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Abstract

Multidimensional binary search tree (abbreviated k-d tree) is a popular data structure for the

organization and manipulation of spatial data. The data structure is useful in several applications

including graph partitioning, hierarchical applications such as molecular dynamics and n-body

simulations, and databases. In this paper, we study e�cient parallel construction of k-d trees on

coarse-grained distributed memory parallel computers. We present several algorithms for parallel

k-d tree construction and analyze them theoretically and experimentally. We have implemented

our algorithms on the CM-5 and report on the experimental results.



1 Multidimensional Binary Search Trees

Consider a set of n points in k dimensional space. Let d1; d2; : : : ; dk denote the k dimensions. If

we �nd the median coordinate of all the points along dimension d1, we can partition the points

into two approximately equal sized sets - one set containing all the points whose coordinates along

dimension d1 are less than or equal to this median and a second set containing all the points

whose coordinates along dimension d1 are greater than the median. Each of these two sets is again

partitioned using the same process except that the median of each set along dimension d2 is used.

The partitioning is continued using dimensions d1; d2; : : : ; dk in that order until each resulting set

contains one point. If all the dimensions are exhausted before completely partitioning the data, we

\wrap around" and reuse the dimensions again starting with d1. An example of such a partition

for a two-dimensional data set containing 8 points is shown in Figure 1.

The process of organizing spatial data in the above manner is naturally represented by a binary

tree. The root of the tree corresponds to the set containing all the n points. Each internal node

corresponds to a set of points and the two subsets obtained by partitioning this set are represented

by its children. The same dimension is used for partitioning the set of each internal node at the

same level of the binary tree. For all nodes at level i of the tree (de�ning the root to be at level

0), dimension d(i mod k)+1 is used. The resulting tree is called a multidimensional binary search

tree (abbreviated k-d tree), �rst introduced by J.L. Bentley [3]. The k-d tree corresponding to the

partitioning in Figure 1 is shown in Figure 2.

The above process of construction always produces a balanced k-d tree. Although k-d tree is

not necessarily a balanced data structure, accessing and manipulating k-d trees is more e�cient

on balanced trees. It is di�cult to keep the tree balanced if insertions and deletions of points are

allowed. However, if all the data is known in advance, it is easy to construct a balanced tree using

the above process. Also, it is not necessary that dimensions be used in some particular order or

that the same dimension be used for all nodes at the same level of the tree. A common variation

is to use the dimension with the largest span, de�ned to be the di�erence between maximum and

minimum coordinates of all the points along a given dimension. Another variation is to use internal

nodes to store points. With this, one of the points corresponding to the median coordinate is stored

in the node and the other points are split into two sets. Such a tree where all the nodes store a

point each is called a homogeneous tree. k-d trees where only the leaves are used to store data are

called non-homogeneous trees.

In this paper, we focus on e�cient parallel construction of balanced, non-homogeneous k-d

trees on coarse-grained distributed memory parallel computers. Other variations can be easily

implemented with minor changes in our algorithms without signi�cantly a�ecting their running

time. A coarse-grained parallel computer consists of several relatively powerful processors connected

by an interconnection network. Most of the commercially available parallel computers belong to
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Figure 1: Recursive data partitioning of a two-dimensional data set.
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Figure 2: The k-d tree corresponding to the partitioning of data in Figure 1.
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this category. Instead of making speci�c assumptions about the network connecting processors, we

describe our algorithms in terms of some basic communication primitives. The running time of our

algorithms on a speci�c interconnection network can be easily derived by substituting the running

times of the communication primitives. We provide such an analysis for hypercubes and meshes.

The rest of the paper is organized as follows: In Section 2, we outline several applications

that use k-d trees. In Section 3, we describe our model of parallel computation and outline some

primitives used by our algorithms. Section 4 describes four di�erent algorithms for the construction

of k-d trees and analyze their running times on hypercubes and meshes. We have implemented

our algorithms on the CM-5 and each algorithm is accompanied by experimental results. Section 5

presents an algorithm with reduced data movement and Section 6 concludes the paper.

2 Applications

Several applications require the construction of k-d trees only up to a speci�ed number of levels.

To motivate the need for parallel construction of k-d trees and to see why partial construction may

be useful, we describe the usefulness of k-d trees for the following applications.

Graph Partitioning A large number of scienti�c and engineering applications involving iterative

methods can be represented by computational graphs with nodes representing tasks to be performed

in each iteration and edges representing communication between tasks from one iteration to the

next. Parallelizing such applications requires graph partitioning such that the partitions have

equal computational load and communication is minimized. Computational graphs derived from

many applications have nodes corresponding to points in two or three dimensional space with

interactions limited to points that are physically proximate. Examples of such applications include

�nite element methods and PDE solvers. For such graphs, partitioning is often accomplished by

recursive coordinate bisection [5]. Recursive coordinate bisection is another name for the process

of splitting data that we used to construct k-d trees.

Let p be the number of processors to which the computational graph is to be distributed. Hence,

we are interested in partitioning the graph into p partitions. For this application, we are interested

in computing the �rst log p1 levels of the k-d tree. The p sets corresponding to the internal nodes

at level log p give the desired graph partition.

Hierarchical Applications In hierarchical applications, we study the evolution of a system of n

mutually interacting objects where the strength of interaction between two objects decreases with

increasing distance between them. For example, the n-body problem is to study the evolution of a

1Throughout this paper log refers to log2
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system of n particles under the in
uence of mutual gravitational forces. To reduce the O(n2) work

involved in computing all pairwise interactions, a clustering scheme is imposed on the objects and

the interaction between two clusters su�ciently far from each other is approximated by treating

the clusters as individual objects. For this purpose, a clustering scheme that groups physically

proximate objects is required. The k-d tree o�ers such a clustering scheme.

Once the number of objects in a cluster falls below a constant s, the interactions are computed

directly. Hence, the k-d tree is built up to dlog n
s e levels.

Databases A database is a collection of records with each record containing k key �elds and

other data �elds that are never used to access data. We can represent each such record by a point

in k-dimensional space by assigning a dimension to each key �eld and specifying a mapping from

key values to coordinates. The records can then be organized using the k-d tree representation of

the resulting spatial data [2].

Since databases typically consist of large numbers of records, the records are stored on secondary

storage devices. In such a situation, non-homogeneous trees o�er the advantage that entire records

do not have to be read into main memory to make branching decisions at internal nodes when only

one key value is required. Since disk accesses dominate database query times, a node is partitioned

only if all the records corresponding to that node do not �t in one disk sector. The number of

records, r, that can �t in one disk sector depends on the size of the disk sector and the size of the

individual records. The k-d tree is built up to a su�cient number of levels such that each leaf has

� r records and the parent of any leaf corresponds to a set containing > r records.

In this paper, we study e�cient parallel construction of k-d trees up to a speci�ed number of

levels on coarse-grained distributed memory parallel computers.

3 Model of Parallel Computation

Coarse Grained Machines (CGMs) consist of a set of processors (tens to a few thousand) connected

through an interconnection network. The memory is physically distributed across the processors.

Interaction between processors is either through message passing or through a shared address

space. Popular interconnection topologies are buses (SGI Challenge), 2D meshes (Paragon, Delta),

3D meshes (Cray T3D), hypercubes (nCUBE), fat tree (CM5) and hierarchical networks (cedar,

DASH).

CGMs have cut-through routed networks which will be the primary thrust of this paper and

will be used for modeling the communication cost of our algorithms. For a lightly loaded network, a

message of size m traversing d hops of a cut-through (CT) routed network incurs a communication

delay given by Tcomm = ts + thd + twm, where ts represents the handshaking costs, th represents
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the signal propagation and switching delays and tw represents the inverse bandwidth of the com-

munication network. The startup time ts is often large, and can be several hundred machine cycles

or more. The per-word transfer time tw is determined by the link bandwidth. tw is often higher

(an order to two orders of magnitude is typical) than tc, the time to do a unit computation on data

available in the cache. The per-hop component thd can often be subsumed into the startup time

ts without signi�cant loss of accuracy. This is because the diameter of the network, which is the

maximum of the distance between any pair of processors, is relatively small for most practical sized

machines, and th also tends to be small. The above expressions adequately model communication

time for lightly loaded networks. However, as the network becomes more congested, the �nite

network capacity becomes a bottleneck. Multiple messages attempting to traverse a particular link

on the network are serialized. A good measure of the capacity of the network is its cross-section

bandwidth (also referred to as the bisection width). For p processors, the bisection width is p=2,

2
p
p, and 1 for a hypercube, wraparound mesh and for a shared bus respectively.

Our analysis will be done for the following interconnection networks: hypercubes and two

dimensional meshes. The analysis for permutation networks and hypercubes is the same in most

cases. These cover nearly all commercially available machines. A permutation network is one for

which almost all of the permutations (each processor sending and receiving only one message of

equal size) can be completed in nearly the same time (e.g. CM-5 and IBM SP Series).

Parallelization of applications requires distributing some or all of the data structures among the

processors. Each processor needs to access all the non-local data required for its local computation.

This generates aggregate or collective communication structures. Several algorithms have been

described in the literature for these primitives and are part of standard textbooks [7, 8]. The use

of collective communication provide a level of architecture independence in the algorithm design.

It also allows for precise analysis of an algorithm by replacing the cost of the primitive for the

targeted architecture.

In the following, we describe some important parallel primitives that are repeatedly used in our

algorithms and implementations. For commonly used primitives, we simply state the operation

involved. The analysis of the running time is omitted and the interested reader is referred to [8].

For other primitives, a more detailed explanation is provided. Table 1 describes the collective

communication routines used in the development of our algorithms and their time requirements on

cut-through routed hypercubes and meshes. In what follows, p refers to the number of processors.

1. Broadcast. In a Broadcast operation, one processor has a message of size m to be broadcast

to all other processors.

2. Combine. Given a vector of size m on each processor and a binary associative operation,

the Combine operation computes a resultant vector of size m and stores it on every processor.

The ith element of the resultant vector is the result of combining the ith element of the vectors
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Primitive Running time on a p processor

Hypercube Mesh

Broadcast O((ts + twm) log p) O((ts + twm) log p+ th
p
p)

Combine O((ts + twm) log p) O((ts + twm) log p+ th
p
p)

Parallel Pre�x O((ts + tw) log p) O((ts + tw) log p+ th
p
p)

Gather O(ts log p+ twmp) O(ts log p + twmp+ th
p
p)

Global Concatenate O(ts log p+ twmp) O(ts log p + twmp+ th
p
p)

All-to-All Communication O((ts + twm)p+ thp log p) O((ts + twmp)
p
p)

Transportation Primitive O(tsp+ twr + thp log p) O((ts + twr)
p
p)

Order Maintaining O(tsp+ tw(smax + rmax) + thp log p O((ts + tw(smax + rmax))
p
p + th

p
p)

Data Movement

Non-order Maintaining O(tsp+ tw(smax + rmax) + thp log p) O((ts + tw(smax + rmax))
p
p + th

p
p)

Data Movement

Table 1: Running times of various parallel primitives on cut-through routed hypercubes and square

meshes with p processors.

stored on all the processors using the binary associative operation.

3. Parallel Pre�x. Suppose that x0; x1; : : : ; xp�1 are p data elements with processor Pi con-

taining xi. Let 
 be a binary associative operation. The Parallel Pre�x operation stores the

value of x0 
 x1 
 : : :
 xi on processor Pi.

4. Gather. Given a vector of size m on each processor, the Gather operation collects all the

data and stores the resulting vector of size mp in one of the processors.

5. Global Concatenate. This is the same as Gather except that the collected data should be

stored on all the processors.

6. All-to-All Communication. In this operation each processor sends a distinct message of

size m to every processor.

7. Transportation Primitive. It performs many-to-many personalized communication with

possibly high variance in message size. Let r be the maximum of outgoing or incoming tra�c

at any processor The transportation primitive breaks down the communication into two all-

to-all communication phases where all the messages sent by any particular processor have

uniform message sizes [10]. If r � p
2, the running time of this operation is equal to two

all-to-all communication operations with a maximum message size of O( rp).

8. Order Maintaining Data Movement. Consider the following data movement problem, an

abstraction of the data movement patterns that we repeatedly encounter in k-d tree construc-

tion algorithms: Initially, processor Pi maintains two integers si and ri, and has si elements
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of data such that
Pp�1

i=0 si =
Pp�1

i=0 ri. Let smax = max
p�1
i=0 si and rmax = max

p�1
i=0 ri. The ob-

jective is to redistribute the data such that processor Pi contains ri elements. Suppose that

each processor has its set of elements stored in an array. We can view the
Pp�1

i=0 si elements as

if they were globally sorted based on processor and array indices. For any i < j, any element

in processor Pi appears earlier in this sorted order than any element in processor Pj . In the

order maintaining data movement problem, this global order should be preserved after the

distribution of the data.

The algorithm �rst performs a Parallel Pre�x operation on the si's to �nd the position of the

elements each processor contains in the global order. Another parallel pre�x operation on

the ri's determines the position in the global order of the elements needed by each processor.

Using the results of the parallel pre�x operations, each processor can �gure out the processors

to which it should send data and the amount of data to send to each processor. Similarly,

each processor can �gure out the amount of data it should receive, if any, from each processor.

The communication is performed using the transportation primitive. The maximum number

of elements sent out by any processor is smax. The maximum number of elements received

by any processor is rmax.

9. Non-Order Maintaining Data Movement. The order maintaining data movement algo-

rithm may generate much more communication than necessary if preserving the global order

of elements is not necessary. For example, consider the case where ri = si for 1 � i < p� 1

and r0 = s0+1 and rp�1 = sp�1�1. The optimal strategy is to transfer the one extra element

from Pp�1 to P0. However, this algorithm transfers one element from Pi to Pi�1 for every

1 � i < p� 1, generating (p� 1) messages.

For data movements where preserving the order of data is not important, the following modi-

�cation is done to the algorithm: Every processor retains minfsi; rig of its original elements.

If si > ri, the processor has (si�ri) elements in excess and is labeled a source. Otherwise, the

processor needs (ri� si) elements and is labeled a sink. The excessive elements in the source

processors and the number of elements needed by the sink processors are ranked separately

using two Parallel Pre�x operations. The data is transferred from sources to sinks using a

strategy similar to the order maintaining data movement algorithm.

The maximum number of outgoing elements at any processor is max
p�1
i=0 (si�ri), which can be

as high as smax. The maximum number of incoming elements at any processor is max
p�1
i=0 (ri�

si), which can be as high as rmax. Therefore, the worst-case running time of this operation

is identical to the order maintaining data movement operation. Nevertheless, the non-order

maintaining data movement algorithm is expected to perform better in practice.
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4 Parallel construction of k-d trees

We consider the task of building a k-d tree of N points in k dimensional space up to an

arbitrary number of levels using p processors. For simplicity and convenience of presentation,

we assume that both N and p are powers of two. We also assume that N � p
2 and that we

build the tree at least up to log p levels. The �rst log p levels of the tree are constructed in

parallel and the remaining levels are constructed locally.

It is obvious that the construction of a k-d tree involves building a binary tree where the

computational task at each internal node is to �nd the median of all the points in its subtree.

Thus, any median �nding algorithm can be used for the the construction of k-d trees. To

use this strategy, it only remains to identify e�cient sequential and parallel median �nding

algorithms. On the other hand, since the task involves �nding repeated medians, some pre-

processing can be used to help speed up the median computations. We present two algorithms

that use such a preprocessing.

The parallel tree construction can be decomposed into two parts: constructing the �rst log p

levels of the tree in parallel, followed by the local tree construction. Potentially a di�erent

strategy can be used for the two parts. For this reason, we describe and analyze each of the

three strategies for both the parts.

The median of the N points along dimension d1 is found and the points are separated into two

partitions, one containing points with coordinate along d1 less than or equal to the median

and the other containing the remaining points. The partitions are redistributed such that

the �rst half of the processors contain one partition and the remaining processors contain the

other. This is repeated recursively until the �rst log p levels of the tree are constructed. At

this point, each processor contains n = N
p
points belonging to a partition at level log p of the

tree. The local tree for these n points is constructed up to the desired number of levels. Let

the number of levels desired for the local tree be logm (m � n).

In the following subsections, we compare the di�erent strategies for local construction and

parallel construction of the tree to log p levels. These strategies are combined to present

methods for constructing the tree for more than log p levels.

4.1 Local Tree Construction

4.1.1 Median-based Method

In this approach, a partition is represented by an unordered set of points in the partition and

the median is explicitly computed in order to split the partition. This is the commonly used

method to build k-d trees.

8



Suppose that it is required to �nd the median of n elements. A deterministic algorithm for

selection is to use the median of medians as the estimated median [4]. This ensures that the

estimated median will have at least a guaranteed fraction of the number of elements below

it and at least a guaranteed fraction of the elements above it. The worst case number of

iterations required by this algorithm is O(logn).

A randomized algorithm takes O(n) time with high probability by using the algorithm of

Floyd et. al. [6]. De�ne the rank of an element to be the number of elements smaller than or

equal to it. It is desired to �nd the median, i.e. the element with rank k = dn2e. In Floyd's

algorithm, a random element is estimated to be the median. The elements are split into

two subsets S1 and S2 of elements smaller than or equal to and greater than the estimated

median, respectively. If jS1j >= k, recursively �nd the element with rank k in S1. If not,

recursively �nd the element with rank (k � jS1j) in S2. Once the number of elements under

consideration falls below a constant, the problem is solved directly by sorting and picking

the appropriate element. The randomized algorithm has a worst-case run time of O(n2), an

expected run time of only O(n). The number of iterations can be shown to be O(logn) with

high probability. It is known to perform better in practice than its deterministic counterpart

due to the low constant associated with the algorithm.

Note that the very process of computing the median of a partition using Floyd's method

splits the partition into two subpartitions. In constructing level i of the local tree, we have

to compute 2i medians, each on a partition containing n
2i

points. Since the total number of

points in all partitions at any level of the local tree is n, building each level takes O(n) time.

The required logm levels can be built in O(n logm) time.

The expected number of iterations required for �nding the median of n points is O(logn). A

di�erent approach can be used to reduce the number of iterations [9]:

(a) randomly sample ` = n
2=3 keys from the input;

(b) sort this sample in O(` log `) time;

(c) Pick keys from the sample whose ranks (in the sample) are dk`=ne�p` logn and dk`=ne+p
` logn respectively ( Call these keys k1 and k2);

(d) Drop all the keys in the input that lie outside the range [k1; k2];

With high probability 2 , k1 < k < k2. If so, drop all the keys in the input with ranks that

lie outside the range [k1; k2];

With high probability, the number of points reduces from n to no more than np
`

p
log n. Perform

an appropriate selection recursively (or otherwise) in the collection of the remaining keys. It can

2We say that a randomized algorithm has a resource bound of O(g(n)) with high probability if there exists a

constant c such that the amount of resource used by the algorithm for input of size n is no more that c�g(n) with

probability � 1� 1
n�

. As an example, if n = 106 and � = 2, then the probability that the algorithm takes more than

O(n) time is equal to 10�12.
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be shown that the expected number of iterations of this median �nding algorithm is O(log logn)

with high probability and that the expected number of points decreases geometrically after each

iteration with high probability resulting in O(n) expected running time. If n(j) is the number of

points at the start of the j
th iteration, only a sample of o(n(j)) keys is sorted. Thus, the cost of

sorting, o(n(j) logn(j)) is dominated by the O(n(j)) work involved in scanning the points.

All the experimental results presented in this paper are limited to the direct approach. However,

this algorithm can be substituted without a�ecting the total time for computation of the median

signi�cantly.

4.1.2 Sort-based Method

In order to avoid the overheads associated with explicit median �nding at every internal node of

the k-d tree, we use an approach that involves sorting the points along every dimension exactly

once. To begin with, we maintain k sorted arrays A1; A2; : : : ; Ak where Al contains all the points

sorted according to dimension dl. At any stage of the algorithm, we have a partition and k arrays

storing the points of the partition sorted according to each dimension. Without loss of generality,

assume that the partition should be split along d1. The median value of the coordinates along d1 is

easily obtained by picking the middle element of A1. To split the partition, we need to compute the

sorted arrays corresponding to the subpartitions. This is extremely simple along d1 since the array

is split into two parts around the middle element. To create the arrays along any other dimension

dl, each element of Al is scanned and copied to the appropriate array of the subpartition depending

upon the coordinate of the point along d1.

Instead of maintaining k arrays for every partition considered in the k-d tree, we can get away

with just maintaining one set of k arrays. Any partition corresponding to a node in the k-d tree has

two pointers i and j (i < j) associated with it such that the subarray Al[i::j] contains the points

of the partition sorted along dl. If the partition is split based on d1, splitting the array A1[i::j] can

be done in constant time as it requires just computing the pointers of the sub-partitions. Consider

splitting Al[i::j] for any other dimension dl. If we simply scan Al[i::j] from either end and swap

elements when necessary (as can be done in the median �nding method), the sorted order will be

destroyed. Therefore, it is required to go over the points twice: Once to count the number of points

in the two subpartitions and a second time to actually move the data. Note that since the points

needs not be distinct, the number of points less than or equal to the median need not be exactly

equal to half the points.

Also, the arrays contain pointers to records and not actual records. With this, copying a point

requires only O(1) time. This method requires sorting the n points along each of the k dimensions

before the actual tree construction. We refer to this as the preprocessing time. The time for

preprocessing is O(kn logn). Constructing each level of the k-d tree involves scanning each of
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the k arrays and takes O(kn) time. After preprocessing, logm levels of the tree can be built in

O(kn logm) time. In some cases, the data may already be present in sorted order. For instance, if

the sort-based method is used to construct the �rst log p levels of the tree in parallel, each processor

will already have the sorted data for local tree construction.

It is possible to reduce the O(kn) time per level to O(n) by using the following scheme: There

are n records of size k, one corresponding to each point. Use an array L of size n. An element of

L contains a pointer to a record and k indices indicating the positions in the arrays A1; A2; : : : ; Ak

which correspond to this record. An element of array Al is now not a pointer to a record but stores

the index of L which contains a pointer to the record. Thus, we need to dereference three pointers

to get to the actual record pointed to by an element of any array Al. Initially, L[i] contains a

pointer to record i and all the arrays can be set up in O(kn) time. The arrays A1; A2; : : : ; Ak are

sorted in O(kn log kn) time as before. The array L is used to keep track of all the partitions.

Suppose that the tree is constructed up to i levels and the array L is partitioned into 2i subarrays

corresponding to the subpartitions accordingly. Let l be the dimension along which each of these

subpartitions should be split to form level i+ 1 of the tree. We �rst want to organize the array Al

into 2i subpartitions. Label the partitions of L from 1 to 2i from left to right. For every element

of L, using the index for Al, label the corresponding element of Al with the partition number.

Permute the elements of Al such that all elements with a lower label appear before elements with a

higher label and within the elements having the same label, the sorted order is preserved. All of this

can be done in O(n) time. As before, Al can now be used to pick the median of each subpartition.

Although this method reduces the run-time per level from O(kn) to O(n), the method is not

expected to perform better for small values of k such as 2 and 3, which cover most practical

applications such as graph partitioning and hierarchical methods.

4.1.3 Bucket-based Method

The sequential complexity of the median-based methods is proportional to n logm. Even though

the constant associated with sorting is small compared to median �nding, the complexity of sorting

is proportional to kn logn. Thus, the improvement in the constant may not be able to o�set the

higher complexity of the sort-based method. To resolve this problem, we start with inducing partial

order in the data which is re�ned further only as it is needed.

Sample a set of n� points (0 < � < 1) and sort them according to dimension d1. This take O(n)

time. Using the sorted sample, divide the range containing the points into b ranges, called buckets.

After de�ning the buckets, �nd the bucket that should contain each of the n points. This can be

accomplished using binary search in O(log b) time. The n points are now distributed among the b

buckets and the expected number of points in a bucket is O(n
b
) with high probability (assuming b

is o( n
logn)). The same procedure is repeated to induce a partial sorting along all dimensions. The
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total time taken for computing the partial sorted orders along all dimensions is O(kn log b). This

is the preprocessing required in bucket-based method. This method can be viewed as a hybrid

approach combining sorting and median �nding. If b = 1, the hybrid approach is equivalent to

median �nding and if b = n, this approach is equivalent to sorting the data completely.

At any stage of the algorithm, we have a partition and k arrays storing the points of the

partition partially sorted into O(b) buckets using their coordinates along each dimension. Without

loss of generality, assume that the partition should be split along d1. The bucket containing the

median is easily identi�ed in O(log b) time. Finding the median translates to �nding the element

with the appropriate rank in the bucket containing the median. This is computed using a selection

algorithm in time proportional to the number of points in the bucket. To split the partition, we need

to compute the partially sorted arrays corresponding to the subpartitions. This is accomplished

along d1 by merely splitting the bucket containing the median into two buckets. To create the

arrays along any other dimension dl, each bucket in the partially sorted array along dl is split into

two buckets. All the buckets with points having a smaller coordinate along d1 than the median are

grouped into one subpartition and the rest of buckets are grouped into the second subpartition.

When a partition is split into two subpartitions, the number of points in the partition is split

into half. The number of buckets remains approximately the same (except that one bucket may be

split into two) along the dimension which is used to split the partition. Along all other dimensions,

the number of buckets increases by a factor of two. At a stage when level i of the tree is to be built,

there are 2i partitions and �(b2i(k�1)=k) buckets. Thus, building level i of the tree requires solving

2i median �nding problems each working on a bucket of expected size O( n
b2i(k�1)=k

). This time

is dominated by the O(kn) time to split the buckets along k � 1 dimensions. Since the constant

associated with median �nding is high, this method has the advantage that it performs median

�nding on smaller sized data. The asymptotic complexity for building logm levels is O(kn logm).

Strategies similar to the one presented for sorting can be used for reducing the time toO(n logm).

However these strategies are not expected to perform better for small values of k such as 2 and 3

due to high overheads.

4.1.4 Experimental Results

In this section, we present experimental results for the three algorithms. The computation time

required for local tree construction, as summarized in Table 2, can be decomposed into four major

parts:

1. Preprocessing time (X) - This is the time required for preprocessing for the di�erent strategies

before the actual tree construction. The largest cost is associated with sorting. The cost

associated with median �nding is zero. Bucketing requires an intermediate cost.
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Method Tree construction upto logm levels

Preprocessing(X) Median Finding(m) Data Movement(s)

Median-based - O(n logm) O(n logm)

Sort-based O(kn log n) O(logm) O(kn logm)

Bucket-based O(kn log b) O(n
b
) O(kn logm)

Table 2: Computation time for local tree construction for the di�erent strategies.

2. Cost of �nding the median (m) - The cost of �nding median at every level for each sublist

using the sort-based method is O(1). The cost for bucket-based method is O( l
b
+ log b) for a

list of size l divided into b buckets. The sum of the sizes of all the b sublists in the bucket-

based method is equal to n, the number of elements. Median-based method takes O(l) for a

list of size l.

3. Data movement time per element (s) - At each level the lists are decomposed into two sublists

based on the median. This requires movement of data. The sorting and bucket-based methods

are required to have stable order property. This means that the relative ordering of data has

to be preserved during the data movement. This requires going over the data elements twice:

one to count the number of elements for the two sublists and other to actually move the data.

Median-based method does not require the �rst step resulting in a signi�cantly lower value of

s. Additionally, the number of lists for which data has to be moved is substantially higher for

the sort-based and bucket-based strategy as compared to the median-based strategy (k � 1

versus 1).

4. Overhead per list (r) - There is an overhead attached with maintenance and processing of

sublists at every level. The number of partitions doubles as the number of levels of the tree

increase. The overhead is due to maintaining pointers and appropriate indices for the data

in the partition. This overhead is the smallest for sorting, slightly larger for median-method

and highest for bucketing. The cost for bucketing is proportional to the number of buckets.

This overhead occurs on a per list basis and grows exponentially with the increase in number

of levels.

An important practical aspect of median �nding is that the data movement step and median

�nding step can be combined resulting in a small overall constant (one of the reasons quick sort

has been shown to work well in practice).

Based on the above analysis and the following reasons we decided to limit our experimental

results to k = 2:

1. In many practical situations the value of k is limited to 2 or 3.
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2. For larger k, we do not expect the sort or bucket-based strategy to work better due to large

value of s.

3. Our goal is to write optimized software for �xed record sizes and determine if the improve-

ments achieved for k = 2 are signi�cant using preprocessing methods.

The following discussion is speci�c to k = 2, although much of the discussion should be appli-

cable for larger values of k also.

A comparison of sort-based method and the bucket-based methods shows that bucket-based

strategy has a lower value of X , similar value of s, much larger values of r andm. We experimented

with di�erent bucket sizes for the bucketing strategy. There is a tradeo� between r and m. The

former is directly proportional to the number of buckets while the latter is inversely proportional

to the number of buckets. The e�ect of the overhead r is per list and increase exponentially with

the increase in the number of levels. However, we found that the values of r and m are su�ciently

large that sort-based method was better than the bucket-based method except when the number

of levels were very small (less than 4). However, for these cases the median-based approach is

expected to work better.

A comparison of the median and sort-based methods show that the median-based strategy has

zero value of X , smaller value of s, a higher value of r, and much larger value of m as seen in Table

2 and veri�ed by our experimental results. One would expect that the median-based approach to

be better for small number of levels and sort-based strategy to be better for larger number of levels,

expecting the preprocessing cost to be amortized over several levels. A comparison of these methods

for di�erent data sets (of size 8K, 32K and 128K) is provided in Figure 3. These �gures give the

time required for sort-based method, median-based method and sort-based method (without the

cost of sorting). These results show that median-based approach is better than the sort-based

methods except when the number of levels is close to logn. For larger levels the increase due to

higher m becomes signi�cant for the median-based method. These results also show that when

data is already sorted, the sort-based method has a better time than the median-based method.

The median-based strategy was found to be much better than the bucket-based strategy. Al-

though we do not present any experimental results here, the median-based strategy was much better

than the bucket-based strategy for small levels even ignoring the time required for bucketing. The

improvement in running time due to a reduced value of m is o�set by an increase in the value of s.

We conclude the following from our experimental results for k = 2:

1. If information is available about the sorted order along both the dimensions, using a sort-based

strategy is always preferable.

2. For unsorted data, using a median-based strategy is the best unless the number of levels are

close to logn for which the sort-based strategy is the best.
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For larger values of k (k � 3) using a median-based strategy would be comparable or better than

the other strategies unless preprocessing information used for sorting method is already available.
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Figure 3: Local tree construction for random data of sizes 8K, 32K and 128K

4.2 Parallel Tree Construction for log p levels

4.2.1 Median-based Method

Each processor initially has N
p points. The median of the N points along dimension d1 is found by

a parallel median �nding algorithm using all the p processors. Each processor locally scans its N
p

points and separates them into two sets containing points less than or equal to and greater than

the median, respectively. All the points less than or equal to the median are moved to processors

P0; : : : ; P p

2
�1 and the other points are moved to processor P p

2
; : : : ; Pp�1 such that each processor

again has N
p
points. We recursively solve the two problems of �nding k-d trees of N

2
points on

p
2
processors in parallel. This process is used to build the k-d tree up to log p levels. The local

part of the k-d tree is now built using a sequential median �nding algorithm, for which we use a

randomized algorithm described in Section 4.1.1. To complete the description of the method, it

only remains to describe the parallel median �nding algorithms used.

Parallelization of deterministic median �nding is not work optimal for arbitrary data distribu-

tions. The worst case running time for deterministic median �nding can be as large as O(N
p
logN)

time without load balancing at every step. This is because the data can be distributed such that, at

every iteration the size of the local data on one processor does not decrease. Load balancing is only

feasible for a machine with a fast network (small value of tw) and a cross section bandwidth which

is O(p). Otherwise one step of load balancing will dominate the overall cost of median �nding.

Further, the constants involved with sequential deterministic algorithms are typically an order of

magnitude larger. A direct parallel implementation of the simple randomized algorithm without

load balancing given in Section 4.1.1 also results in worst case "expected performance" of O(N
p
) on
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p processors due to the same reasons. For this case using a randomized algorithm which chooses

a sample of size n
� is preferable, although still suboptimal, as it results in O(log logN) iterations

resulting in worst case time of O(Np log logN).

A comparison of di�erent deterministic and randomized parallel selection algorithms for coarse

grained machines is given in [1]. These show that the randomized approaches have considerably

better performance than the deterministic algorithms for arbitrary distributions of data.

For the following algorithms, we assume that N � p
2 points are randomly distributed among

the p processors. If the data is not distributed randomly this can be achieved by using a trans-

portation primitive initially. The cost of this randomization will be considerably less than the cost

of construction of the k-d tree, which is lower bounded by the transportation primitive. The reason

for this is that in the worst case, construction of the k-d tree may require movement of all the

local data assigned to a given processor to all the remaining processors. Thus, the analysis of all

the algorithms described below is independent of the initial distribution of data. Using the results

given in Appendix A, the following can be shown:

1. Let n = N
p . With a high probability the number of points per processor is given by n+ o(n).

For convenience in the description as well as practical situations we will assume that all these

points are equally distributed among all the processors, i.e. each processor has n points.

2. Consider any subset S of these points such that jSj � p log p. It can we shown with high

probability that the maximum number of points which are mapped to a given processor is

given by O(
jSj
p ).

The above property results in parallelization of median �nding at every level such that the number

of elements mapped to any processor is approximately equal.

We have found that the randomized median �nding algorithm, which is a straightforward paral-

lelization of Floyd's algorithm results in the best performance when the data is distributed randomly

[1]. The method used is as follows: All processors use the same random number generator with the

same seed so that they can produce identical random numbers. Let N be the number of elements

and p be the number of processors. Let N
(j)
i be the number of elements in processor Pi at the

beginning of iteration j. let N (j) =
Pp�1

i=0 N
(j)
i . Let k(j) be the rank of the element we need to

identify among these N (j) elements.

Consider the behavior of the algorithm in iteration j. First, a parallel pre�x operation is

performed on the N
(j)
i 's. All processors generate an identical random number between 1 and N

(j)

to pick an element at random, which is taken to be the estimate median. From the parallel pre�x

operation, each processor can determine if it has the estimated median and if so broadcasts it.

Each processor scans through its set of points and splits them into two subsets containing elements

less than or equal to and greater than the estimated median, respectively. A Combine operation
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and a comparison with k
(j) determines which of these two subsets is to be discarded and the value

of k(j+1) needed for the next iteration.

Let N
(j)
max = max

p�1
i=0N

(j)
i . Thus, splitting the set of points into two subsets based on the

median requires O(N
(j)
max) time in the jth iteration. Since the points are mapped randomly among

all the processors, it can be shown that the number of remaining points left after each iterations

are mapped equally among all the processors with high probability (i.e. the maximum is close to

mean) unless the number of remaining points are very small. Thus, the total expected time spent

in computation is O(N=p) 3 Another option is to ensure that a load balancing is done after every

iteration. However, such a load balancing always resulted in an increase in the running time and

that the data is reasonably balanced without any load balancing if the input distribution is random

[1].

As discussed in section 4.1.1, the number of iterations required for N points is O(logN) with

high probability. The communication involved in every iteration is one Parallel Pre�x, one Broad-

cast and one Combine operation. Therefore, the expected running time of parallel median �nding,

is O(Np + (ts + tw) log p logN) on the hypercube and O(Np + (ts + tw) log p logN + th
p
p logN) on

the mesh.

In building the �rst log p levels of the tree, the task at level i of the tree is to solve 2i median

�nding problems in parallel with each median �nding involving N
2i

points and p
2i

processors. Note

that the very process of �nding the median splits each local list into two sublists containing elements

less than or equal to and greater than the median. After �nding the median of N
2i

points on p
2i

processors, all the elements less than or equal to the median are moved to the �rst p
2i+1 processors

while the other elements are move to the next p
2i+1 processors. The maximum number of elements

sent out or received by any processor is N
p . We assume that moving this data movement results in

a random distribution of the two lists to the two subsets of processors.

Since each point has k coordinates, a record of size O(k) is required to store a point. In the

median �nding algorithm, we repeatedly compare two points based on one coordinate and swap

them if necessary. To save work when moving points within an array, we only keep one copy of

the records and store pointers in arrays instead of entire records. However, when data movement

across processors is required, all the points to be moved have to be copied to an array before

communication.

Building the �rst log p levels of the tree on the hypercube requires
Plogp�1

i=0 O(N
2i
=
p
2i
+ (ts +

tw) log
p
2i
log N

2i
+k

N
p
+ ts

p
2i
+ tw

kN
p
+ th

p
2i
log p

2i
) = O(kN

p
log p+ ts(p+log2 p logN)+ tw(k

N
p
log p+

log2 p logN)+thp log p) time. The time required on the mesh is
Plog p�1

i=0 O(N
2i
=
p
2i
+(ts+tw) log

p
2i
log N

2i
+

th

q
p
2i
log N

2i
+ k

N
p
+ (ts + tw

kN
p
)
q

p
2i
+ th

q
p
2i
) = O(kN

p
log p + ts(

p
p + log2 p logN) + tw(

kNp
p
+

log2 p logN) + th
p
p logN).

3This can be converted into an algorithm which completes with high probability using the median �nding approach

described in Section 4.1.1
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4.2.2 Sort-based Method

In the parallel algorithm, each processor is given N
p
elements. The elements are sorted using a

parallel sorting algorithm to create the sorted arrays A1; A2; : : : ; Ak distributed evenly among the

processors. We use a variation of parallel sample sort [12]: Suppose we want to sort the points

along d1. First, sort the N
p points on each processor locally. This takes O(Np log N

p ) time. Select

p evenly spaced points from the local sorted array of each processor. Gather the selected p(p� 1)

elements on one processor and sort them locally in O(p2 log p) time. Using p � 1 evenly spaced

elements in this array, the range of the input points is partitioned into p ranges called buckets. It

is guaranteed that no more than 2N
p points belong to any bucket [12]. The buckets are speci�ed by

the endpoints of the corresponding ranges, also called splitters. We need p� 1 splitters to specify

the p buckets. The p � 1 splitters are broadcast to every processor. Each processor locates the

p�1 splitters in its sorted array of N
p points using binary search in O(p log N

p ) time. This splits the

local array on each processor into p sorted subarrays, one belonging to each bucket. The subarrays

are distributed to the processors such that Pi gets all subarrays that belong to bucket i. This is

done using the transportation primitive since there can be high variance in the individual message

sizes. Each processor then merges the p subarrays it receives. This takes O(Np log p) time. Finally,

an Order-maintaining data movement operation is used to ensure that each processor has exactly
N
p
points.

The total computation time required is O(N
p
log N

p
+ p

2 log p+ p log N
p
+ N

p
log p). For N � p

2,

this reduces to O(Np logN + p
2 log p). The communication time depends on the topology and can

be easily found by substituting the running times of the communication primitives used. The total

time required for sorting is O(N
p
logN + p

2 log p+ tsp+ tw(
N
p
+ p

2)+ thp log p) on a hypercube and

O(N
p
logN + p

2 log p+ ts
p
p+ tw(

Np
p
+ p

2) + th
p
p) on a mesh.

Once we preprocess the data by sorting it along each dimension to create k sorted arrays, the

work of �nding medians is completely eliminated. Without loss of generality, assume that the

partition should be split along dimension d1. The processor containing the median coordinate

along d1 broadcasts it to all the processors. We want to split the partition into two subpartitions

and assign one subpartition to half of the processors and assign the second subpartition to the

other half. Assigning a subpartition amounts to computing the sorted arrays for the subpartition.

This is already true along d1. For any other dimension dl, each processor scans through its part

of the array sorted by dl and splits it into two subarrays depending upon the coordinate along

d1. All the points less than the median d1 coordinate are moved to the �rst half of the processors

with an algorithm similar to order maintaining data movement. Points greater than the median

d1 coordinate are moved to the second half of the processors. Once the initial sorted arrays are

computed, splitting partitions at every node of the tree merely requires moving the elements of the

arrays to the appropriate processors.

Consider the time required for building the �rst log p levels of the tree: At level i of the tree,
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we are dealing with 2i partitions containing N
2i

points each. A partition is represented by k sorted

arrays distributed evenly on p
2i

processors. Splitting the local arrays and preparing the data for

communication requires O((k � 1)kN
p ) time. This is because the k � 1 arrays can potentially

contain di�erent records and the size of each record is O(k). The required data movement must

be done using Order maintaining data movement operation since the sorted order of the data must

be preserved. Given sorted data, the time required to build the �rst log p levels of the tree on a

hypercube is
Plogp�1

i=0 O(k2Np + ts
p
2i
+ twk

2N
p + th

p
2i
log p

2i
) = O(k2Np log p + tsp + twk

2N
p log p +

thp log p). The corresponding time on a mesh is
Plogp�1

i=0 O(k2Np + ts

q
p
2i
+ twk

2N
p

q
p
2i
+ th

q
p
2i
) =

O(k2N
p
log p+ ts

p
p+ twk

2 Np
p
+ th

p
p).

Unlike the sequential sort-based method, the above scheme cannot be easily modi�ed to reduce

the computational work at every level from O(kn) to O(n). This is because the method to reduce

computational work used elements of an array L to access elements of an array Al and vice versa.

Since these arrays are distributed across processors, the resulting communication generated makes

this method impracticable.

4.2.3 Bucket-based Method

To use this method, we �rst create the required bucketing using p processors and construct the

�rst log p levels of the tree in parallel as before. The required bucketing along a dimension, say

d1, can be computed as follows: Select a total of n� points (0 < � < 1) and sort them along d1

using a standard sorting algorithm such as bitonic merge sort. The time for bitonic merge sort on

p processors is O(N
� logN �

p + N �

p log2 p+ (ts + tw
N �

p ) log2 p) time on a hypercube and O(N
� logN �

p +
N �

p
log2 p + (ts + tw

N �

p
)
p
p) on a mesh. Using the sorted sample, divide the range containing the

points into p intervals called buckets. Using a global concatenate operation, the p intervals are

stored on each processor. Each processor scans through its N
p points and for each point determines

the bucket it belongs to in O(Np log p) time. The points are thus split into p lists, one for each

bucket. It is desired to move all the lists belonging to bucket i to processor Pi. The points are sent

to the appropriate processors using the transportation primitive. The expected number of points

per bucket is O(Np ) with high probability. Apart from the bitonic sort time, the time for bucketing

is O(Np (k+log p)+tsp+tw
kN
p +thp log p) on a hypercube and O(Np (k+log p)+ts

p
p+tw

kNp
p +th

p
p)

on a mesh. Clearly, this dominates the time for bitonic sorting on both the mesh and hypercube.

Consider building the �rst log p levels of the tree. Suppose that the �rst split is along dimension

d1. By a parallel pre�x operation, the bucket containing the median is easily identi�ed. The median

is found by �nding the element with the appropriate rank in this bucket using the sequential

selection algorithm. The median is then broadcast to all the processors which split their buckets

along all other dimensions based on the median. Using Order maintaining data movement, the

buckets are routed to the appropriate processors. Since the bucket size is smaller than the number

of elements in a processor, the time for locating the median in the bucket is dominated by the time
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Method Parallel tree construction upto log p levels

Preprocessing Median �nding Local processing Communication due to

(X) (m) (s) data movement(T )

Median-based - O(N
p
log p + O(kN

p
log p) O(tsp+ tw(k

N

p
log p))

(ts + tw) log
2
p logN)

Sort-based O(N
p
logN + p

2 log p + O(log p) O(k2N
p
log p) O(tsp+ tw(k

2N
p
log p))

tsp+ tw(
N

p
+ p

2))

Bucket-based O(N
p
(k + log p)+ O(N

p
) O(k2N

p
log p) O(tsp+ tw(k

2N
p
log p))

tsp+ tw(k
N

p
))

Table 3: Time for tree construction upto log p levels on p processors for di�erent strategies on a

hypercube.

for splitting the buckets along each dimension. The �rst log p levels of the tree can be built inPlogp�1
i=0 O(k2N

p
+ ts

p
2i
+ twk

2N
p
+ th

p
2i
log p

2i
) = O(k2N

p
log p+ tsp+ twk

2N
p
log p+ thp log p) time on

a hypercube and
Plogp�1

i=0 O(k2N
p
+ ts

q
p
2i
+ twk

2 Np
p
+ th

q
p
2i
) = O(k2N

p
log p+ ts

p
p+ twk

2 Np
p
log p+

th
p
p) time on a mesh.

4.2.4 Experimental Results

In this section, we compare the three algorithms for tree construction for log p levels experi-

mentally. Our implementations are on the CM-5 for which most of the analysis presented for the

hypercube is applicable. The relative communication overheads for a mesh also compare similarly

as presented in this section. Our goal is to compare the software overheads in implementing these

strategies in a relatively machine independent manner. For all the experiments we assume that the

distribution of data is random. Whenever, this not the case a preprocessing step can be added to

perform this randomization. As discussed earlier, the cost of this randomization is small enough

that it should not a�ect the overall timings and conclusions signi�cantly.

The execution time required for parallel tree construction for log p levels can be decomposed

into the following parts as summarized in Table 3:

1. Preprocessing time (X) - This is the time required for preprocessing for the di�erent strategies

before the actual tree construction. The largest cost is associated with the sort-based method

as k lists, each containing N elements needs to be sorted across p processors. The cost

associated with median �nding is zero. Bucketing requires an intermediate cost since the data

is partially ordered. This includes communication costs involved in the primitive operations

used here.

2. Cost of �nding the median at every level (m) - The cost of �nding median at every level

for each sublist using the sort-based is O(1) and requires little communication and local pro-
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cessing. The bucket-based approach requires slightly larger communication and higher local

processing costs (proportional to size of the bucket which contains the median). The median-

based approach requires the maximum amount of communication (number of broadcasts and

combines required is O(log N
2i
) for level i). However this cost is independent of the number of

local data items (O(N=p)). The local preprocessing costs are proportional to O(N=p).

3. Local processing time (s) - At each level the lists are decomposed into two sublists based

on the median. This requires local processing in identifying elements for the appropriate

partition. The sorting and bucket-based methods are required to have stable order property.

This means that the relative ordering of data has to be preserved during the data movement.

This requires going over the data elements twice: one to count the number of elements for

the two sublists and other to actually move the data. Median-based method does not require

the �rst step resulting in a signi�cantly lower value of s. Additionally, the number of lists

for which data has to be moved is substantially higher for the sort-based and bucket-based

strategy as compared to the median-based strategy (k � 1 versus 1).

4. Communication due to data movement (T ) - All of these methods require the application of

transportation primitive. This cost is expected to be higher for the bucket and sort-based

methods as compared to the median-based approach which require the ordering in the data

to be maintained when data is moved. Further, the number of lists for which data has to be

communicated is substantially larger for the sorting and bucket-based strategy as compared

to the median-based strategy (k � 1 versus 1).

5. Overhead per list (r) - There is an overhead attached with maintenance and processing of

sublists at every level. The number of partitions doubles as the number of levels of the tree

increase. The overhead is due to maintaining pointers and appropriate indices for the data

in the partition. This overhead is the smallest for sorting, slightly larger for median-method

and highest for bucketing. The cost for bucketing is proportional to the number of buckets.

This overhead occurs on a per list basis and grows exponentially with the increase in number

of levels.

The th term is insigni�cant in the overall communication time and hence it is ignored in the

table. For reasons similar to one given for local tree construction, we limit our experimental results

to only k = 2.

A comparison of sorting and median �nding approaches show that sorting has much higher value

of X , larger value of s, a smaller values of r and a higher value of T . We divide the comparison

into two parts:

1. Small values of N=p: For this case median �nding should not parallelize well. The time

is dominated by the communication cost in m, which increases with increase in number
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of processors. One would expect the median-based approach to still work better for small

number of processors, due to the large value of X in sorting. Otherwise sorting may be

preferable since the higher communication costs in median �nding will o�set the e�ect of X

in the sort-based approach.

2. Large values of N=p: For large values of N=p, median �nding should parallelize reasonably

well. The communication cost in median �nding should not dominate the overall cost and

should be signi�cantly lower than the cost of T required for both strategies. The value of

T should be smaller for the median-based approach as compared to the sort-based approach

because it does not require maintaining the order in the data movement. Thus, median-based

approach should have lower overall communication costs when compared to the sort-based

approach at every level. One would expect median-based approach to perform better than

sorting except for very large number of processors.

A comparison of bucket-based and median �nding approaches show that bucket-based approach

has larger value ofX , larger value of s, a larger value of r and T . We will again divide the comparison

into two parts:

1. Small values of N=p: For this case, median �nding does not parallelize well. The time is dom-

inated by the communication cost in m which increases with increase in number of processors.

One would expect that median-based approach to perform worse than the bucket-based ap-

proach which has small communication overhead for median �nding unless the number of

processors are small and the value of X is large for bucket-based approach.

2. Large values of N=p: For large values of N=p median �nding parallelizes reasonably well. The

communication cost in median �nding should not dominate the overall cost and should be

signi�cantly lower than the cost of T required for both strategies at every level. The value of T

should be smaller for the median-based approach as compared to the bucket-based approach

because it does not required maintaining the order in the data movement. Thus, median-

based approach should have lower overall communication costs than bucket-based approach

at every level. One would expect median-based approach to be better than bucket-based

approach except for a very large number of processors.

A comparison of bucket-based and sort-based approaches show major di�erences in the pre-

processing time (X) and the local processing time in �nding the median. One would expect that

bucketing would work better than sorting when the di�erence in preprocessing time time is larger

than the added time in local preprocessing for �nding the median. The cost of the latter decreases

at every level (as the sizes of each of the buckets at an average decreases with increase in number

of levels).

The experimental results for di�erent values of N=p for constructing a tree up to logp levels, are
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presented in Figure 4. These show that the sort-based strategy is never better than the bucket-

based method for any value of N=p . The median-based approach is the best approach for large

values of N=p (greater than 8K per processor) while the bucket-based approach is the best for

small values of N=p (less than 4K). The improvements of each of these methods over the other are

substantial for these ranges. For larger values of k it is expected that the time requirements of

the bucket-based strategy would grow faster than the median-based strategy due to overheads in

the lists and bucket management. The crossover point (of k) for which the median-based strategy

would be better for small values of N=p would be machine speci�c.

We would like to emphasize that the conclusions reached above are for a randomized median-

based strategy. The constants involved for a deterministic algorithm for median �nding may make

sort-based and bucket-based methods better than the median based algorithms for small values of

k and for a wide range of N=p.
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Figure 4: Tree construction to log p levels for p = 16, 32, 64 and 128 using random data
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4.3 Global Tree Construction

The parallel tree construction can be decomposed into two parts: constructing the tree till log p

levels followed by local tree construction. Potentially a di�erent strategy can be used for the

two parts. This results in at least nine possible combinations. Based on the discussion in the

previous two sections, the following are the only viable options to be considered for the global tree

construction.

G1 Sort-based approach up to log p levels, followed by using sort-based approach locally. Sort-

based approach up to log p levels has an added bene�t that the local data is left sorted. Thus,

no preprocessing is required for local tree constructions. Also using any other approach for

local tree construction would not be better due to this reason.

G2 Median-based approach up to log p levels, followed by using sort-based approach locally.

G3 Median-based approach up to log p levels, followed by using a median-based approach locally.

G4 Bucket-based approach up to log p levels, followed by using a median-based approach locally.

G5 Bucket-based approach up to log p levels, followed by sorting each of the buckets, followed by

using a sort-based approach locally.

These �ve approaches are compared for di�erent number of levels (log p to logN) for di�erent

number of processors (8, 32, 128) for di�erent values of N=p (4K, 16K, and 128K) (see Figure 5).

These results show that for large values of N=p, strategy G3 is the best unless the number of levels

are close to logN for which G2 may be preferable. For small values of N=p, the strategy G4 is

preferable. If the number of levels are close to logN , G1 and G5 are the best.

For larger values of k, we would expect that one of the median or bucket-based strategies should

be used to construct the tree till log p levels. This would depend on the value of N=p and the target

architecture. The local tree construction should use median-based strategy. Using the above ap-

proach should result in software which will be close to the best for nearly all values of the parameters.

5 Reducing the Data Movement

The algorithms described for the parallel construction of the �rst log p levels of the tree require

massive data movement using transportation primitive at every level of the tree. The large number

of points per processor available allows for reducing the cost signi�cantly by using a di�erent

approach.
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Figure 5: Global tree construction for random data of size N
p = 4K, 16K, 128K on p= 8, 32, 128.

On the X-axis level i represents the tree is built to i levels ( a tree having 2i leaves)
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Figure 6: Total time for tree construction on 32, 64 and 128 processors up to the speci�ed level on

2M and 4M random data

Consider the median-based method for constructing the �rst log p levels of the tree. Initially,

all the N points belong to one partition and are distributed uniformly on all the p processors.

After �nding the median, the local data is divided into two sublists (typically of unequal size), each

belonging to one of the subpartitions. Rather than moving the data such that each subpartition

is assigned to a di�erent subset of processors, one can assume that these subpartitions are divided

among all the processors. Each processor potentially has di�erent number of points from each of

the two subpartitions. A median can be found for each of the subpartitions in parallel by combining

the communication (median calculation using randomized methods involves broadcasts and pre�x

calculation) and computation for both the lists. The local computation for each subpartition is

proportional to the number of points assigned to a given processor. Since the sum of the points from

each of the subpartitions assigned to a given processor is equal to N
p , the local work involved would

be balanced among all the processors. This approach can be repeatedly applied until the number of

subpartitions is equal to p. At this stage, the data can be distributed among the processors by using

a transportation primitive such that each processor has all the points of one of the p subpartitions.

The local tree can then be constructed on each processor without any communication. Although

the communication required for �nding the median for each of the last log p � 2 stages will be

larger than if the subpartitions were decomposed among subsets of processors, the overall time for

communication would be less because data movement costs would be signi�cantly reduced.

Suppose that i levels of the tree are already constructed. At this stage, there are 2i subpartitions,

each divided among all the processors. It is desired to �nd the medians for all the subpartitions

together. A parallel pre�x operation is performed for each of the subpartitions to number the

points in each processor belonging to a subpartition. All the 2i parallel pre�x operations can be

combined together. By generating appropriate random numbers, each processor determines if it has

the estimated median of each subpartition. Note that a processor may contain estimated medians

of any number of partitions between 0 and 2i. We need to broadcast the estimated medians to

all the processor. To avoid 2i broadcasts, we adopt the following strategy: Each processor has
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an array of size 2i corresponding to the 2i subpartitions, with all elements initialized to zero. If

a processor has the estimated median for a subpartition, it �lls the corresponding element of the

array with the estimated median. By a combine operation on this array using the `+' operation,

the required medians are stored on each processor. Using the 2i estimated medians, all processors

together reduce the size of the subpartitions under consideration. The iterations are repeated until

the total size of all the subpartitions falls below a constant. At this stage, all the subpartitions can

be gathered in one processor and the required medians can be found.

The cost of this algorithm in constructing level i + 1 of the tree from level i is O(N
p
+

ts log p logN+tw2
i log p logN) on a hypercube and O(N

p
+ts log p logN+tw2

i log p logN+th
p
p logN)

on a mesh. Constructing the �rst log p levels of the tree on a hypercube requires
Plogp�1

i=0 O(N
p
+

ts log p logN + tw2
i log p logN) time plus O(kNp + tsp + tw

kN
p + thp log p) time for the �nal data

movement. Thus, the run time is O(N
p
(log p+ k) + ts(p+ log2 p logN) + tw(

kN
p
+ p log p logN) +

thp log p). The corresponding time on the mesh is
Plogp�1

i=0 O(N
p
+ ts log p logN + tw2

i log p logN +

th
p
p logN)+O(kN

p
+ts

p
p+tw

kNp
p
) = O(N

p
(log p+k)+ts(

p
p+log2 p logN)+tw(

kNp
p
+p log p logN)+

th
p
p log p logN).

Compare the equations describing the run-time of the median-based method without and with

reduced data movement. For both hypercubes and meshes, we note that the computational cost

reduces from kN
p
log p to N

p
(k+ log p). This is the cost involved in local computations plus the cost

in copying the records to arrays for data movement. For hypercubes, the amount of data transferred

reduces by a factor of log p from kN
p
log p to kN

p
. The same analysis holds true for permutation

networks. However, on the mesh, the data transferred improves only by a small constant factor.

A similar strategy can be used to reduce the data movement for sorting as well as bucketing

method.

5.1 Experimental Results

We limited ourselves to applying this strategy to the median-based approach only. Figure 7 gives

a comparison of the two approaches (with and without data movement) for di�erent values of

N=p for log p levels of parallel tree construction. These results show that using the new strategy

gives signi�cant improvements due to lower data movement. CM-5 without vector units has a very

good ratio of unit computation to unit communication cost. This ratio is much higher for typical

machines. For these machines the improvement of the new strategy should be much better.

The median-based method with reduced data movement potentially reduces the data movement

cost by a factor of logP . Since the data movement cost is proportional to the size k of the individual

records storing points, the e�ect of extra overhead due to communication in the new method reduces

insigni�cant for higher dimensional data. Thus, the new strategy should give improved performance

as the number of dimensions is increased.
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Figure 7: Comparison of the two approaches for log p levels for di�erent values of N=p.

6 Conclusions

In this paper, we have looked at various strategies for the parallel construction of multidimensional

binary search trees. We have designed algorithms that use preprocessing to eliminate or ease the

task of median �nding at every internal node of the tree to investigate if such strategies lead to

faster algorithms than traditional median �nding approaches.

For two dimensional point sets, the median-based strategy is faster than the other strategies

for large values of N
p
. It also exhibits good scaling as can be seen by the run-time analysis and the

experimental results. This is true mainly because of the performance of the randomized median

�nding on random data sets. For arbitrary data sets, a randomization step can be performed with-

out much additional cost for the task of constructing a k-d tree. The methods using preprocessing

do not perform well for arbitrary levels mainly because the cost of preprocessing is high and can

be e�ectively amortized only if the tree is built almost completely. The sort-based method works

better than the median-based method if the tree is built with a single element per leaf. Note that

the conclusions we derive are based on the use of randomized algorithms for median �nding. In our

investigation of various algorithms for median �nding [1], we found that deterministic algorithms

are slower by an order of magnitude. Using deterministic median �nding algorithms would lead to

entirely di�erent conclusions. Bucket-based strategy proposed in the paper is found to be useful

for applications such as graph partitioning when the number of points per processor is small.

Even though our experiments were conducted for two dimensional point sets, they have certain

implications for higher dimensional point sets. For data in k dimensions, the preprocessing cost and

the cost of tree construction per level of sort-based and bucket-based methods increases proportional

to k. The median-based method remains una�ected in this regard. While the data movement time

in median-based methods increases proportional to k, it increases proportional to k(k� 1) in other

methods. Thus, based on the dismal performance of sort-based and bucket-based methods for

k = 2, we conclude that the median-based method is superior for k � 3.
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Our experiments with comparing median �nding with data movement at every stage and median

�nding with reduced data movement associate well with the idea of task versus data parallelism. For

this, we showed that utilizing task parallelism leads to worse results as compared to \concatenated"

data parallelism for large granularities. Theoretical as well as experimental analysis both suggest

that using data parallelism is preferable upto log p levels followed by running the tasks sequentially

in each of the processors.
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Appendix A

A Bernoulli trial has two outcomes namely success and failure, the probability of success being p.

A binomial distribution with parameters n and p, denoted as B(n; p), is the number of successes

in n independent Bernoulli trials.

Let X be a binomial random variable whose distribution is B(n; p). If m is any integer > np,

then the following are true:

Prob:[X > m] �
�
np

m

�m
e
m�np ;

Prob:[X > (1 + �)np] � e
��2np=3; and

Prob:[X < (1� �)np] � e
��2np=2

for any 0 < � < 1.

We say that a randomized algorithm has a resource bound of O(g(n)) with high probability if

there exists a constant c such that the amount of resource used by the algorithm for input of size

n is no more that c�g(n) with probability � 1� 1
n�
.
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