluster i selects for merging the candidate cluster determined in the

previous step that yields the \best merge" (the \best merge" is application

dependent). For example, cluster i may select the candidate cluster that

minimizes some function of the M threshold values. The node processors

communicate to determine which clusters have selected each other for merg-

ing, and which pairs of clusters will actually merge.

Step 5: Once two clusters merge, the vertices belonging to the two clusters are labeled

by the same cluster number (or, equivalently, the corresponding vertices of

the multigraph are coalesced together into one larger super-vertex and the

edges in every layer of the multigraph are updated to re
ect the new rela-

tionships between the vertices).

Step 6: If more merges are possible, then go to step 4. Otherwise, continue on to

step 7.
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Step 7: The vertices of the multigraph that are labeled by the same cluster number

(or, equivalently, the remaining super-vertices of the multigraph) belong to

the same cluster. Output the results and terminate.

5.3 High-Level Routines for Hierarchical Clus-

tering

We identify the following high-level routines that implement the various steps of

the hierarchical clustering paradigm:

1. CLUSTER: This is the main clustering program that calls other required

routines.

2. PREPROCESS: This routine implements Step 2 of the detailed clustering

paradigm. It preprocesses the input data to identify initial clusters.

3. CONSTRUCT GRAPH: This routine implements Step 3 of the detailed

clustering paradigm. It constructs the graph that models the application by

calling the following two routines:

(a) INITIALIZE VERTEX ARRAYS: This routine builds the data struc-

tures associated with the vertices of the graph that models the applica-

tion.

(b) INITIALIZE EDGE ARRAYS: This routine builds the data struc-

tures associated with the edges of the graph that models the application.

4. MERGE VERTICES: This routine implements Steps 4 { 6 of the detailed

clustering paradigm and is the heart of the computation. It iterativelymerges

51



the nodes of the graph into larger and larger clusters that satisfy the given

criteria and constraints. In each iteration of MERGE VERTICES, the

following routines are called:

(a) MATCH VERTICES: This routine implements Step 4 of the detailed

clustering paradigm. It determines which pairs of vertices can merge

together.

(b) UPDATE GRAPH: This routine implements Step 5 of the detailed

clustering paradigm. It updates the graph to re
ect new clusters by

calling the following two routines:

i. UPDATE VERTICES: This routine updates the vertices of the

graph after a merge iteration.

ii. UPDATE EDGES: This routine updates the edges of the graph

after a merge iteration.

5. UPDATE LABELS: This routine implements Step 7 of the detailed clus-

tering paradigm. It transfers information about the clusters determined in

the graph to the input data set so the results of clustering can be displayed.
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Chapter 6

Region Growing

In this chapter we study the application of the multigraph-based paradigm for

hierarchical clustering to the region growing problem. Region growing was chosen

for two main reasons. First, it is a representative hierarchical clustering application

(it is the most general of the three applications discussed in Section 4.2). Second,

it uses both the single-linkage and complete-linkage criteria for clustering.

As mentioned earlier, region growing is a general technique for the segmenta-

tion of a grey-scale image, where the pixel intensities belong to a range of values

(commonly between 0 and 255). The aim is to identify \regions" in the image

that correspond to real-world objects or to meaningful parts of real-world objects.

Image characteristics are used to group adjacent pixels together to form regions;

these regions are then merged with other regions to \grow" larger regions. Thus,

the term \region growing" is used to describe the process. Figure 6.1 illustrates

image segmentation. The top half of the �gure shows an image of a woman's face.

The bottom half shows the various regions identi�ed within the image.

53



Figure 6.1: An illustration of Image Segmentation

(The �gure is reproduced from Horowitz and Pavlidis, 1974)
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The merging of regions is usually governed by a homogeneity criterion that

must be satis�ed. A variety of homogeneity criteria have been proposed [6, 112].

One criterion, known as the pixel range homogeneity criterion, requires that the

di�erence between the minimum and maximum pixel intensities within a region

not exceed a given threshold value T . It follows that pixels belonging to the same

region must have \similar" intensity values. If f(x; y) is the intensity of the pixel

with coordinate (x; y) in the image, then the pixel range homogeneity criterion,

H(R), for a region R is de�ned as follows:

H(R) =

8>>>>>>>>>><
>>>>>>>>>>:

True; if for all point pairs (x1; y1) and (x2; y2) in R;

kf(x1; y1)� f(x2; y2)k � T

False; otherwise.

The input to the region growing problem is composed of the following:

1. An N �N array of the intensities of the pixels.

2. A threshold value, T , to be used with the pixel range homogeneity criterion.

The output of the region growing problem is a grouping of the pixels into

regions such that:

1. Pixels in the same region are connected and satisfy the homogeneity criterion.

2. No two regions can be merged together to form a larger region that satis�es

the homogeneity criterion.

Note that the above two requirements guarantee a \good enough" solution

to the region growing problem. This solution may be di�erent from the \best"
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solution which yields the smallest number of regions possible. Also note that more

than one grouping of the pixels can satisfy the above two requirements, so the

solution is not unique.

The output of the region growing problem is a labeling of the pixels, such that

pixels labeled by the same integer value belong to the same region.

6.1 The Split and Merge Approach

There are many algorithms for solving the region growing problem [3, 6, 29, 53, 57,

79, 112]. The e�ectiveness of a particular algorithm depends on the input image

and the requirements of the application at hand. We examine an algorithm for

region growing based on the split and merge approach proposed by Horowitz and

Pavlidis [60] and later parallelized by Willebeek-LeMair and Reeves [105]. This

algorithm is a direct application of the hierarchical clustering paradigm presented

in the previous chapter.

The split and merge approach, as expected, consists of two consecutive stages:

the split stage and the merge stage. These will be described in detail below.

6.1.1 The Split Stage

The split stage is a preprocessing stage that rapidly identi�es initial clusters or

regions in the image and thus reduces the number of merge steps in the program.

Since this stage involves grouping pixels together into initial clusters, it is actually

a preprocessing merge stage.

Suppose the image is of size N �N , where N is a power of 2. The image can

be partitioned, in a quad-tree fashion, into \square" regions of various dimensions
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which conform to the homogeneity criterion. At �rst, each pixel in the image

is considered a homogeneous square region of size 1 � 1. Then every group of

four adjacent pixels (corresponding to a quad-tree decomposition) is tested for

homogeneity. If the homogeneity criterion is satis�ed, the four pixels are combined

into one larger square region of size 2 � 2. Next, every group of four adjacent

square regions of size 2� 2 is tested for homogeneity. If the homogeneity criterion

is satis�ed, the four square regions are combined into one larger square region of

size 4 � 4, and so on. The split stage terminates when the whole image is one

square region of size N � N , or when no more square regions can be merged.

The upper left-hand corner pixel of a square region is designated to be the region

representative and is assigned a unique label.

Figure 6.2 illustrates the split stage. Part (a) of the �gure shows a 4�4 image,

where the threshold value T = 3. Part (b) shows the square regions identi�ed after

one iteration of the split stage. The small numbers appearing in the upper left-

hand corners of the regions denote the region labels.

6.1.2 The Merge Stage

In the merge stage, the square regions determined by the split stage are iteratively

merged into larger and larger clusters or regions which conform to the homogene-

ity criterion. The merge stage can be modeled using a two-layered undirected,

weighted multigraph, where the vertices of the multigraph represent the initial

clusters or square regions determined by the split stage.

In the �rst layer of the multigraph, an edge exists between two vertices if the

two regions they represent are adjacent in the image. All edges in the �rst layer are

assigned identical weights equal to some arbitrary constant, say 1. The threshold
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Square regions: (a) at start of the split stage; (b) after �rst and �nal split iteration

Figure 6.2: The Split Stage

value for the �rst layer is taken to be equal to 0.

In the second layer of the multigraph, an edge exists between two vertices if

the di�erence between the minimum and maximum pixel intensities in the two

regions combined is � the given threshold T . The weight of the edge is taken to

be equal to that di�erence. The threshold value for the second layer is taken to

be equal to the given threshold value T . We use the single-linkage criterion in the

�rst layer of the multigraph and the complete-linkage criterion in the second layer

of the multigraph to identify the regions in the image.

58



Figure 6.3 shows an example of a multigraph modeling the region growing

problem. Part (a) of the �gure shows the square regions produced by the split

stage; part (b) shows the two layers of the corresponding multigraph; and part (c)

shows the intersection of the two layers of the multigraph.

In one merge iteration each region selects for merging a region that simultane-

ously satis�es the single-linkage criterion (connectivity requirement) in layer 1 and

the complete-linkage criterion (homogeneity requirement) in layer 2 of the multi-

graph. If more than one region satis�es these two requirements, then one of these

regions is chosen such that the pixel range is minimized. To illustrate, consider

Figure 6.4. In that �gure, region 4 can merge with region 1, region 3, or region

6, since each of these regions simultaneously satis�es the connectivity and homo-

geneity requirements. If region 4 merges with region 1, then the di�erence between

the minimum and maximum pixel intensities in the resulting region is equal to 3;

if region 4 merges with region 3, then the di�erence between the minimum and

maximum pixel intensities in the resulting region is equal to 1; while if region

4 merges with region 6, then the di�erence between the minimum and maximum

pixel intensities in the resulting region is equal to 2. The smallest of these numbers

is 1; therefore, region 4 chooses to merge with region 3. This approach is known

as the\best merge" approach and is known to yield good quality regions [105].
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Often in the \best merge" approach the situation arises where two or more

neighbors tie for merging with a given region. For example, in Figure 6.3 (c),

regions 3 and 5 tie for merging with region 4, since each of these regions minimizes

the di�erence between the minimum and maximum pixel intensities. In such a

situation, some criterion must be used to break the tie and choose one of the two

regions to merge with region 4. The next section discusses two approaches that

can be used.

After each region has selected a partner for merging, two regions actually merge

if their merge choices are mutual. That is, two regions must select each other in

order for them to merge. Once two regions merge, one of the two regions becomes

the representative of the two, and the vertices and edges of the multigraph are

updated. The merge continues until no more merges are possible.
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6.1.3 Resolving Ties

As mentioned in the previous section, when two or more neighbors tie for merging

with a given region, some criterion must be used to break the tie. One approach,

known as the smallest-label approach, breaks the tie by choosing the neighbor with

the smallest label. Another approach, known as the random approach, chooses one

of the neighbors at random.

Figure 6.5 illustrates the merge stage for the 4 � 4 image of Figure 6.2 when

the smallest-label approach is used for breaking ties. The merge stage takes three

iterations to complete, and for each iteration the regions determined in the image

and the corresponding graph representation are shown. The graph representing

the problem is the intersection of the two layers of the multigraph. The weight

of an edge joining two vertices (regions) in the graph is equal to the di�erence in

pixel intensities in the two regions combined. The small numbers in parentheses

in the corners of the regions denote the region labels.

In Figure 6.5 regions 3 and 5 tie for merging with region 6, since merging with

either of these two regions best satis�es the homogeneity criterion for region 6 (i.e.,

produces the least increase in pixel range for region 6, as indicated by the weights

of the edges). Region 6 chooses to merge with region 3, since ties are broken by

choosing the neighbor with the smallest label; but no merge actually takes place,

since region 3 chooses to merge with region 4. If, instead, ties were broken at

random, then in the �rst merge iteration regions 5 and 6 could merge at the same

time as regions 3 and 4, and the merge stage could take two iterations instead of

three, as illustrated by Figure 6.6.
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Figure 6.5: The Merge Stage (Smallest-Label Approach in Resolving Ties)
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To further illustrate the di�erence between the two approaches, we consider the

special case of an image with 7 regions (numbered 0 to 7), where all the pixels have

the same intensity value and the threshold value T is some integer � 0. Figure 6.7

shows that it takes the merge stage seven steps to complete when ties are broken

by choosing the neighbor with the smallest label. Figure 6.8, on the other hand,

shows that it could take the merge stage only three steps when ties are broken by

choosing a neighbor at random. Contention for merging is indicated by arrows in

the �gures. When two regions merge, the new resulting region is labeled by the

smaller label of the two regions.

Experimental results with a variety of images have shown that the random

approach in resolving ties commonly results in a larger number of merges per

merge iteration, and hence is faster when executed on a parallel machine than the

approach of selecting the neighbor with smallest (or largest) label. Timings are

presented in Section 7.4.

66



2 3 5 6 740

(b) Regions after first Merge iteration:

0 4 765

(d) Regions after third Merge iteration:

3 5 6 740

(c) Regions after second Merge iteration:

0 1 2 3 5 6 74

(a) Regions at start of the Merge stage:

70

(g) Regions after sixth Merge iteration:

0

(h) Regions after seventh and final Merge iteration:

7650

(e) Regions after fourth Merge iteration:

760

(f) Regions after fifth Merge iteration:

Figure 6.7: Resolving Ties by Choosing the Neighbor with the Smallest Label
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Figure 6.8: Resolving Ties by Choosing a Neighbor at Random
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6.1.4 Deadlock

Deadlock refers to the situation when merges are possible, but no pairs of regions

select each other for merging and the merge stage iterates inde�nitely. This sit-

uation arises when region selections for merging form circular chains. Figure 6.9

shows an example of a circular chain, where region 1 selects region 2, region 2

selects region 3, region 3 selects region 4, and region 4 selects region 1 for merging.

The smallest (or largest) label approach in resolving ties guarantees that at

least two regions will select each other for merging in every merge iteration. That

pair can be determined as follows:

Suppose that there are N regions in the image, labeled from 1 to N . Now

consider all the possible merges that can take place among these N regions (the

merges must satisfy both the connectivity and homogeneity requirements). Each

of the merges can be represented as an unordered pair of region labels, and there

are at most N�(N�1)

2
such pairs. Find the pair of regions that yields a region with

the smallest pixel range. In general, there may be more than one such pair. Call

these pairs p1; p2; � � � ; pm, 1 � m � N�(N�1)

2
. Examine all the region labels in

these m pairs, and �nd the smallest label, s. Then examine all the partners of

s, and �nd the one with the smallest label; call that partner t. The two regions

labeled s and t are the two regions that are guaranteed to merge.

The random approach in resolving ties, on the other hand, may result in circular

chains and hence deadlock. To avoid this problem, the program needs to check

that in every merge iteration at least two regions select each other for merging.

If no merges occur for several merge iterations, then the program can use the

smallest (or largest) label approach to break the deadlock and then switch back to

the random approach.
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(An arrow from region i to region j indicates that region i selects region j for

merging)
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Chapter 7

Parallel Implementations of

Region Growing

In this chapter we examine three parallel implementations of region growing, based

on the hierarchical clustering paradigm:

1. A message passing implementation in Fortran 77 plus CMMD [96], executed

on a 32-node Connection Machine model CM-5. The implementation consists

of two programs, a host program and a node program. The host program

runs on the partition manager, while 32 identical copies of the node program

run independently on the node processors.

2. A data parallel implementation in the CM Fortran language [94], executed

on a 32-node Connection Machine model CM-5.

3. A data parallel implementation in High Performance Fortran, executed on a

cluster of DEC Alpha workstations.
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The �rst and second implementations allow us to make a meaningful compari-

son of the performance of the message passing and data parallel implementations,

since they execute on the same platform (a 32-node CM-5). The third implementa-

tion allows us to discuss the language and runtime support needed for hierarchical

clustering, using the High Performance Fortran Language.

7.1 The Message Passing Implementation

The message passing model of execution requires the programmer to explicitly

specify the detailed behavior of individual processors operating asynchronously.

The facilities provided by the system software in the data parallel model are ex-

changed for the ability to program each node individually and to make explicit

decisions on communication, synchronization, and load balancing.

The message passing implementation of region growing is written in Fortran 77

and CMMD, and executed on a 32-node Connection Machine model CM-5. The

message passing implementation consists of the following steps:

Step 1: The host processor inputs the N�N array of pixel intensities and the thresh-

old value T . Next, the host processor distributes the pixel intensities among

a P1�P2 node-processor grid (where both P1 and P2 divide N), such that

each processor receives an N
P1
� N

P2
sub-image of the original image.

Step 2: Every node processor splits its N

P1
� N

P2
sub-image and determines the homo-

geneous square regions within it. The splitting is performed in parallel by all

the node processors. If the sub-image within the processor is rectangular in

shape, then it is divided into square sections, and the split stage is applied

independently to each of these sections in turn.
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Step 3: Each node processor constructs the vertices and edges of the graph associated

with its own sub-image. The graphs are constructed in parallel by all the node

processors. Border information is exchanged to set up edges between adjacent

processors. For every square region, a corresponding vertex is created, and

for each pair of neighboring square regions an edge is created. The weight

of the edge is taken to be equal to the di�erence between the minimum and

maximumpixel intensities in the two regions combined. If the weight exceeds

the threshold value T , then the edge is marked as inactive; otherwise it is

active. Boundary information is exchanged between the node processors so

that edges connected to vertices in other processors are created.

Step 4: The node processors cooperate to merge pairs of adjacent regions into larger

regions that satisfy the homogeneity criterion. This is achieved by a loop

over active edges in each of the node processors. Each region connected

to an active edge determines the neighboring region that best satis�es the

homogeneity criterion. In the case of a tie, one of the neighboring regions

is chosen at random. Two regions merge if their merge choices are mutual.

Several region pairs can merge at the same time without con
icting with

each other.

Step 5: The node processors cooperate to update the vertices and edges of the graph

to re
ect the new regions in the images. Edges that do not satisfy the

homogeneity criterion are deactivated.

Step 6: If there still exist any active edges, then go to step 4. Otherwise, continue

on to step 7.

Step 7: The node programs send information about their �nal regions to the host.
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The host outputs the results, and the host and node programs terminate.

Figure 7.1 illustrates how the split stage is applied to square sections of an

image. Assuming P1 � P2 node processors are used, where P2 is twice P1, then

the N

P1
� N

P2
sub-image in one processor is divided into two square sections, and

the split stage is applied independently to each of these sections in turn.

Section 1

Section 2

N/P1

N/P2

Figure 7.1: A Sub-Image within a Processor Divided into Two Square Sections
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7.1.1 Data Structures

In applying the hierarchical clustering paradigm to region growing, only one- and

two-dimensional arrays are used to represent the various data items required. Op-

erations on these arrays are speci�ed sequentially using DO loops, but di�erent

processors work on di�erent sections of the arrays simultaneously.

Two-dimensional arrays are used to store the intensities as well as other infor-

mation pertaining to the pixels such as the pixel column and row numbers and

whether a pixel is a region representative or not. One-dimensional arrays are used

to store information about the vertices and edges of the graph modeling the prob-

lem. Figure 7.2 illustrates the way in which data is stored in the various arrays.

Note that edges are represented by two one-dimensional arrays that index the ver-

tex arrays. The �rst array indexes the �rst region of the edge, while the second

array indexes the second region of the edge.
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7.1.2 Data Distribution

In the message passing implementation, the two-dimensional array of pixel inten-

sities is distributed equally among the node processors in the (BLOCK, BLOCK)

fashion. First the host processor reads the entire array into its memory; then it

sends blocks of the image to the node processors.

Given an N � N array of pixel intensities and P1 � P2 processors (where

each of P1 and P2 divides N), the (BLOCK, BLOCK) scheme maps the array to

the processor grid such that each processor receives an N

P1
� N

P2
sub-image of the

original image. This mapping maintains adjacency between neighboring blocks of

the image. The row and column numbers of a node processor in the grid are given

by:

Row = (Self address DIV P2) + 1

Column = (Self address MOD P2) + 1,

where DIV is the integer division operation and MOD is the modulo operation.

Figure 7.3 shows an N � N image mapped to a 4 � 8 processor grid (P1 = 4,

P2 = 8). The processors are numbered p0; p1; � � � ; p31.

At the end of the split stage, the node processors set up the vertices and edges

of the graph representing the problem. Three di�erent mappings of an edge and its

two vertices can arise when distributing a graph data structure among a number

of processors. These cases are illustrated in Figure 7.4. In part (a) of the �gure,

an edge and both its vertices are mapped to the same processor. In part (b), an

edge and one of its vertices are mapped to one processor, while the other vertex is

mapped to another processor. In part (c), an edge and its two vertices are mapped

to three di�erent processors. Obviously, case (a) is the most desirable since it does
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Figure 7.3: Mapping an N �N image onto a 4� 8 processor grid

not require any communication. Ideally, a partitioning of a graph should consist

of mostly case (a) mappings and only a few case (b) mappings and should divide

the vertices and edges evenly among the processors.
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Figure 7.4: Three Di�erent Mappings of an Edge of a Graph and its Two Vertices

79



In the message passing implementation, every node processor independently sets

up the edges and vertices of the graph associated with its own sub-image. Border

information is exchanged to set up edges between adjacent processors. Thus either

an edge and both of its vertices are mapped to the same processor (case (a)), or

an edge and one of its vertices are mapped to the same processor and the second

vertex is mapped to an adjacent processor (case (b)). The situation where an edge

and its two vertices are mapped to three di�erent processors (case (c)) does not

arise. Thus locality between the vertices and edges of the graph is maintained.

Furthermore, since the number and shape of square regions are not identical

in all of the sub-images, it follows that the number of vertices and edges of the

graph are not identical in all of the processors. In e�ect, the vertex and edge

arrays are distributed such that di�erent processors are assigned di�erent-sized

blocks of the arrays (GENERAL BLOCK distribution [27]). The two logical arrays,

VERTEX ACTIVE and EDGE ACTIVE, which indicate the number of active

elements in the vertex and edge arrays, are also mapped in an GENERAL BLOCK

fashion. Figure 7.5 illustrates GENERAL BLOCK distribution of the graph in

Figure 7.2 on two processors.
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7.1.3 Unstructured Communication

At several points in the message passing implementation, unstructured communi-

cation is required, whereby each of the node processors sends zero or more messages

to other processors in an irregular fashion. For example, we may have a situation

similar to the one shown in Figure 7.6 where each of four processors has a list of

destinations to which to send messages. The destinations and sources do not follow

a speci�c structure or pattern. In this case an e�cient communication scheme is

needed whereby messages are sent and received without causing deadlock.

p, , ,p ppp
1 3 0 2 3

0 1
p p

, , pppp
3

p

p pp

,

2 3 4

0 1 3 4
List of Destinations: -

Figure 7.6: An Example of Unstructured Communication

Two di�erent communication schemes were investigated. The �rst, called Lin-

ear Permutation (LP) [83], uses Blocking Send and Blocking Receive (blocking here

means that the sending process and receiving process wait until the communica-

tion has completed before resuming execution). In this scheme each node obtains a

copy of the communication matrix, using a global concatenation operation. Then,

in step i, 0 < i < Q, processor pk sends a message to processor p(k+i) MOD Q and

receives a message from processor p(k�i) MOD Q, where Q is the total number of

node processors. The sender and receiver nodes are blocked until the message is
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transmitted. The steps of the Linear Permutation algorithm are as follows:

For all processors pk, 0 � k � Q� 1, in parallel do

for i = 1 to Q� 1 do

Processor pk sends a message to processor p(k+i) MOD Q

Processor pk receives a message from processor p(k�i) MOD Q

endfor

If processor pk does not have any message to send to processor p(k+i) MOD Q for

some value of i, 1 � i � Q� 1, then it does not participate in the send operation

for step i. Similarly, if processor pk does not have any message to receive from

processor p(k�i) MOD Q, then it does not participate in the receive operation for

step i.

The second communication scheme uses Non-Blocking Send and Blocking Re-

ceive (NS-BR). In this scheme a node that wishes to send a message does not

block until its partner node is ready to receive that message, but can pursue other

computation. When the receiving node is ready to receive the message, it issues a

(blocking) receive and waits for the message to be delivered before it can pursue
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other work. The steps of the communication scheme are as follows:

1. Using a global reduction operation, each node determines the number of

messages it must receive from the other nodes.

2. Every node sends all the messages it wishes to send to other nodes using

non-blocking send.

3. Every node loops the required number of times to receive all the messages

(if any) that have been sent to it by other nodes. The nodes use blocking

receive.

In order to reduce the communication overhead in both schemes, whenever a

processor needs to send more than one message to the same destination, all the

messages are concatenated together and sent as one large message.

7.2 Data Parallel Implementations

The data parallel implementations (CM Fortran and HPF) of the region growing

problem consist of the following steps:

Step 1: The program inputs the N � N array of pixel intensities and the threshold

value T .

Step 2: The two-dimensional pixel image is repeatedly split into homogeneous square

regions. Homogeneous regions in di�erent parts of the image can be identi�ed

in parallel.

Step 3: For every square region a corresponding vertex is created, and for each pair

of neighboring square regions an edge is created. The weight of the edge is
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taken to be equal to the di�erence between the minimum and maximumpixel

intensities in the two regions combined. If the weight exceeds the threshold

value T , then the edge is marked as inactive; otherwise it is active. Boundary

information is exchanged between the processors so that edges connected to

vertices in other processors are created.

Step 4: Each region connected to an active edge determines its neighboring region

that best satis�es the homogeneity criterion. In the case of a tie, one of the

neighboring regions is chosen at random. Two regions merge if their merge

choices are mutual. Several region pairs can merge at the same time without

con
icting with each other.

Step 5: The vertices and edges of the graph are updated to re
ect the new regions

in the image. Edges that do not satisfy the homogeneity criterion are deac-

tivated. Di�erent portions of the graph can be updated in parallel.

Step 6: If there still exist any active edges, then go to Step 4. Otherwise, continue

on to step 7.

Step 7: Output the results and terminate.

7.2.1 Data Structures

In the data parallel implementation, as in the message passing implementation,

only one- and two-dimensional arrays are used to represent the various data items

required. Array data structures are ideal for data parallel languages, as operations

can be applied simultaneously to many elements of an array.
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7.2.2 Data Distribution

In the data parallel implementations (CM Fortran and HPF), as in the message

passing implementation, the two-dimensional array of pixel intensities, PIXEL VAL,

is distributed among the processors using the (BLOCK, BLOCK) distribution

scheme (see Figure 7.3). In CM Fortran the (BLOCK, BLOCK) distribution

scheme is implemented by default by the compiler. In HPF the programmer must

explicitly provide directives to obtain such a distribution:

INTEGER, DIMENSION (N, N) :: PIXEL_VAL

!HPF$ PROCESSORS, DIMENSION (Q1, Q2) :: P2

!HPF$ DISTRIBUTE (BLOCK, BLOCK) ONTO P2 :: PIXEL_VAL

The one-dimensional arrays describing the edges and vertices of the graph

are distributed among the processors using the BLOCK distribution scheme. In

CM Fortran this scheme is implemented by default by the compiler. In HPF the

programmer must explicitly provide directives to obtain such a distribution:

INTEGER, ALLOCATABLE :: VERTEX_LABEL(:), VERTEX_MIN(:),

& VERTEX_MAX(:), VERTEX_MERGE(:), VERTEX_PARTNER(:),

& EDGE_VERTEX_1(:), EDGE_VERTEX_2(:), EDGE_MIN(:),

& EDGE_MAX(:), EDGE_ACTIVE(:)

!HPF$ PROCESSORS, DIMENSION (Q1 * Q2) :: P1

!HPF$ DISTRIBUTE (BLOCK) ONTO P1 :: VERTEX_LABEL

!HPF$ ALIGN WITH VERTEX_LABEL :: VERTEX_MIN, VERTEX_MAX,

& VERTEX_MERGE, VERTEX_PARTNER

!HPF$ DISTRIBUTE (BLOCK) ONTO P1 :: EDGE_VERTEX_1

!HPF$ ALIGN WITH EDGE_ACTIVE :: EDGE_VERTEX_1, EDGE_VERTEX_2,

& EDGE_MIN, EDGE_MAX
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Given P processors and a one-dimensional array of size M (where M is a

multiple of P ), the BLOCK distribution scheme divides the array such that each

(abstract) processor receives a contiguous block of the array of size M

P
. Although

this distribution divides the computational load more evenly among the processors,

case (c) mappings (see Figure 7.4) will generally arise and lead to increased com-

munication. Figure 7.7 illustrates BLOCK distribution of the graph in Figure 7.2

on two processors.
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Figure 7.7: Example of BLOCK Distribution
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7.2.3 Unstructured Communication

Communication is required whenever data items required for a computation reside

on di�erent processors. In the data parallel implementations, communication is

implicit and is managed by the compiler and the runtime system.

When indirection arrays are used with FORALL, data accesses are known only

at runtime, and the compiler generates calls to a runtime library that handles the

required communications. In region growing, indirection arrays are used at several

points in the computation, especially since edges are represented using two arrays

that index the vertex arrays. An example of a FORALL that uses indirection is

given below:

FORALL (I=1:M2, EDGE_ACTIVE(I))

& VERTEX_CAND(EDGE_VERTEX_1(I)) = .TRUE.

Besides FORALL, CM Fortran and HPF provide library procedures that per-

form certain communication functions. For example, HPF provides the MIN-

VAL SCATTER procedure that performs parallel reduction with minimum. The

following example illustrates the use of MINVAL SCATTER when regions select

the neighboring regions they wish to merge with:

VERTEX_KEY = MINVAL_SCATTER (KEY_2, VERTEX_KEY, EDGE_VERTEX_1,

& MASK = EDGE_ACTIVE)

In the above example, elements of the array KEY 2 selected by the mask

EDGE ACTIVE are scattered to positions of the array VERTEX KEY speci�ed

by the index array EDGE VERTEX 1. Each element of the result is assigned
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the minimum value of the corresponding element of Base and the elements of

EDGE VERTEX 1 scattered to that position.

HPF versions of the various subroutines used in region growing are listed in

Appendix A.

7.3 Complexity

Given an N � N pixel image, the complexity of region growing depends on the

number of processors used and the number of iterations required to �nd the regions

in the image. This number in turn depends on the shape and size of the regions.

Suppose the input image is of size N �N , and suppose that P processors are

used.

In both the data parallel and message passing implementations, the split stage

is applied only to the sub-image within each processor and does not require any

communication. Suppose the image is divided evenly among the P processors,

such that each processor contains a sub-image of size M �M , where M is equal

to
q

N2

P
. In the best case, when every pixel is a region by itself, only one split

iteration is required. In the worst case, when the whole sub-image within a node

processor is one homogeneous square region, log(M) split iterations are required.

The number of iterations needed to complete the merge stage of the algorithm

is bounded above by the maximum number of sub-regions that must be merged to

construct any single region in the image. If a region consists of r sub-regions, then

it will require at least log(r) merge iterations. In the worst case, when only one

pair of regions is merged in each iteration, it will require r � 1 merge iterations.

The total time for the merge stage depends on the number of regions in the
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image at the beginning and at the end of the merge stage. Let Ri and Rf denote

these two numbers, respectively. Suppose the number of regions is reduced by a

factor of k at every step in the merge stage (1 � k � 2). Then the number of

iterations required is logk
Ri

Rf
. The exact value of k depends on the input image and

on how ties are resolved. As the timings in Table I show, the random tie breaking

approach generally results in a greater value of k than the smallest (or largest) ID

approach.

The number of edges, E, and the number of regions, Ri, at the beginning of

the merge stage can be derived by Euler's formula [35]:

C +Ri � E = 2;

where C is the total number of corners of the square regions. It follows that

E = C +Ri � 2:

Since each region has at most four corners, we have

C � 4 �Ri:

From the above two equations, it follows that

Ri � E � 5�Ri;

which shows that the number of edges is linearly proportional to the number of

regions.

In the data parallel and message passing implementations, each merge step

of the algorithm requires many-to-many communication. The complexity of the

many-to-many communication is di�cult to analyze, since it depends on the num-

ber of messages sent by every processor, which in turn depends on the image.
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7.4 Performance

The message passing implementation (written in Fortran 77 plus CMMD) and the

data parallel implementation (written in CM Fortran) were executed on a 32-node

CM-5. Figures 7.8 and 7.9 show the various input images used. Performance

results are presented in the following two sections.
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Image 1 :

128 x 128  binary image 
composed of two nested regions

Image 2 :

128 x 128  grey scale image 
composed of seven regions

Image 3 :

128 x 128  grey scale image  
composed of 11 regions

Figure 7.8: Input Images 1 { 3
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composed of  4 regions 

256 x 256  grey scale image  
composed of seven regions

256 x 256  binary image 
composed of two nested regions

Image 4 :

Image 5 :

Image 6 :

256 x 256  binary image 

Figure 7.9: Input Images 4 { 6
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7.4.1 Comparison of Smallest-Label and Random

Approaches in Resolving Ties

Table 7.1 compares the smallest-label and random approaches in resolving ties

during the merge stage. The table presents the execution time and the number of

iterations required by the merge stage of the data parallel implementation (writ-

ten in CM Fortran) on the CM-5, using each of the two approaches. Invariably,

for all of the images the random approach in resolving ties proved to be faster

than the approach of selecting the region with the smallest label, as it required a

smaller number of iterations. Similar results are obtained for the message passing

implementation on the CM-5.

The number of merge iterations required to �nd the regions in the images is not

the same in all cases. This is due to the element of randomness that is introduced

in selecting a neighbor for merging. The random numbers generated a�ect the

actual merges that take place and hence the number of merge iterations required

to solve the problem.
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Table 7.1: Smallest-Label vs. Random Approach in Resolving Ties

CM Fortran Implementation on a 32-Node CM-5

Merge Stage Merge Stage

(Smallest-Label Approach) (Random Approach)

Time (sec) Iterations Time (sec) Iterations

Image 1: 334.948 290 33.013 19

Image 2: 151.670 153 31.615 20

Image 3: 1406.099 809 42.570 27

Image 4: 622.980 549 37.588 25

Image 5: 186.834 226 24.471 16

Image 6: 1754.254 1062 75.582 45

96



7.4.2 Comparison of the Data Parallel and Message Pass-

ing Implementations

Tables 7.2 { 7.7 compare the performance of the message passing and data parallel

implementations on the CM-5 when the random approach in resolving ties is used.

LP refers to the Linear Permutation communication scheme, while NS-BR refers

to the Non-Blocking Send, Blocking Receive communication scheme.

The bar chart of Figure 7.10 gives a visual comparison of the times taken by

the merge stage in the various implementations on the CM-5.
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Table 7.2: Image 1 Performance Data

No. of square regions found at end of split stage = 436
No. of regions found at end of merge stage = 2

Split Stage Merge Stage

(Random Tie Break)

Time (sec) Iterations Time (sec) Iterations

CM Fortan 0.361 4 33.013 19

F77 + CMMD (LP) 0.022 4 6.914 24

F77 + CMMD (NS-BR) 0.021 4 4.025 20

Table 7.3: Image 2 Performance Data

No. of square regions found at end of split stage = 193
No. of regions found at end of merge stage = 7

Split Stage Merge Stage

(Random Tie Break)

Time (sec) Iterations Time (sec) Iterations

CM Fortran 0.360 4 31.615 20

F77 + CMMD (LP) 0.022 4 9.236 35

F77 + CMMD (NS-BR) 0.021 4 6.441 35
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Table 7.4: Image 3 Performance Data

No. of square regions found at end of split stage = 1732
No. of regions found at end of merge stage = 11

Split Stage Merge Stage

(Random Tie Break)

Time (sec) Iterations Time (sec) Iterations

CM Fortran 0.361 4 42.570 27

F77 + CMMD (LP) 0.022 4 9.454 33

F77 + CMMD (NS-BR) 0.021 4 5.516 28

Table 7.5: Image 4 Performance Data

No. of square regions found at end of split stage = 823
No. of regions found at end of merge stage = 2

Split Stage Merge Stage

(Random Tie Break)

Time (sec) Iterations Time (sec) Iterations

CM Fortran 2.052 5 37.588 25

F77 + CMMD (LP) 0.097 5 16.512 37

F77 + CMMD (NS-BR) 0.097 5 10.942 29
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Table 7.6: Image 5 Performance Data

No. of square regions found at end of split stage = 298
No. of regions found at end of merge stage = 7

Split Stage Merge Stage

(Random Tie Break)

Time (sec) Iterations Time (sec) Iterations

CM Fortran 2.046 5 24.471 16

F77 + CMMD (LP) 0.099 5 14.388 35

F77 + CMMD (NS-BR) 0.098 5 6.640 35

Table 7.7: Image 6 Performance Data

No. of square regions found at end of split stage = 2248
No. of regions found at end of merge stage = 4

Split Stage Merge Stage

(Random Tie Break)

Time (sec) Iterations Time (sec) Iterations

CM Fortran 2.066 5 75.582 45

F77 + CMMD (LP) 0.098 5 12.192 36

F77 + CMMD (NS-BR) 0.098 5 7.236 38
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Figure 7.10: Execution Time of the Merge Stage on the CM-5 (32 Nodes)
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Chapter 8

Language and Runtime Support

for Hierarchical Clustering

In Chapters 6 and 7, we applied the multigraph-based paradigm for hierarchi-

cal clustering to the region growing problem and compared two implementations

of that problem on the CM-5: (a) a message passing implementation written

in Fortran 77 plus CMMD and (b) a data parallel implementation written in

CM Fortran.

The timing �gures in Tables 7.2 { 7.7 show that in both implementations most

of the execution time is spent in the merge stage of the program, where the graph

data structure is used. For example, in the case of Image 1, the merge stage in the

message passing implementation (using the Non-Blocking Send, Blocking Receive

(NS-BR) communication scheme) takes about 190 times longer to execute than

the split stage. That number is about 90 in the data parallel implementation.

The timing �gures also show that the message passing implementation runs

signi�cantly faster than the data parallel one. For example, in the case of Image 1,

the merge stage in the message passing implementation (using the Non-Blocking
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Send, Blocking Receive communication scheme) is 8 times faster than the merge

stage in the data parallel implementation. In the case of Image 6, the merge stage

in the message passing implementation is almost 10 times faster than the merge

stage in the data parallel implementation.

However, the data parallel implementation is easier to program than the mes-

sage passing one. In the message passing implementation the programmer must

explicitly specify synchronization, distribute the data, and manage data commu-

nication among the processors; while in the data parallel implementation the com-

piler and the runtime system insert synchronization, lay out the data, and provide

communication among the node processors. This is evident in a comparison of

the number of lines of source code in the two implementations: 2,525 lines in the

message passing implementation, versus 1,128 in the CM Fortran implementation.

The poor performance of the data parallel implementation in comparison to

the message passing one prompts us to ask the following questions:

1. What are the main causes of the poor performance of the data parallel im-

plementation?

2. What language and runtime support is needed for the e�cient execution

of region growing in particular, and hierarchical clustering applications in

general, on distributed memory machines?

In this chapter we examine the following issues as they relate to hierarchi-

cal clustering applications and propose enhancements to HPF that support the

execution of hierarchical clustering applications on distributed memory machines:

1. Data distribution

2. Data redistribution
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3. Data communication

4. Processors

5. Library procedures

6. Data structures

7. High-level routines for hierarchical clustering

8.1 Data Distribution

The aim of data distribution is to divide the data among the processors in such a

fashion that data communication is minimized and the computational load is as

balanced as possible.

In region growing, as in other hierarchical clustering applications, there are

two main sets of data that are manipulated by the program. The �rst is the

set of objects and their attributes that are input to the program. The second is

the graph data structure built by the program and used to compute the required

clustering. For example, in region growing there is the two-dimensional array

of pixel intensities that is input to the program, and there is the graph data

structure that is composed of one-dimensional vertex and edge arrays that model

the problem.

In region growing, as in other hierarchical clustering applications, the input

data are used only at the beginning of the program to build the graph modeling

the problem and at the end of the program to display the results. During most

of the execution time of the program the graph data structure is used. Thus it

is not worthwhile to spend much e�ort on distributing the input data to achieve
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computational load balance. Rather, it is more worthwhile to focus on distributing

the graph data structure.

8.1.1 Distributing the Input Data

In both the message passing and the data parallel implementations of region grow-

ing, the two-dimensional array of pixel intensities is distributed using the (BLOCK,

BLOCK) distribution scheme. In this scheme the two-dimensional array is di-

vided into contiguous blocks of equal size such that adjacent blocks in the image

are stored in adjacent processors in the processor grid. The (BLOCK, BLOCK)

scheme maintains locality of data accesses so that no communication is required

during the split stage, and only near-neighbor communication is required when

setting up the vertices and edges of the graph modeling the problem.

However, while the (BLOCK, BLOCK) distribution scheme maintains data

locality, it does not necessarily balance the computational load. A di�erent number

of square regions is generally associated with each block. Since the square regions

in the image are only known at runtime after the execution of the split stage, and

since the time taken by split stage is a small fraction of the overall time of the

program, it follows that the (BLOCK, BLOCK) distribution scheme is adequate.

8.1.2 Distributing the Graph Data Structure

A graph data structure is composed of a set of vertices and a set of edges connecting

these vertices. The edges may connect the vertices in any arbitrary fashion; the

only restriction is that an edge must connect exactly two distinct vertices. Most

\interactions" are between an edge and the two vertices that it connects. For

example, in region growing, one merge iteration requires a loop over all the active

105



edges so that each vertex of the graph can select the best neighbor to merge with.

When mapping such a graph data structure to a distributed memory machine,

the aim is to minimize inter-processor communication and balance the computa-

tional load. Communication is minimized by mapping vertices of the graph and

edges connecting these vertices to the same processor as much as possible, thus

minimizing the number of cross-edges between processors. The computational load

is balanced by mapping an approximately equal number of vertices and edges to

every processor.

Finding a data distribution that minimizes inter-processor communication and

balances the computational load is equivalent to solving the graph partitioning

problem. Garey and Johnson [46] provide the following de�nition of the decision

problem of graph partitioning:

INSTANCE: Graph G = (V;E), weight w(v) 2 Z
+ for each v 2 V , and

weight d(e) 2 Z
+ for each e 2 E, positive integers K and J .

QUESTION: Is there a partition of V into disjoint sets V1; V2; � � � ; Vk such

that
P
v2Vi

w(v) � K for 1 � i � m and such that if E0 � E is the set of

edges that have their endpoints in two di�erent sets Vi, then
P
e2E0 d(e) � J?

The graph partitioning problem is NP-complete. Instead of �nding an exact so-

lution to the problem, many approaches attempt to give a good but not necessarily

optimal solution. These approaches include methods based on the Kernighan and

Lin [66] graph partitioning algorithm, simulated annealing [67], recursive bisection

methods [88, 106], genetic algorithms [59, 72], and linear programming [76].

In hierarchical clustering, the shape of the graph data structure modeling an

application is not known in advance. Therefore, decisions about distributing the
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vertex and edge arrays have to be made at runtime. The arrays can be initially

declared to be distributed by some simple scheme such as BLOCK and then redis-

tributed by some more suitable scheme as soon as the data is available.

In the message passing implementation of region growing, the vertex and edge

arrays are distributed by BLOCK, but the number of elements stored in each

block is di�erent from one processor to another. This, in e�ect, is equivalent

to a GENERAL BLOCK distribution where possibly di�erent-sized blocks of the

arrays are assigned to di�erent processors. This scheme is used by the message

passing implementation because it yields only case (a) and case (b) mappings (see

Figure 7.4) of vertices and edges of the graph. While this schememay not distribute

the computational load evenly among the processors, it reduces the overhead of

communication.

In the data parallel implementation of region growing, on the other hand, the

vertex and edge arrays are distributed by BLOCK among the processors. Equal-

sized blocks of the arrays are assigned to every processor without paying attention

to the underlying graph structure. Although the BLOCK distribution scheme di-

vides the computational load more evenly among the processors, case (c) mappings

(see Figure 7.4) will generally arise and lead to increased communication.

The current version HPF supports only the BLOCK, CYCLIC, and BLOCK

CYCLIC distribution schemes. As the message passing implementation of re-

gion growing demonstrates, hierarchical clustering applications would bene�t from

extending HPF to support GENERAL BLOCK distributions. Figure 8.1 shows

example speci�cations of GENERAL BLOCK distributions in HPF. In the �gure,

the one-dimensional arrays VERT, EDGE1, and EDGE2 are distributed in a GEN-

ERAL BLOCK fashion onto an array of Q processors. The SIZE array S1 is used

107



to specify the size of each block of the array VERT in every processor. Since there

are Q processors, S1 is of size Q, and the sum of the elements of S1 must be equal

to N , the size of the array VERT. Similarly, array S2 is used to specify the size of

each block of the arrays EDGE1 and EDGE2 in every processor. Arrays S1 and

S2 themselves may be distributed in BLOCK fashion or may be replicated in each

processor if Q is small. The values of the elements of the SIZE arrays, S1 and S2,

can either be supplied by the programmer or computed by a partitioner.

INTEGER, DIMENSION(N) :: VERT

INTEGER, DIMENSION(M) :: EDGE1, EDGE2

INTEGER, DIMENSION(Q) :: S1, S2

!HPF$ PROCESSORS P(Q)

!HPF$ DISTRIBUTE (BLOCK IRREGULAR), SIZE (S1) :: VERT

!HPF$ DISTRIBUTE (BLOCK IRREGULAR), SIZE (S2) :: EDGE1, EDGE2

!HPF$ ALIGN EDGE2 (I) WITH EDGE1 (I)

...

Figure 8.1: Specifying a GENERAL BLOCK Distribution
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Besides allowing the GENERAL BLOCK distribution scheme, there are several

approaches to extending a data parallel language to support irregular problems.

We discuss a few of these approaches below and their applicability to hierarchical

clustering applications:

1. Mapping Arrays: A mapping array (or translation table) maps the ele-

ments of a data array to processors in the abstract processor array. Mapping

arrays can be used to specify arbitrary distributions that do not require

replication of array elements. Fortran D [40] and the CHAOS system [80]

provide mechanisms for using mapping arrays. Chapman et al. [27] propose

the use of mapping arrays in HPF. The values of the mapping array can be

supplied by the programmer or computed by a partitioner that the program

invokes. Figure 8.2 illustrates the use of a mapping array. In the �gure,

the mapping array, MAP VERT, is used to map the i'th element of VERT

to processor P(MAP VERT(i)). Similarly, the mapping array, MAP EDGE

is used to map the i'th element of array EDGE1 (or EDGE2) to processor

P(MAP EDGE(i)).

2. User-De�ned Distribution Functions (UDDFs): A UDDF [27] also

maps elements of a data array to an abstract processor array, but it is more

general than using a mapping array because it allows the replication of data

elements across processors. Syntactically, a UDDF is similar to a Fortran

function, but its activation results in the computation and execution of a

distribution. The keywords TARGET ARRAY and PROCESSOR ARRAY

are used to specify the array to be distributed and the abstract processor

array used in the distribution, respectively. A UDDF may include declara-

tions of local data structures and Fortran executable statements. It must
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contain at least one distribution statement that maps the elements of the

target array to the processors. Figure 8.3 illustrates the use of a user-de�ned

distribution function called EXAMPLE.

3. Reorder Arrays: The CHAOS system [81] proposes the use of reorder ar-

rays to embed an irregular mapping in a regular mapping (such as BLOCK),

thus eliminating the need for mapping arrays. A reorder array is used to

reorder the elements of a vertex array and renumber the elements of edge

arrays. Figure 8.4 illustrates this approach. Initially, arrays VERT, EDGE1,

EDGE2, and REORDER are distributed by BLOCK. Next, a graph par-

titioner is called to obtain the reorder array, REORDER, which is used to

reorder the elements of the vertex array, VERT, such that VERT(I) is moved

to the position REORDER(I). Then array REORDER is used to update

the values of the edge arrays, EDGE1 and EDGE2, such that EDGE1(I)

is modi�ed to REORDER(EDGE1(I)) and EDGE2(I) is modi�ed to RE-

ORDER(EDGE2(I)).

4. Value-Based Mappings: In a value-based mapping [55, 56], an array

X is distributed according to the values of its elements, rather than the in-

dices of its elements. Two elements of X that are close together in value

are assigned to the same processor. Figure 8.5 shows an example of us-

ing a value-based mapping. Initially, arrays VERT, EDGE1, EDGE2 are

distributed by BLOCK. After the values of array VERT are input, the ar-

ray is distributed according to the values stored in the array. That is, the

values of VERT determine the mapping of the elements of the array onto

the processors. Next, the edge arrays EDGE1 and EDGE2 are aligned by

value with VERT. That is, element EDGE1(I) is mapped to the same proces-
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sor to which VERT(EDGE1(I)) is mapped. Similarly, element EDGE2(I) is

mapped to the same processor to which VERT(EDGE2(I)) is mapped. Since

edges tend to connect vertices that are close to each other, it is expected that

EDGE1(I) and EDGE2(I) are mapped to the same processor. In case of a

con
ict, heuristics can be used to �nd the best mapping of the edge.
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INTEGER, DIMENSION(N) :: VERT, MAP_VERT

INTEGER, DIMENSION(M) :: EDGE1, EDGE2, MAP_EDGE

!HPF$ PROCESSORS P(Q)

C

!HPF$ DISTRIBUTE (BLOCK) :: VERT

!HPF$ ALIGN MAP_VERT (I) WITH VERT (I)

C

!HPF$ DISTRIBUTE (BLOCK) :: EDGE1

!HPF$ ALIGN EDGE2 (I) WITH EDGE1 (I)

!HPF$ ALIGN MAP_EDGE (I) WITH EDGE1 (I)

C Compute a new distribution for A and save it in the

C mapping array MAP. The i'th element of A is mapped to

C the processor whose number is stored in MAP(i), i.e.

C to processor P(MAP(i)).

CALL PARTITIONER (VERT, EDGE1, EDG2, MAP_VERT, MAP_EDGE)

...

C Redistribute VERT as specified by the mapping array MAP_VERT.

!HPF$ REDISTRIBUTE VERT (MAP (MAP_VERT))

...

C Redistribute EDGE1 and EDGE2 as specified by the mapping array

C MAP_EDGE.

!HPF$ REDISTRIBUTE EDGE1 (MAP (MAP_EDGE))

!HPF$ REDISTRIBUTE EDGE2 (MAP (MAP_EDGE))

...

Figure 8.2: An Example of a Mapping Array
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!HPF$ DFUNCTION EXAMPLE

!HPF$ TARGET_ARRAY A(:)

!HPF$ PROCESSOR_ARRAY P(:)

DO I = 1, SIZE(A)

DISTRIBUTE A(I) TO P( ..some function of I.. )

END DO

!HPF$ END DFUNCTION EXAMPLE

Figure 8.3: An Example of a User-De�ned Distribution Function (UDDF)
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INTEGER, DIMENSION(N) :: VERT

INTEGER, DIMENSION(M) :: EDGE1, EDGE2

INTEGER, DIMENSION(:) :: REORDER

!HPF$ PROCESSORS P(Q)

!HPF$ DISTRIBUTE (BLOCK) :: VERT

!HPF$ DISTRIBUTE (BLOCK) :: EDGE1

!HPF$ ALIGN EDGE2 (I) WITH EDGE1 (I)

C Call partitoner to obtain array REORDER.

CALL PARTITIONER (..., VERT, EDGE1, EDGE2, REORDER ...)

...

C Use array REORDER to reorder the vertices.

C In reordering, the value of VERT(I) is moved

C to the position REORDER(I) in the array.

CALL REORDER_VERTICES (REORDER, VERT)

C Use array REORDER to renumber the edge arrays. After

C renumbering is complete, EDGE1(I) is modified to

C REORDER(EDGE1(I)) and EDGE2(I) is modified to

C REORDER(EDGE2(I)).

CALL RENUMBER_EDGES (REORDER, EDGE1)

CALL RENUMBER_EDGES (REORDER, EDGE2)

...

Figure 8.4: An Example of a Reorder Array
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INTEGER, DIMENSION(N) :: VERT

INTEGER, DIMENSION(M) :: EDGE1, EDGE2

!HPF$ PROCESSORS P(Q)

!HPF$ DISTRIBUTE (BLOCK) :: VERT

!HPF$ DISTRIBUTE (BLOCK) :: EDGE1

!HPF$ ALIGN EDGE2 (I) WITH EDGE1 (I)

C Input the data describing the vertices and store the values

in array VERT.

CALL INPUT (VERT)

C Distribute VERT according to values stores in the array.

!HPF$ DISTRIBUTE_BY_VALUE VERT

C Distribute EDGE1 and EDGE2 according to the values stored

C in VERT.

!HPF$ REALIGN_BY_VALUE EDGE1 WITH VERT

!HPF$ REALIGN_BY_VALUE EDGE2 WITH VERT

...

Figure 8.5: An Example of a Value-Based Mapping
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The mapping-array and UDDF approaches su�er from the overhead of accessing

a translation table or computing a mapping function every time an element of a

distributed array is to be accessed. This cost may be somewhat reduced by re-using

communication schedules, but often this is not possible for hierarchical clustering

applications where the clusters change rapidly.

The reorder-array and value-based mapping approaches, on the other hand,

eliminate the need to access a translation table every time an element of a dis-

tributed is to be accessed, and are, therefore, more suitable for hierarchical cluster-

ing applications. The reorder-array approach would be identical to the value-based

mapping approach when the partitioner called to compute the REORDER array

returns a value-based reordering of VERT.

8.2 Data Redistribution

The graph modeling a hierarchical clustering application constantly evolves at run-

time. With each merge iteration, pairs of vertices merge into one larger vertex and

cause the graph to contract. As the merge stage progresses, the initial distribution

of the vertex and edge arrays will no longer be adequate for minimizing commu-

nication or for balancing the computational load. Dynamic redistribution of the

vertex and edge arrays among the processors will be needed.

Obviously, the redistribution of the arrays carries with it a communication

and computation overhead. The best algorithm to use and the ideal frequency of

redistribution depend on the input data.

When the changes in the graph in each merge iteration are small and isolated,

it is advantageous to use local methods such as incremental graph partitioning [76]

to redistribute the data. Local methods use only information obtained from a small
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number of neighboring processors to balance the load. For example, in the case

of a two-dimensional array of processors, every processor periodically compares its

load to that of its four neighbors and transfers computation if its load exceeds a

certain threshold.

On the other hand, when the graph changes rapidly because many pairs of

vertices merge together in each merge iteration, it may be advantageous to use

global methods that take longer to execute but produce better mappings. Ex-

amples of global methods include recursive graph bisection and recursive spectral

bisection [39].

In the case of region growing, the graph changed rapidly in all of the test

cases. For example, in the case of Image 1, the graph initially has 439 vertices that

diminish to 2 vertices after about 20 iterations. This implies that, on the average,

about 20 pairs of vertices merge in one merge iteration. In the case of Image 3,

this number is even greater. The graph initially has 1,732 vertices that diminish to

11 vertices after about 28 iterations and, on the average, about 60 pairs of vertices

merge per merge iteration.

HPF provides the REDISTRIBUTE and REALIGN directives for distributing

data at runtime. These directives can e�ectively be used for distributing the arrays

when combined with the facility to specify irregular distributions.

8.3 Unstructured Communication

In hierarchical clustering applications most \interactions" are between an edge and

the two vertices that it connects. However, the edge and the two vertices may lie in

relatively distant processors. Clustering applications therefore possess both local

as well as global features.
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We identify the following di�erent types of unstructured communication in the

hierarchical clustering paradigm:

1. Unstructured communication using FORALL with left-hand-side indirection

(values of the indirection array must be unique).

2. Unstructured communication using FORALL with right-hand-side indirec-

tion.

3. A combination of 1 and 2 above.

4. Parallel reduction using MINVAL SCATTER:

MINVAL SCATTER (ARRAY, BASE, INDX, MASK)

The elements of ARRAY selected by MASK are scattered to positions indi-

cated by an index array INDX. Each element of the result is assigned the

minimum value of the corresponding element of BASE and the elements of

ARRAY scattered to that position.

In the case of region growing, one merge iteration requires a loop over all the

active edges of the graph so that each vertex of the graph can select the best

neighbor to merge with. In this loop, edge arrays are used as indirection arrays

to access elements of the vertex arrays. Since the data stored in the edge arrays

is only known at runtime, it follows that an e�cient runtime system is needed to

carry out the required communications.

The following optimizations have led to reduced communication costs in the

message passing implementation of region growing:

1. Message aggregation. Sending a small number of large messages is less costly

than sending a large number of small messages.
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2. The use of an e�cient communication scheme. Of the two communica-

tion schemes investigated on the CM-5, Linear Permutation (LP) and Non-

Blocking Send, Blocking Receive (NS-BR), the latter is the faster one. In

the NS-BR scheme a node can pursue other computation until messages are

ready to be received, while in the LP scheme all the nodes must loop the

same number of times until all the required sends and receives are completed.

The e�ect of using an e�cient communication scheme is clearly illustrated in

the timings for Image 5. The merge stage of the message passing implemen-

tation took 14.388 seconds to execute when using LP, and only 6.64 seconds

when using NS-BR.

3. Maintaining locality of data accesses. Communication on distributed memory

machines is generally expensive relative to computation. Therefore, it is

important to reduce communication by placing data objects that \interact"

in the same processor as much as possible. As discussed in Section 8.1, the

graph in the message passing implementation was distributed so that data

locality was maintained.

Finally, we note that since the graph modeling a hierarchical clustering appli-

cation changes rapidly, re-using communication schedules is often not possible.

8.4 Library Procedures

A number of operations are commonly performed by hierarchical clustering appli-

cations. We divide these operations into the following �ve categories:

1. Fortran 90 elemental intrinsic functions
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2. Fortran 90 transformational intrinsic functions

3. Fortran 90 intrinsic subroutines

4. HPF library procedures

5. Other procedures

The last category, \Other procedures", refers to operations not provided by

Fortran 90 or HPF but that are nonetheless commonly used in hierarchical clus-

tering.

In the following sections we describe the operations in each of the �ve categories.

8.4.1 Fortran 90 Elemental Intrinsic Functions

The following Fortran 90 elemental intrinsic functions are used in region growing

and are useful for hierarchical clustering applications in general:

1. MIN: Returns the minimum of two or more arguments

2. MAX: Returns the maximum of two or more arguments

3. MOD: Returns the remainder of a division

4. LOG10: Returns the base-10 logarithm of a number of type real (used to

compute the number of decimal digits needed to represent a value)

5. NINT: Rounds a real value to the nearest integer

6. REAL: Converts an integer value to type real
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8.4.2 Fortran 90 Transformational Intrinsic Functions

The following Fortran 90 transformational intrinsic functions are used in region

growing and are useful for hierarchical clustering applications in general:

1. ANY: Determines whether any element a logical array has the value TRUE.

In region growing this function is used to determine whether any active edges

exist in the graph.

2. PACK: Packs the elements of an array into consecutive locations in a

one-dimensional array, under the control of a mask. In region growing, this

function is used to transfer data from the two-dimensional pixel arrays to

the one-dimensional vertex arrays. Also, this function is used to pack the

elements of an array immediately before sorting it.

3. UNPACK: Unpacks the elements of an array of rank one into an array,

under the control of a mask. In region growing this function is used at the

end of the program to transfer the cluster labels from a one-dimensional

vertex array to a two-dimensional pixel array.

4. COUNT: Counts the number of TRUE elements in a logical array along

a speci�ed dimension. In region growing this function is used to count the

number of active edges in the graph.

5. MAXVAL: Returns the maximum value in an array along a speci�ed

dimension, under the control of a mask. In region growing this function is

used to �nd the largest size of the square regions.
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8.4.3 Fortran 90 Intrinsic Subroutines

The following Fortran 90 intrinsic subroutines are used in region growing and other

hierarchical clustering applications when ties are broken at random:

1. RANDOM NUMBER: Returns an array of random numbers

2. RANDOM SEED: Restarts the pseudorandom number generator used by

RANDOM NUMBER

8.4.4 HPF Library Procedures

The following HPF library procedures are used in region growing and are useful

for hierarchical clustering applications in general:

1. COPY SCATTER: Parallel reduction. If several values are scattered to

the same array position, then an arbitrary one of these values is chosen and

assigned to that position. This function is used to transfer data from the

two-dimensional pixel arrays to the one-dimensional vertex arrays.

2. COUNT PREFIX: Computes a segmented COUNT scan along a speci�ed

dimension of a logical array. In region growing this function is used to assign

consecutive labels to the square regions found in the pixel array.

3. GRADE UP, GRADE DOWN: Returns a permutation of the indices

of an array, sorted by descending (ascending) array element values. This

permutation can be used to sort the elements of an array. In region growing

sort is used to identify duplicate values of an edge.

4. MINVAL SCATTER: Parallel reduction. If several values are scattered

to the same array position, then the minimum of these values is assigned to
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that position. In region growing this function is used during the merge stage

to determine which neighbor a region selects for merging.

8.4.5 Other Procedures

Other commonly used operations in hierarchical clustering that are not available

in Fortran 90 or HPF are: removing duplicate values, spreading-by-section, and

sorting.

Removing Duplicate Values

As the vertices of the graph modeling a clustering application merge, the edges of

the graph must be updated to re
ect the new relationships between the clusters.

In the process of updating the edges the programmer must check that no duplicate

edges occur. In the region growing example this is achieved as follows: First, the

values of the two vertices that comprise an edge are concatenated together into

one larger value so that an edge is represented by one composite value instead of

two. These composite values are then packed into contiguous array locations and

sorted. After the sort, pairs of consecutive elements are compared to check whether

their values are the same. Duplicate values are deactivated and removed from the

original arrays of edges. This procedure for removing duplicates is carried out at

the end of every merge iteration and can be time consuming. The availability of

a library procedure that allows us to identify duplicate values in an array would

make the task of programming easier and more e�cient.

The following is a possible interface to a library procedure called
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REMOVE DUPLICATE which returns a result of type logical.

REMOVE_DUPLICATE (ARRAY, MASK)

Arguments:

ARRAY Must be of type integer, real, or character.

MASK Must be of type logical and must have the same

shape as ARRAY.

Result:

The result is of type logical and is of the same shape as

ARRAY. Every value of ARRAY selected by MASK is selected

exactly once by the result array.

Examples:

A = (/ 1 1 1 1 1 /)

MASK = (/ T T T T T /)

REMOVE_DUPLICATE (A, MASK) is (/ T F F F F /)

A = (/ 1 3 4 1 4 5 3 4 2 /)

MASK = (/ T F T T T F T T T /)

REMOVE_DUPLICATE (A, MASK) is (/ T F T F F F T F T/)

Spreading-by-Section

Another operation used in hierarchical clustering applications where the input

data is represented in the form of an array is the \spread-by-section" operation.

In region growing, for example, this operation is used at the end of the merge stage

to label the pixels in the input image with the labels of the clusters to which they

belong. First, every representative of a square region in the image (the top-left

corner pixel) is assigned the label of the cluster to which it belongs, then that value

is spread to all other pixels in the square region.
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Figure 8.6 illustrates the spread-by-section operation. In part (a) of the �gure,

the shaded elements of the array are the elements whose values are to be spread.

Associated with each of these elements is the length of the spread along each

dimension, indicated by the arrows in the �gure. The result of spread-by-section is

shown in part (b) of the �gure; the shaded areas correspond to the elements whose

values have been updated after the spread.

HPF provides the COPY PREFIX library procedure that computes a seg-

mented copy scan along a dimension of the array. This procedure can be used to

achieve the \spread-by-section" result described above. However, COPY PREFIX

requires the use of logical segment arrays which must be constructed by the pro-

grammer. It also spreads values along one dimension of the array only, and there-

fore it must be called more than once to spread values along more than one di-

mension.

When the sizes of the sections are available, it would be advantageous to have

a fast library routine that can be called once to achieve \spread-by-section". The

following is a possible interface to a library procedure called

SPREAD BY SECTION that achieves the required operation:
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SPREAD_BY_SECTION (ARRAY, MASK, LENGTH1, ..., LENGTHn)

Arguments:

ARRAY May be of any type.

MASK Must be of type logical and must have the

same shape as ARRAY.

LENGTH1, ..., LENGTHn n arrays of type integer of the same

shape as ARRAY. The number of LENGTH

arguments must be equal to the rank

of ARRAY.

Result:

The result is of the same type and shape as ARRAY.

Every value of ARRAY selected by MASK is spread along

dimension i to the number of elements specified by the

corresponding element of.

Examples:

A = (/ 1 1 1 1 1 /)

MASK = (/ T T T T T /)

REMOVE_DUPLICATE (A, MASK) is (/ T F F F F /)

A = (/ 1 3 4 1 4 5 3 4 2 /)

MASK = (/ T F T T T F T T T /)

REMOVE_DUPLICATE (A, MASK) is (/ T F T F F F T F T/)
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(a) Array elements before spread; (b) Array elements after spread

Figure 8.6: An illustration of Spread-by-Section
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Sort

HPF provides the GRADE UP and GRADE DOWN library procedures that re-

turn a permutation of the indices of an array, sorted by ascending and descending

array element values, respectively. While a permutation of the indices of an array

is useful for sorting, it would be more convenient to have a library procedure that

actually sorts the elements of the array.

The following is a possible interface to a library procedure SORT UP that sorts,

in ascending order, elements of an array selected by mask. A similar interface can

be de�ned for SORT DOWN.

SORT_UP (ARRAY, MASK)

Arguments:

ARRAY May be of any type.

MASK Must be of type logical and must have the same

shape as ARRAY.

Result:

The result is of the same type and shape as ARRAY. The values

stored in the result array in positions selected by MASK are the

values of ARRAY selected by MASK and sorted in ascending order.

Examples:

A = (/ 8 7 6 3 2 1 /)

MASK = (/ T T T T T T /)

SORT_UP (A, MASK) is (/ 1 2 3 4 5 6 7 8/)

A = (/ 8 7 6 3 2 1 /)

MASK = (/ T F T F T F /)

SORT_UP (A, MASK) is (/ 2 7 6 3 8 1 /)
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8.5 Processors

Hierarchical clustering applications exhibit a dynamic behavior that starts with

a high degree of parallelism that very rapidly diminishes to a much lower degree

of parallelism. As the graph modeling the problem becomes smaller in size, the

initial number of processors assigned to the problem may no longer be required.

To reduce the overhead of communication and release unwanted resources, it may

be preferable to use a smaller number of physical processors to execute the later

iterations of the merge stage. This would require re-distributing the data in the

program onto a smaller number of physical processors.

In the case of CM Fortran on the CM-5, the program is automatically assigned

all the physical processors in the partition. In the case of HPF on the DEC Alpha

cluster, the programmer speci�es the number of physical processors using a com-

pilation 
ag, and this number cannot be changed while the program is executing.

It would be useful to provide in HPF the facility to change the number of physical

processors assigned to a program while the program is executing.

The following example illustrates the use of a new HPF directive, PHYSI-

CAL PROCESSORS, that allows the programmer to specify and modify the num-

ber of physical processors assigned to a program, from within the program itself.

As usual, the PROCESSORS directive speci�es the number of abstract processors.
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INTEGER, DIMENSION(1024), DYNAMIC :: A

!HPF$ PHYSICAL_PROCESSORS 32 ! 32 physical processors

!HPF$ PROCESSORS P(128) ! 128 abstract processors

!HPF$ DISTRIBUTE A (BLOCK) ONTO P

...

!HPF$ PHYSICAL_PROCESSORS 4 ! 4 physical processors

!HPF$ PROCESSORS P(16) ! 16 abstract processors

!HPF$ REDISTRIBUTE A (BLOCK) ONTO P

...

Besides the ability to re-distribute data onto a smaller number of physical

processors, it would also be useful to allow di�erent views of the same set of

abstract processors. In the current version of HPF, a one-dimensional array must

be distributed over a one-dimensional processor arrangement, and a d-dimensional

array must be distributed over a d-dimensional processor arrangement (d � 2).

However, it would be useful to relax this requirement and allow a one-dimensional

array to be distributed over a d-dimensional processor arrangement (d � 1). In

region growing, for example, it would be more \natural" to view the edge and

vertex arrays as distributed over the same two-dimensional processor arrangement

as the pixel image.

8.6 Data Structures

In the message passing and data parallel implementations of region growing, only

one-dimensional arrays are used to represent the graph structure. However, it

would be more natural to represent a graph data structure using a linked-list, as

follows:

130



Neighbors: Node 1 --> Node 2 --> Node 4 --> Node 5 --> o

Node 2 --> Node 1 --> o

Node 3 --> Node 4 --> o

Node 4 --> Node 1 --> Node 3 --> o

Node 5 --> Node 1 --> o

It would also be more natural to represent a hierarchy of clusterings using a

tree.

Although Fortran 90 and HPF allow the de�nition of derived types (data struc-

tures), the current version of HPF does not allow the distribution of individual

components of a derived type; it allows only the distribution of arrays of derived

types. Extending HPF with the facility to distribute derived types would allow

programmers to use more sophisticated data structures and write programs at a

more abstract level.

8.7 Library Routines for Hierarchical

Clustering

In Section 5.3 we identi�ed a number of high-level routines that implement the

various steps of the hierarchical clustering paradigm:

1. CLUSTER

2. PREPROCESS

3. CONSTRUCT GRAPH
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(a) INITIALIZE VERTEX ARRAYS

(b) INITIALIZE EDGE ARRAYS

4. MERGE VERTICES

(a) MATCH VERTICES

(b) UPDATE GRAPH

i. UPDATE VERTICES

ii. UPDATE EDGES

5. UPDATE LABELS

To facilitate the task of programming, it would be useful to provide skeletons

that can be customized for particular clustering applications. Moreover, it would

be useful to provide a library of procedures for implementing particular clustering

applications, including procedures for various graph operations.
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Chapter 9

Summary and Conclusions

This dissertation examined particular types of loosely synchronous irregular prob-

lems known as hierarchical clustering applications, and identi�ed the language

and runtime support needed for their e�cient execution on distributed memory

machines.

The steps in identifying the language and runtime support were as follows:

Starting with a de�nition of hierarchical clustering, a graph-theoretic formula-

tion of hierarchical clustering using the multigraph concept was presented. This

formulation was used to describe a programming paradigm for hierarchical cluster-

ing. The paradigm was applied to a representative clustering application, region

growing, and was implemented on a distributed memory machine in both the data

parallel and message passing models. The following three implementations of re-

gion growing were examined:

1. A message passing implementation written in Fortran 77 plus CMMD, exe-

cuted on a 32-node CM-5

2. A data parallel implementation written in CM Fortran language, executed
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on a 32-node CM-5

3. A data parallel implementation written in High Performance Fortran, exe-

cuted on a cluster of DEC Alpha workstations

A comparison of the message passing and data parallel implementations on

the CM-5 reveals that the former is signi�cantly faster than the latter, although

the computations carried out in both implementations were identical. The main

di�erences between the two implementations are related to the following:

1. The distribution of the graph modeling the problem among the processing

nodes.

2. The schemes or algorithms used to carry out the required inter-processor

communication at runtime.

A close examination of the parallel implementations led us to identify the lan-

guage and runtime support needed for the execution of clustering applications on

distributed memory machines. The �ndings can be summarized as follows:

1. Data distribution: E�cient distribution schemes are needed to distribute

the graph modeling a hierarchical clustering application. Suitable distribu-

tion schemes include: GENERAL BLOCK, use of reorder arrays, and value-

based mappings.

2. Data redistribution: Since the graph modeling a hierarchical clustering

application constantly contracts at runtime, dynamic redistribution of data

may be necessary. Local load balancing algorithms would be suitable for

graphs that evolve slowly, while global algorithms would suitable for graphs

that evolve rapidly.
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3. Data communication: Clustering applications have irregular data access

patterns that are known only at runtime, and thus e�orts should be focused

on developing e�cient routines for unstructured communication. The use

of message aggregation and non-blocking send have been shown to improve

performance.

4. Library Procedures: Hierarchical clustering applications use a variety of

Fortran 90 and HPF library procedures, but they employ some commonly

used operations that are not provided by the Fortran 90 or HPF libraries.

We proposed that the following library procedures be made available: RE-

MOVE DUPLICATE, SPREAD BY SECTION, and SORT.

5. Processors: As the graph modeling a hierarchical clustering application be-

comes smaller in size, the initial number of processors assigned to the problem

may no longer be required. We proposed that a directive for specifying the

number of physical processors be included in HPF.

6. Data Structures: Extending HPF with the facility to distribute derived

types would allow programmers to use more sophisticated data structures

and write programs at a more abstract level.

7. High-Level Routines: We identi�ed a number of high-level routines that

implement the various steps of the hierarchical clustering paradigm. To fa-

cilitate the task of programming, it would be useful to provide skeletons that

can be customized for particular clustering applications. Moreover, it would

be useful to provide a library of procedures for implementing particular clus-

tering applications, including procedures for various graph operations.

The above �ndings emphasize the need for the following:
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� High-level programming parallel languages that hide the details of the archi-

tecture from the programmer, thereby facilitating the task of parallel pro-

gramming.

� Advanced compiler technology that can detect parallelism and produce an

e�cient object code.

� Runtime support libraries that can be used by compilers for distributed mem-

ory machines.

� High-level parallel programming paradigms the programmer can use as build-

ing blocks in solving certain types of problems.

� A library of (graph) procedures for implementing particular clustering appli-

cations.

We hope that this work will motivate the High Performance Fortran Forum,

as well as designers and developers of other parallel languages, to consider the

support for irregular problems identi�ed in this study.
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Appendix A

Clustering Subroutines in HPF

A.1 Main Program

C ---------------------------------------------------------------------

C This subroutine clusters a two-dimensional array of pixel intensities

C into homogeneous regions.

C

C The input arguments are:

C

C N : Dimension of the array of pixel intensities

C THRESHOLD : The threshold value

C PIXEL_VAL : Two-dimensional array of pixel intensities

C

C The output argument is:

C

C CLUSTER_LABEL : Two-dimensional array of cluster labels.

C The array has the same shape as PIXEL_VAL.

C ---------------------------------------------------------------------

SUBROUTINE CLUSTER (N, THRESHOLD, PIXEL_VAL, CLUSTER_LABEL)

INTEGER N, M1, M2, THRESHOLD

INTEGER, DIMENSION (N, N) :: PIXEL_VAL, CLUSTER_LABEL,

& CLUSTER_SIZE, CLUSTER_MIN, CLUSTER_MAX

LOGICAL, DIMENSION (N, N) :: CLUSTER_REP
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INTEGER, ALLOCATABLE :: VERTEX_LABEL(:), VERTEX_MIN(:),

& VERTEX_MAX(:), VERTEX_MERGE(:), VERTEX_PARTNER(:),

& EDGE_VERTEX_1(:), EDGE_VERTEX_2(:), EDGE_MIN(:),

& EDGE_MAX(:), EDGE_ACTIVE(:)

!HPF$ DISTRIBUTE (BLOCK, BLOCK) :: PIXEL_VAL

!HPF$ ALIGN WITH PIXEL_VAL :: CLUSTER_LABEL, CLUSTER_REP,

& CLUSTER_SIZE, CLUSTER_MIN, CLUSTER_MAX

!HPF$ DISTRIBUTE (BLOCK) :: VERTEX_LABEL

!HPF$ ALIGN WITH VERTEX_LABEL :: VERTEX_MIN, VERTEX_MAX, VERTEX_MERGE,

& VERTEX_PARTNER

!HPF$ DISTRIBUTE (BLOCK) :: EDGE_ACTIVE

!HPF$ ALIGN WITH EDGE_ACTIVE :: EDGE_VERTEX_1, EDGE_VERTEX_2, EDGE_MIN,

& EDGE_MAX

C Split stage.

CALL SPLIT (N, THRESHOLD, PIXEL_VAL, CLUSTER_REP, CLUSTER_LABEL,

& CLUSTER_SIZE, CLUSTER_MIN, CLUSTER_MAX)

C Allocate vertex and edge arrays.

M1 = COUNT(CLUSTER_REP)

M2 = M1 * 5

ALLOCATE (VERTEX_LABEL(M1), VERTEX_MIN(M1), VERTEX_MAX(M1),

& VERTEX_MERGE(M1), VERTEX_PARTNER(M1))

ALLOCATE (EDGE_VERTEX_1(M2), EDGE_VERTEX_2(M1), EDGE_MIN(M2),

& EDGE_MAX(M2), EDGE_ACTIVE(M2))

C Form graph modeling problem.

CALL INITIALIZE_VERTEX_ARRAYS (CLUSTER_LABEL, CLUSTER_MIN,

& CLUSTER_MAX, CLUSTER_REP, VERTEX_LABEL, VERTEX_MIN,

& VERTEX_MAX)

CALL INITIALIZE_EDGE_ARRAYS (N, THRESHOLD,

& CLUSTER_LABEL, CLUSTER_SIZE, CLUSTER_REP,

& VERTEX_MIN, VERTEX_MAX, EDGE_VERTEX_1,

& EDGE_VERTEX_2, EDGE_MIN, EDGE_MAX, EDGE_ACTIVE)
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C Merge Stage.

CALL MERGE_VERTICES (N, THRESHOLD, VERTEX_LABEL, VERTEX_MIN,

& VERTEX_MAX, EDGE_VERTEX_1, EDGE_VERTEX_2, EDGE_MIN,

& EDGE_MAX, EDGE_ACTIVE, VERTEX_MERGE, VERTEX_PARTNER)

C Update two-dimensional array CLUSTER_LABEL.

CALL UPDATE_LABELS (CLUSTER_REP, CLUSTER_LABEL, VERTEX_LABEL)

C Deallocate vertex and edge arrays.

DEALLOCATE (VERTEX_LABEL, VERTEX_MIN, VERTEX_MAX,

& VERTEX_MERGE, VERTEX_PARTNER)

DEALLOCATE (EDGE_VERTEX_1, EDGE_VERTEX_2, EDGE_MIN,

& EDGE_MAX, EDGE_ACTIVE)

RETURN

END SUBROUTINE CLUSTER
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A.2 Split

C --------------------------------------------------------------------

C This subroutine splits a two-dimensional array of pixel intensities

C into initial clusters (square regions) that satisfy the homogeneity

C requirement.

C

C The input arguments are:

C

C N : Dimension of the array of pixel intensities

C THRESHOLD : The threshold value

C PIXEL_VAL : Two-dimensional array of pixel intensities

C

C The output arguments are:

C

C CLUSTER_REP : Indicates whether a pixel is a square region

C representative

C CLUSTER_LABEL : Two-dimensional array of cluster labels

C assigned to square regions. The array has

C the same shape as PIXEL_VAL

C CLUSTER_SIZE : Sizes of square regions (number of pixels per

C row or column of region)

C CLUSTER_MIN : Minimum pixel values in square regions

C CLUSTER_MAX : Maximum pixel values in square regions

C --------------------------------------------------------------------

SUBROUTINE SPLIT (N, THRESHOLD, PIXEL_VAL, CLUSTER_REP,

& CLUSTER_LABEL, CLUSTER_SIZE, CLUSTER_MIN, CLUSTER_MAX)

INTEGER N, THRESHOLD, I, J, K, K1, K2, MAX_SIZE

INTEGER, DIMENSION (:, :) :: PIXEL_VAL, CLUSTER_LABEL,

& CLUSTER_SIZE, CLUSTER_MIN, CLUSTER_MAX

LOGICAL, DIMENSION (:, :) :: CLUSTER_REP

INTEGER, DIMENSION (N, N) :: NEW_MIN, NEW_MAX

LOGICAL, DIMENSION (N, N) :: FLAG_1, FLAG_2

!HPF$ INHERIT :: PIXEL_VAL, CLUSTER_REP, CLUSTER_LABEL, CLUSTER_SIZE,

& CLUSTER_MIN, CLUSTER_MAX

!HPF$ ALIGN WITH PIXEL_VAL :: NEW_MIN, NEW_MAX, FLAG_1, FLAG_2

C Initialize.

CLUSTER_REP = .TRUE.
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CLUSTER_LABEL = 1

CLUSTER_SIZE = 1

CLUSTER_MIN = PIXEL_VAL

CLUSTER_MAX = PIXEL_VAL

K = 1

C Loop to perform splitting.

DO WHILE ((K < N) .AND. (COUNT (FLAG_2) > 0))

FLAG_1 = .FALSE.

FLAG_2 = .FALSE.

NEW_MIN = 0

NEW_MAX = 0

FORALL (I=1:N-K, J=1:N-K,

& (MOD (I, K * 2) == 1) .AND.

& (MOD (J, K * 2) == 1))

& FLAG_1(I, J) =

& CLUSTER_REP(I, J) .AND.

& CLUSTER_REP(I, J+K) .AND.

& CLUSTER_REP(I+K, J) .AND.

& CLUSTER_REP(I+K, J+K) .AND.

& (CLUSTER_SIZE(I, J) == K) .AND.

& (CLUSTER_SIZE(I, J+K) == K) .AND.

& (CLUSTER_SIZE(I+K, J) == K) .AND.

& (CLUSTER_SIZE(I+K, J+K) == K)

FORALL (I=1:N-K, J=1:N-K, FLAG_1(I,J))

NEW_MIN(I,J) = MIN (CLUSTER_MIN(I, J), CLUSTER_MIN(I, J+K),

& CLUSTER_MIN(I+K, J), CLUSTER_MIN(I+K, J+K))

NEW_MAX(I,J) = MAX (CLUSTER_MAX(I, J), CLUSTER_MAX(I, J+K),

& CLUSTER_MAX(I+K, J), CLUSTER_MAX(I+K, J+K))

END FORALL

FORALL (I=1:N-K, J=1:N-K)

& FLAG_2(I, J) =

& FLAG_1(I, J) .AND.

& ((NEW_MAX(I, J) - NEW_MIN(I,J) <= THRESHOLD))

FORALL (I=1:N-K, J=1:N-K, FLAG_2(I, J))

CLUSTER_SIZE(I, J) = K * 2

CLUSTER_MIN(I, J) = NEW_MIN(I, J)

CLUSTER_MAX(I, J) = NEW_MAX(I, J)

CLUSTER_REP(I, J+K) = .FALSE.

CLUSTER_REP(I+K, J) = .FALSE.
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CLUSTER_REP(I+K, J+K) = .FALSE.

END FORALL

K = K * 2

END DO

C Assign a unique label to each representative of a square region.

CLUSTER_LABEL = COUNT_PREFIX (CLUSTER_REP)

C Assign label of representative of a square region to all pixels

C within that region.

MAX_SIZE = MAXVAL (CLUSTER_SIZE) - 1

DO K1 = 0, MAX_SIZE

DO K2 = 0, MAX_SIZE

FORALL (I=1:N-K1, J=1:N-K2,

& CLUSTER_REP(I,J) .AND.

& (K1 < CLUSTER_SIZE(I,J)) .AND.

& (K2 < CLUSTER_SIZE(I,J)))

& CLUSTER_LABEL(I + K1, J + K2) = CLUSTER_LABEL(I,J)

END DO

END DO

RETURN

END SUBROUTINE SPLIT
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A.3 Initialize Vertex Arrays

C ---------------------------------------------------------------------

C This subroutine initializes the one-dimensional arrays that describe

C the vertices of the graph modeling the problem.

C

C The input arguments are:

C

C CLUSTER_LABEL : Two-dimensional array of cluster labels

C assigned to square regions.

C CLUSTER_MIN : Minimum pixel values in square regions

C CLUSTER_MAX : Maximum pixel values in square regions

C CLUSTER_REP : Indicates whether a pixel is a square region

C representative

C

C The ouput arguments are:

C

C VERTEX_LABEL : Labels assigned to vertices indicating to

C which clusters they belong

C VERTEX_MIN : Minimum pixel values in clusters represented

C by vertices.

C VERTEX_MAX : Maximum pixel values in clusters represented

C by vertices.

C ---------------------------------------------------------------------

SUBROUTINE INITIALIZE_VERTEX_ARRAYS (CLUSTER_LABEL,

& CLUSTER_MIN, CLUSTER_MAX, CLUSTER_REP, VERTEX_LABEL,

& VERTEX_MIN, VERTEX_MAX)

INTEGER I

INTEGER, DIMENSION (:, :) :: CLUSTER_LABEL, CLUSTER_MIN,

& CLUSTER_MAX

LOGICAL, DIMENSION (:, :) :: CLUSTER_REP

INTEGER, DIMENSION (:) :: VERTEX_LABEL, VERTEX_MIN, VERTEX_MAX

INTEGER, DIMENSION (SIZE(VERTEX_LABEL)) :: ZERO

!HPF$ INHERIT :: CLUSTER_LABEL, CLUSTER_MIN, CLUSTER_MAX,

& CLUSTER_REP, VERTEX_LABEL, VERTEX_MIN, VERTEX_MAX

!HPF$ ALIGN ZERO WITH VERTEX_LABEL

C Initialize.

ZERO = 0
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C Assign values to vertex arrays.

FORALL (I=1:SIZE(VERTEX_LABEL)) VERTEX_LABEL(I) = I

VERTEX_MIN = COPY_SCATTER (CLUSTER_MIN, ZERO, CLUSTER_LABEL,

& MASK = CLUSTER_REP)

VERTEX_MAX = COPY_SCATTER (CLUSTER_MAX, ZERO, CLUSTER_LABEL,

& MASK = CLUSTER_REP)

RETURN

END SUBROUTINE INITIALIZE_VERTEX_ARRAYS
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A.4 Initialize Edge Arrays

C ---------------------------------------------------------------------

C This subroutine initializes the one-dimensional arrays that describe

C the edges of the graph modeling the problem.

C

C The input arguments are:

C

C N : Dimension of the array of pixel intensities

C THRESHOLD : The threshold value

C CLUSTER_LABEL : Two-dimensional array of cluster labels

C assigned to square regions.

C CLUSTER_SIZE : Sizes of square regions (number of pixels per

C row or column of region)

C CLUSTER_REP : Indicates whether a pixel is a square region

C representative

C VERTEX_MIN : Minimum pixel values in clusters represented

C by vertices.

C VERTEX_MAX : Maximum pixel values in clusters represented

C by vertices.

C

C The ouput arguments are:

C

C EDGE_VERTEX_1 : Index of first vertex of an edge

C EDGE_VERTEX_2 : Index of second vertex of an edge

C EDGE_MIN : Minimum pixel value in first and second

C vertices of edge combined

C EDGE_MAX : Maximum pixel value in first and second

C vertices of edge combined

C EDGE_ACTIVE : Indicates whether an edge is active

C ---------------------------------------------------------------------

SUBROUTINE INITIALIZE_EDGE_ARRAYS (N, THRESHOLD,

& CLUSTER_LABEL, CLUSTER_SIZE, CLUSTER_REP,

& VERTEX_MIN, VERTEX_MAX, EDGE_VERTEX_1,

& EDGE_VERTEX_2, EDGE_MIN, EDGE_MAX, EDGE_ACTIVE)

INTEGER N, THRESHOLD, M, N_NUM, S_NUM, E_NUM, W_NUM,

& L_BOUND, U_BOUND, I, J

INTEGER, DIMENSION (:, :) :: CLUSTER_LABEL, CLUSTER_SIZE

LOGICAL, DIMENSION (:, :) :: CLUSTER_REP
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INTEGER, DIMENSION (:) :: VERTEX_MIN, VERTEX_MAX,

& EDGE_VERTEX_1, EDGE_VERTEX_2, EDGE_MIN, EDGE_MAX

LOGICAL, DIMENSION (:) :: EDGE_ACTIVE

INTEGER, DIMENSION (N, N) :: N_NEIGHBOR, S_NEIGHBOR, E_NEIGHBOR,

& W_NEIGHBOR, TEMP

LOGICAL, DIMENSION (N, N) :: N_FLAG, S_FLAG, E_FLAG, W_FLAG

!HPF$ INHERIT :: CLUSTER_LABEL, CLUSTER_SIZE, CLUSTER_REP,

& VERTEX_MIN, VERTEX_MAX, EDGE_VERTEX_1, EDGE_VERTEX_2,

& EDGE_MIN, EDGE_MAX, EDGE_ACTIVE

!HPF$ ALIGN WITH CLUSTER_LABEL :: N_NEIGHBOR, S_NEIGHBOR,

& E_NEIGHBOR, W_NEIGHBOR, TEMP, N_FLAG, S_FLAG, E_FLAG,

& W_FLAG

C Initialize.

EDGE_VERTEX_1 = 0

EDGE_VERTEX_2 = 0

EDGE_MIN = 0

EDGE_MAX = 0

EDGE_ACTIVE = .FALSE.

N_NEIGHBOR = 0

S_NEIGHBOR = 0

E_NEIGHBOR = 0

W_NEIGHBOR = 0

FORALL (I=1:N, J=1:N) N_FLAG(I,J) =

& CLUSTER_REP(I,J) .AND. (I .NE. 1)

FORALL (I=1:N, J=1:N) S_FLAG(I,J) =

& CLUSTER_REP(I,J) .AND. ((I + CLUSTER_SIZE(I,J)) .LE. N)

FORALL (I=1:N, J=1:N) E_FLAG(I,J) =

& CLUSTER_REP(I,J) .AND. ((J + CLUSTER_SIZE(I,J)) .LE. N)

FORALL (I=1:N, J=1:N) W_FLAG(I,J) =

& CLUSTER_REP(I,J) .AND. (J .NE. 1)

N_NUM = COUNT (N_Flag)

S_NUM = COUNT (S_Flag)

E_NUM = COUNT (E_Flag)

W_NUM = COUNT (W_Flag)

C Find North, South, East, and West neighbors of every homogeneous

C square region.
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forall (I=1:N, J=1:N, N_FLAG(I,J))

& N_NEIGHBOR(I,J) = CLUSTER_LABEL(I-1, J)

forall (I=1:N, J=1:N, S_FLAG(I,J))

& S_NEIGHBOR(I,J) = CLUSTER_LABEL(I + CLUSTER_SIZE(I,J), J)

forall (I=1:N, J=1:N, E_FLAG(I,J))

& E_NEIGHBOR(I,J) = CLUSTER_LABEL(I, J + CLUSTER_SIZE(I,J))

forall (I=1:N, J=1:N, W_FLAG(I,J))

& W_NEIGHBOR(I,J) = CLUSTER_LABEL(I, J-1)

C Store neighbor data in EDGE_VERTEX_1 and EDGE_VERTEX_2.

L_BOUND = 1

U_BOUND = N_NUM

TEMP = MIN(CLUSTER_LABEL, N_NEIGHBOR)

EDGE_VERTEX_1(L_BOUND:U_BOUND) = PACK (TEMP, N_FLAG)

TEMP = MAX(CLUSTER_LABEL, N_NEIGHBOR)

EDGE_VERTEX_2(L_BOUND:U_BOUND) = PACK (TEMP, N_FLAG)

L_BOUND = U_BOUND + 1

U_BOUND = L_BOUND + S_NUM - 1

TEMP = MIN(CLUSTER_LABEL, S_NEIGHBOR)

EDGE_VERTEX_1(L_BOUND:U_BOUND) = PACK (TEMP, S_FLAG)

TEMP = MAX(CLUSTER_LABEL, S_NEIGHBOR)

EDGE_VERTEX_2(L_BOUND:U_BOUND) = PACK (TEMP, S_FLAG)

L_BOUND = U_BOUND + 1

U_BOUND = L_BOUND + E_NUM - 1

TEMP = MIN(CLUSTER_LABEL, E_NEIGHBOR)

EDGE_VERTEX_1(L_BOUND:U_BOUND) = PACK (TEMP, E_FLAG)

TEMP = MAX(CLUSTER_LABEL, E_NEIGHBOR)

EDGE_VERTEX_2(L_BOUND:U_BOUND) = PACK (TEMP, E_FLAG)

L_BOUND = U_BOUND + 1

U_BOUND = L_BOUND + W_NUM - 1

TEMP = MIN(CLUSTER_LABEL, W_NEIGHBOR)

EDGE_VERTEX_1(L_BOUND:U_BOUND) = PACK (TEMP, W_FLAG)

TEMP = MAX(CLUSTER_LABEL, W_NEIGHBOR)

EDGE_VERTEX_2(L_BOUND:U_BOUND) = PACK (TEMP, W_FLAG)

C Update EDGE_ACTIVE.

FORALL (I=1:U_BOUND) EDGE_ACTIVE(I) = .TRUE.

C Identify duplicate edges and set them inactive.
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CALL DEACTIVATE_DUPLICATE_EDGES (N, EDGE_VERTEX_1, EDGE_VERTEX_2,

& EDGE_ACTIVE)

C Update EDGE_MIN, EDGE_MAX, and EDGE_ACTIVE.

CALL UPDATE_EDGES_MIN_MAX (THRESHOLD, VERTEX_MIN, VERTEX_MAX,

& EDGE_VERTEX_1, EDGE_VERTEX_2, EDGE_MIN, EDGE_MAX, EDGE_ACTIVE)

RETURN

END SUBROUTINE INITIALIZE_EDGE_ARRAYS

162



A.5 Merge

C ------------------------------------------------------------------

C This subroutine implements the merge stage of hierarchical

C clustering.

C

C The input arguments are:

C

C N : Dimension of the array of pixel intensities

C THRESHOLD : The threshold value

C

C The input/output arguments are:

C

C VERTEX_LABEL : Labels assigned to vertices indicating to

C which clusters they belong

C VERTEX_MIN : Minimum pixel values in clusters represented

C by vertices.

C VERTEX_MAX : Maximum pixel values in clusters represented

C by vertices.

C EDGE_VERTEX_1 : Index of first vertex of an edge

C EDGE_VERTEX_2 : Index of second vertex of an edge

C EDGE_MIN : Minimum pixel value in first and second

C vertices of edge combined

C EDGE_MAX : Maximum pixel value in first and second

C vertices of edge combined

C EDGE_ACTIVE : Indicates whether an edge is active

C ------------------------------------------------------------------

SUBROUTINE MERGE_VERTICES (N, THRESHOLD, VERTEX_LABEL,

& VERTEX_MIN, VERTEX_MAX, EDGE_VERTEX_1, EDGE_VERTEX_2,

& EDGE_MIN, EDGE_MAX, EDGE_ACTIVE)

INTEGER N, THRESHOLD, M1, M2, NUM_CLUSTERS, NEW_NUM_CLUSTERS,

& TRIAL

INTEGER, DIMENSION (:) :: VERTEX_LABEL, VERTEX_MIN, VERTEX_MAX,

& EDGE_VERTEX_1, EDGE_VERTEX_2, EDGE_MIN, EDGE_MAX

LOGICAL, DIMENSION (:) :: EDGE_ACTIVE

LOGICAL, DIMENSION (SIZE (VERTEX_LABEL)) :: VERTEX_MERGE

INTEGER, DIMENSION (SIZE (VERTEX_LABEL)) :: VERTEX_PARTNER

!HPF$ INHERIT :: VERTEX_LABEL, VERTEX_MIN, VERTEX_MAX,

& EDGE_VERTEX_1, EDGE_VERTEX_2, EDGE_MIN, EDGE_MAX, EDGE_ACTIVE

!HPF$ ALIGN WITH VERTEX_LABEL :: VERTEX_MERGE, VERTEX_PARTNER
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C Initialize.

M1 = SIZE (VERTEX_LABEL)

M2 = SIZE (EDGE_ACTIVE)

TRIAL = 0

C Loop to perform merge stage.

DO WHILE (COUNT (EDGE_ACTIVE) .NE. 0)

C Match vertices.

IF (TRIAL == 5) THEN

CALL MATCH_VERTICES (.FALSE., N, EDGE_VERTEX_1,

& EDGE_VERTEX_2, EDGE_MIN, EDGE_MAX, EDGE_ACTIVE,

& VERTEX_MERGE, VERTEX_PARTNER)

TRIAL = 0

ELSE

CALL MATCH_VERTICES (.TRUE., N, EDGE_VERTEX_1,

& EDGE_VERTEX_2, EDGE_MIN, EDGE_MAX, EDGE_ACTIVE,

& VERTEX_MERGE, VERTEX_PARTNER)

END IF

C Update vertices.

CALL UPDATE_VERTICES (VERTEX_MIN, VERTEX_MAX, VERTEX_LABEL,

& VERTEX_MERGE, VERTEX_PARTNER)

C Update edges.

CALL UPDATE_EDGES (N, THRESHOLD, VERTEX_MIN, VERTEX_MAX,

& VERTEX_MERGE, VERTEX_PARTNER, EDGE_VERTEX_1,

& EDGE_VERTEX_2, EDGE_MIN, EDGE_MAX, EDGE_ACTIVE)

C Find number of clusters determined so far and compare to

C previous number of clusters.

NEW_NUM_CLUSTERS = NUMBER_OF_CLUSTERS (VERTEX_CLUSTER)

IF (NEW_NUM_CLUSTERS == NUM_CLUSTERS) THEN

TRIAL = TRIAL + 1

ELSE

TRIAL = 0

END IF

NUM_CLUSTERS = NEW_NUM_CLUSTERS

END DO

RETURN

END SUBROUTINE MERGE_VERTICES
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A.6 Match

C ------------------------------------------------------------------

C This subroutine determines which vertices of the graph will

C actually merge.

C

C The input arguments are:

C

C RANDOM : Indicates how ties are to be resolved:

C RANDOM = .TRUE. indicates that ties are to be

C resolved by selecting a neighbor at random;

C RANDOM = .FALSE. indicates that ties are to be

C resolved by selecting the neighbor with the

C smallest label

C N : Dimension of the array of pixel intensities

C EDGE_VERTEX_1 : Index of first vertex of an edge

C EDGE_VERTEX_2 : Index of second vertex of an edge

C EDGE_MIN : Minimum pixel value in first and second

C vertices of edge combined

C EDGE_MAX : Maximum pixel value in first and second

C vertices of edge combined

C EDGE_ACTIVE : Indicates whether an edge is active

C

C The output arguments are:

C

C VERTEX_MERGE : Indicates whether a vertex will actually

C merge with another

C VERTEX_PARTNER : Merge partner of a vertex

C ------------------------------------------------------------------

SUBROUTINE MATCH_VERTICES (RANDOM, N, EDGE_VERTEX_1,

& EDGE_VERTEX_2, EDGE_MIN, EDGE_MAX, EDGE_ACTIVE, VERTEX_MERGE,

& VERTEX_PARTNER)

INTEGER N, M1, M2, SHIFT_1, SHIFT_2, I

LOGICAL RANDOM

INTEGER, DIMENSION (:) :: EDGE_VERTEX_1, EDGE_VERTEX_2, EDGE_MIN,

& EDGE_MAX, VERTEX_PARTNER

LOGICAL, DIMENSION (:) :: EDGE_ACTIVE, VERTEX_MERGE

INTEGER, DIMENSION (SIZE(EDGE_ACTIVE)):: KEY_1, KEY_2, RANGE,

& RANDOM_NUM

REAL, DIMENSION (SIZE(EDGE_ACTIVE)) :: REAL_RANDOM_NUM

INTEGER, DIMENSION (SIZE (VERTEX_MERGE)) :: VERTEX_KEY
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LOGICAL, DIMENSION (SIZE (VERTEX_MERGE)) :: VERTEX_CAND

!HPF$ INHERIT :: EDGE_VERTEX_1, EDGE_VERTEX_2, EDGE_MIN, EDGE_MAX,

& EDGE_ACTIVE, VERTEX_MERGE, VERTEX_PARTNER

!HPF$ ALIGN WITH VERTEX_MERGE :: VERTEX_CAND, VERTEX_KEY

!HPF$ ALIGN WITH EDGE_ACTIVE :: KEY_1, KEY_2, RANGE, REAL_RANDOM_NUM,

& RANDOM_NUM

C Initialize.

M1 = SIZE (VERTEX_MERGE)

M2 = SIZE (EDGE_ACTIVE)

VERTEX_MERGE = .FALSE.

VERTEX_CAND = .FALSE.

VERTEX_PARTNER = 0

VERTEX_KEY = 0

RANGE = 0

SHIFT_1 = 10 ** (NINT (LOG10 (REAL (N * N))) + 1)

SHIFT_2 = SHIFT_1 * 100

FORALL (I=1:M2, EDGE_ACTIVE(I))

& RANGE(I) = EDGE_MAX(I) - EDGE_MIN(I)

CALL RANDOM_NUMBER (REAL_RANDOM_NUM)

RANDOM_NUM = INT (REAL_RANDOM_NUM * 100)

C Loop over active edges and pack information about vertices

C into KEY_1 and KEY_2.

IF (RANDOM) THEN

FORALL (I=1:M2, EDGE_ACTIVE(I))

& KEY_1(I) = (RANGE(I) * SHIFT_2) +

& (RANDOM_NUM(I) * SHIFT_1) +

& EDGE_VERTEX_1(I)

FORALL (I=1:M2, EDGE_ACTIVE(I))

& KEY_2(I) = (RANGE(I) * SHIFT_2) +

& (RANDOM_NUM(I) * SHIFT_1) +

& EDGE_VERTEX_2(I)

ELSE

FORALL (I=1:M2, EDGE_ACTIVE(I))

& KEY_1(I) = (RANGE(I) * SHIFT_1) + EDGE_VERTEX_1(I)

FORALL (I=1:M2, EDGE_ACTIVE(I))

& KEY_2(I) = (RANGE(I) * SHIFT_1) + EDGE_VERTEX_2(I)

END IF

C Initialize VERTEX_KEY to some big number that is larger than any
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C element of KEY_1 or KEY_2.

VERTEX_KEY = 1 ! Some big number

C Scatter elements of KEY_2 selected by EDGE_ACTIVE to positions of

C VERTEX_KEY indicated by EDGE_VERTEX_1. Each element of the result

C will be assigned the minimum value of the existing element

C of VERTEX_KEY and elements of KEY_2 scattered to that position.

VERTEX_KEY = MINVAL_SCATTER (KEY_2, VERTEX_KEY, EDGE_VERTEX_1,

& MASK = EDGE_ACTIVE)

C Scatter elements of KEY_1 selected by edge_active to positions of

C VERTEX_key indicated by edge_VERTEX_2. Each element of the result

C will be assigned the minimum value of the existing element

C of VERTEX_KEY and elements of KEY_1 scattered to that position.

VERTEX_KEY = MINVAL_SCATTER (KEY_1, VERTEX_KEY, EDGE_VERTEX_2,

& MASK = EDGE_ACTIVE)

C Update VERTEX_CAND.

FORALL (I=1:M2, EDGE_ACTIVE(I))

& VERTEX_CAND(EDGE_VERTEX_1(I)) = .TRUE.

FORALL (I=1:M2, EDGE_ACTIVE(I))

& VERTEX_CAND(EDGE_VERTEX_2(I)) = .TRUE.

C Extract from VERTEX_KEY labels of vertices that are selected for

C merging. Store labels in VERTEX_PARTNER.

FORALL (I=1:M1, VERTEX_CAND(I))

& VERTEX_PARTNER(I) = MOD (VERTEX_KEY(I), SHIFT_1)

C Update VERTEX_MERGE to indicate which vertices will actually merge.

C These are pairs of vertices that select each other for merging.

FORALL (I=1:M1, VERTEX_CAND(I))

& VERTEX_MERGE(I) = (VERTEX_PARTNER(VERTEX_PARTNER(I)) == I)

RETURN

END SUBROUTINE MATCH_VERTICES

167



A.7 Update Vertices

C ----------------------------------------------------------

C This subroutine updates the vertices of the graph after a

C merge iteration.

C

C The input arguments are:

C

C N : Dimension of the array of pixel intensities

C VERTEX_LABEL : Labels assigned to vertices indicating to

C which clusters they belong

C VERTEX_MERGE : Indicates whether a vertex will actually

C merge with another

C by vertices

C VERTEX_PARTNER : Merge partner of a vertex

C

C The input/output arguments are:

C

C VERTEX_MIN : Minimum pixel values in clusters represented

C by vertices

C VERTEX_MAX : Maximum pixel values in clusters represented

C by vertices

C ----------------------------------------------------------

SUBROUTINE UPDATE_VERTICES (VERTEX_MIN, VERTEX_MAX,

& VERTEX_LABEL, VERTEX_MERGE, VERTEX_PARTNER)

INTEGER M, I

INTEGER, DIMENSION (:) :: VERTEX_MIN, VERTEX_MAX, VERTEX_LABEL,

& VERTEX_PARTNER

LOGICAL, DIMENSION (:) :: VERTEX_MERGE

LOGICAL, DIMENSION (SIZE (VERTEX_MERGE)) ::SMALLER

!HPF$ INHERIT :: VERTEX_MIN, VERTEX_MAX, VERTEX_LABEL, VERTEX_MERGE,

& VERTEX_PARTNER

!HPF$ ALIGN WITH VERTEX_LABEL :: SMALLER

C Initialize.

M = SIZE (VERTEX_MERGE)

FORALL (I=1:M)

& SMALLER(I) = VERTEX_MERGE(I) .AND. (I < VERTEX_PARTNER(I))
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C Update cluster label of vertex with larger index so that

C it belongs to vertex with smaller index.

FORALL (I=1:M, SMALLER(I))

& VERTEX_LABEL(VERTEX_PARTNER(I)) = I

C Update VERTEX_MIN and VERTEX_MAX for vertices with smaller index.

FORALL (I=1:M, SMALLER(I)) VERTEX_MIN(I) =

& MIN (VERTEX_MIN(I), VERTEX_MIN(VERTEX_PARTNER(I)))

FORALL (I=1:M, SMALLER(I)) VERTEX_MAX(I) =

& MAX (VERTEX_MAX(I), VERTEX_MAX(VERTEX_PARTNER(I)))

RETURN

END SUBROUTINE UPDATE_VERTICES
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A.8 Update Edges

C ----------------------------------------------------------

C This subroutine updates edges of the graph after a merge

C iteration.

C

C The input arguments are:

C

C N : Dimension of the array of pixel intensities

C THRESHOLD : The threshold value

C VERTEX_MIN : Minimum pixel values in clusters represented

C VERTEX_MAX : Maximum pixel values in clusters represented

C by vertices

C VERTEX_MERGE : Indicates whether a vertex will actually

C merge with another

C VERTEX_PARTNER : Merge partner of a vertex

C

C The input/output arguments are:

C

C EDGE_VERTEX_1 : Index of first vertex of an edge

C EDGE_VERTEX_2 : Index of second vertex of an edge

C EDGE_MIN : Minimum pixel value in first and second

C vertices of edge combined

C EDGE_MAX : Maximum pixel value in first and second

C vertices of edge combined

C EDGE_ACTIVE : Indicates whether an edge is active

C ----------------------------------------------------------

SUBROUTINE UPDATE_EDGES (N, THRESHOLD, VERTEX_MIN, VERTEX_MAX,

& VERTEX_MERGE, VERTEX_PARTNER, EDGE_VERTEX_1, EDGE_VERTEX_2,

& EDGE_MIN, EDGE_MAX, EDGE_ACTIVE)

INTEGER N, THRESHOLD, M, I

INTEGER, DIMENSION (:) :: VERTEX_MIN, VERTEX_MAX, VERTEX_PARTNER,

& EDGE_VERTEX_1, EDGE_VERTEX_2, EDGE_MIN, EDGE_MAX

LOGICAL, DIMENSION (:) :: VERTEX_MERGE, EDGE_ACTIVE

INTEGER, DIMENSION (SIZE(EDGE_ACTIVE)) :: PARTNER_VERTEX_1,

& PARTNER_VERTEX_2, TEMP

LOGICAL, DIMENSION (SIZE(EDGE_ACTIVE)) :: MERGE_1, MERGE_2

!HPF$ INHERIT VERTEX_MIN, VERTEX_MAX, VERTEX_MERGE, VERTEX_PARTNER,

& EDGE_VERTEX_1, EDGE_VERTEX_2, EDGE_MIN, EDGE_MAX, EDGE_ACTIVE
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!HPF$ ALIGN WITH EDGE_ACTIVE :: MERGE_1, MERGE_2, PARTNER_VERTEX_1,

& PARTNER_VERTEX_2, TEMP

C Initialize.

M = SIZE (EDGE_ACTIVE)

MERGE_1 = .FALSE.

MERGE_2 = .FALSE.

PARTNER_VERTEX_1 = 0

PARTNER_VERTEX_2 = 0

TEMP = 0

FORALL(I=1:M, EDGE_ACTIVE(I))

& MERGE_1(I) = VERTEX_MERGE(EDGE_VERTEX_1(I))

FORALL(I=1:M, EDGE_ACTIVE(I))

& MERGE_2(I) = VERTEX_MERGE(EDGE_VERTEX_2(I))

FORALL(I=1:M, MERGE_1(I))

& PARTNER_VERTEX_1(I) = VERTEX_PARTNER(EDGE_VERTEX_1(I))

FORALL(I=1:M, MERGE_2(I))

& PARTNER_VERTEX_2(I) = VERTEX_PARTNER(EDGE_VERTEX_2(I))

C Update vertices of edges after merge.

C Case 1: Two vertices joined by an edge are merged together.

WHERE (MERGE_1 .AND. MERGE_2 .AND.

& (PARTNER_VERTEX_1 == EDGE_VERTEX_2))

& EDGE_ACTIVE = .FALSE.

C Case 2: First vertex of edge is merged with some vertex

C other than second vertex of that edge.

WHERE (MERGE_1 .AND.

& (.NOT. (MERGE_2 .AND. (PARTNER_VERTEX_1 == EDGE_VERTEX_2))))

& EDGE_VERTEX_1 = MIN (EDGE_VERTEX_1, PARTNER_VERTEX_1)

C Case 3: Second vertex of edge is merged with some vertex

C other than first vertex of that edge.

WHERE (MERGE_2 .AND.

& (.NOT. (MERGE_1 .AND. (PARTNER_VERTEX_1 == EDGE_VERTEX_2))))

& EDGE_VERTEX_2 = MIN (EDGE_VERTEX_2, PARTNER_VERTEX_2)

C Arrange data in EDGE_VERTEX_1 and EDGE_VERTEX_2 such that

C EDGE_VERTEX_1(I) <= EDGE_VERTEX_2(I).

FORALL(I=1:M, EDGE_ACTIVE(I))

& TEMP(I) = MIN (EDGE_VERTEX_1(I), EDGE_VERTEX_2(I))

FORALL(I=1:M, EDGE_ACTIVE(I))
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& EDGE_VERTEX_2(I) = MAX (EDGE_VERTEX_1(I), EDGE_VERTEX_2(I))

FORALL(I=1:M, EDGE_ACTIVE(I))

& EDGE_VERTEX_1(I) = TEMP(I)

C Identify duplicate edges and set them inactive.

CALL DEACTIVATE_DUPLICATE_EDGES (N, EDGE_VERTEX_1, EDGE_VERTEX_2,

& EDGE_ACTIVE)

C Update EDGE_MIN and EDGE_MAX.

CALL UPDATE_EDGES_MIN_MAX (THRESHOLD, VERTEX_MIN, VERTEX_MAX,

& EDGE_VERTEX_1, EDGE_VERTEX_2, EDGE_MIN, EDGE_MAX, EDGE_ACTIVE)

RETURN

END SUBROUTINE UPDATE_EDGES
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A.9 Update Minimum andMaximumValues As-

sociated with Edges

C -------------------------------------------------------------------

C This subroutine updates the minimum and maximum pixel values for

C the edges. Edges between regions that exceed threshold are set

C inactive.

C

C The input arguments are:

C

C THRESHOLD : The threshold value

C VERTEX_MIN : Minimum pixel values in clusters represented

C by vertices.

C VERTEX_MAX : Maximum pixel values in clusters represented

C by vertices.

C

C The input/output arguments are:

C

C EDGE_VERTEX_1 : Index of first vertex of an edge

C EDGE_VERTEX_2 : Index of second vertex of an edge

C EDGE_MIN : Minimum pixel value in first and second

C vertices of edge combined

C EDGE_MAX : Maximum pixel value in first and second

C vertices of edge combined

C EDGE_ACTIVE : Indicates whether an edge is active

C -------------------------------------------------------------------

SUBROUTINE UPDATE_EDGES_MIN_MAX (THRESHOLD, VERTEX_MIN,

& VERTEX_MAX, EDGE_VERTEX_1, EDGE_VERTEX_2, EDGE_MIN,

& EDGE_MAX, EDGE_ACTIVE)

INTEGER THRESHOLD, M, I

INTEGER, DIMENSION (:) :: VERTEX_MIN, VERTEX_MAX,

& EDGE_VERTEX_1, EDGE_VERTEX_2, EDGE_MIN, EDGE_MAX

LOGICAL, DIMENSION (:) :: EDGE_ACTIVE

!HPF$ INHERIT :: VERTEX_MIN, VERTEX_MAX, EDGE_VERTEX_1,

& EDGE_VERTEX_2, EDGE_MIN, EDGE_MAX, EDGE_ACTIVE

C Initialize:

M = SIZE (EDGE_ACTIVE)
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C Update EDGE_MIN for each edge to be the minimum pixel value

C of first and second vertices of edge combined.

FORALL (I=1:M, EDGE_ACTIVE(I))

& EDGE_MIN(I) = MIN (VERTEX_MIN(EDGE_VERTEX_1(I)),

& VERTEX_MIN(EDGE_VERTEX_2(I)))

C Update EDGE_MAX for each edge to be the maximum pixel value

C of first and second vertices of edge combined.

FORALL (I=1:M, EDGE_ACTIVE(I))

& EDGE_MAX(I) = MAX (VERTEX_MAX(EDGE_VERTEX_1(I)),

& VERTEX_MAX(EDGE_VERTEX_2(I)))

C Set edges that exceed threshold inactive.

FORALL (I=1:M,

& EDGE_ACTIVE(I) .AND.

& (EDGE_MAX(I) - EDGE_MIN(I)) .GT. THRESHOLD)

& EDGE_ACTIVE(I) = .FALSE.

RETURN

END SUBROUTINE UPDATE_EDGES_MIN_MAX
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A.10 Deactivate Duplicate Edges

C ------------------------------------------------------------------

C This subroutine identifies duplicate edges and sets them inactive.

C

C The input arguments are:

C

C N : Dimension of the array of pixel intensities

C EDGE_VERTEX_1 : Index of first vertex of an edge

C EDGE_VERTEX_2 : Index of second vertex of an edge

C

C The input/output argument is:

C

C EDGE_ACTIVE : Indicates whether an edge is active

C ------------------------------------------------------------------

SUBROUTINE DEACTIVATE_DUPLICATE_EDGES (N, EDGE_VERTEX_1,

& EDGE_VERTEX_2, EDGE_ACTIVE)

INTEGER N, M, NUM, SHIFT, I

INTEGER, DIMENSION (:) :: EDGE_VERTEX_1, EDGE_VERTEX_2

LOGICAL, DIMENSION (:) :: EDGE_ACTIVE

INTEGER, DIMENSION (SIZE (EDGE_ACTIVE)) :: KEY, PACKED_KEY,

& SORTED_KEY, INDEX, PACKED_INDEX, SORTED_INDEX,

& BIG_NUM, PERMUTATION

LOGICAL, DIMENSION (SIZE (EDGE_ACTIVE)) :: DUPLICATE

!HPF$ INHERIT :: EDGE_VERTEX_1, EDGE_VERTEX_2, EDGE_ACTIVE

!HPF$ ALIGN WITH EDGE_ACTIVE :: KEY, PACKED_KEY, SORTED_KEY,

& INDEX, PACKED_INDEX, SORTED_INDEX, BIG_NUM, PERMUTATION

C Initialize.

M = SIZE (EDGE_ACTIVE)

NUM = COUNT (EDGE_ACTIVE)

KEY = 0

PACKED_KEY = 0

SORTED_KEY = 0

FORALL (I=1:M) INDEX(I) = I
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PACKED_INDEX = 0

SORTED_INDEX = 0

PERMUTATION = 0

DUPLICATE = .FALSE.

SHIFT = 10 ** (NINT (LOG10 (REAL (N * N))) + 1)

C BIG_NUM is any big number larger than any value assigned to KEY

BIG_NUM = (N * SHIFT) + N + 1

C Pack EDGE_VERTEX_1(I) and EDGE_VERTEX_2(I) into one number (KEY)

C to be used as key in sorting.

WHERE (EDGE_ACTIVE)

& KEY = (EDGE_VERTEX_1 * SHIFT) + EDGE_VERTEX_2

C Pack elements to be sorted and their indices.

PACKED_KEY = PACK (KEY, EDGE_ACTIVE, BIG_NUM)

PACKED_INDEX = PACK (INDEX, EDGE_ACTIVE, BIG_NUM)

PERMUTATION = GRADE_UP (PACKED_KEY, DIM=1)

FORALL (I=1:NUM) SORTED_KEY(PERMUTATION(I)) = PACKED_KEY(I)

FORALL (I=1:NUM) SORTED_INDEX(PERMUTATION(I)) = PACKED_INDEX(I)

C Identify duplicate edges and set them inactive.

FORALL (I=1:NUM-1, (SORTED_KEY(I) == SORTED_KEY(I+1)))

& DUPLICATE(I) = .TRUE.

FORALL (I=1:NUM, DUPLICATE(I))

& EDGE_ACTIVE(SORTED_INDEX(I)) = .FALSE.

RETURN

END SUBROUTINE DEACTIVATE_DUPLICATE_EDGES
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A.11 Assign Cluster Labels

C ----------------------------------------------------------------

C This subroutine updates the cluster labels in the two-dimensional

C image by the labels assigned to the vertices of the graph.

C

C The input arguments are:

C

C CLUSTER_REP : Indicates whether a pixel is a square region

C representative

C VERTEX_LABEL : Labels assigned to vertices indicating to

C which clusters they belong

C

C The input/output argument is:

C

C CLUSTER_LABEL : Two-dimensional array of cluster labels

C assigned to square regions.

C ----------------------------------------------------------------

Subroutine UPDATE_LABELS (CLUSTER_REP, CLUSTER_LABEL,

& VERTEX_LABEL)

INTEGER I, M

INTEGER, DIMENSION (:, :) :: CLUSTER_LABEL

LOGICAL, DIMENSION (:, :) :: CLUSTER_REP

INTEGER, DIMENSION (:) :: VERTEX_LABEL

INTEGER, DIMENSION (SIZE(VERTEX_LABEL)) :: OLD_VERTEX_LABEL,

& LABEL

LOGICAL, DIMENSION (SIZE(VERTEX_LABEL)) :: FLAG

!HPF$ INHERIT :: CLUSTER_LABEL, CLUSTER_REP, VERTEX_LABEL

!HPF$ ALIGN WITH CLUSTER_REP :: FLAG

!HPF$ ALIGN WITH VERTEX_LABEL :: OLD_VERTEX_LABEL, LABEL

C Initialize.

M = SIZE (VERTEX_LABEL)

OLD_VERTEX_LABEL = 0

FLAG = .TRUE.

C Determine cluster label to which each graph vertex (square region)

C belongs.
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DO WHILE (COUNT(FLAG) .GT. 0)

FORALL (I=1: M)

& LABEL(I) = VERTEX_LABEL(VERTEX_LABEL(I))

OLD_VERTEX_LABEL = VERTEX_LABEL

VERTEX_LABEL = LABEL

FORALL (I=1:M)

& FLAG(I) = OLD_VERTEX_LABEL(I) == VERTEX_LABEL(I)

END DO

C Transfer cluster labels to two-dimensional image.

CLUSTER_LABEL = UNPACK (VERTEX_LABEL, CLUSTER_REP, -1)

RETURN

END ! UPDATE_LABELS
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