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Abstract

We review possible and probable industrial applications of HPCC focusing on the soft-

ware and hardware issues. Thirty-three separate categories are illustrated by detailed de-

scriptions of �ve areas|computational chemistry; Monte Carlo methods from physics to

economics; manufacturing, and computational 
uid dynamics; command and control, or

crisis management; and multimedia services to client computers and settop boxes. The

hardware varies from tightly-coupled parallel supercomputers to heterogeneous distributed

systems. The software models span HPF and data parallelism, to distributed information

systems and object/data
ow parallelism on the Web.

We �nd that in each case, it is reasonably clear that \HPCC works in principle," and

postulate that this knowledge can be used in a new generation of software infrastructure

based on the WebWindows approach, and discussed in an accompanying paper.

1 Introduction

This paper could be viewed as a feasibility study for the success and viability of HPCC. We

will analyze the majority of large-scale real-world problems, and �nd that it is relatively clear

that all \can" perform well on large-scale parallel and distributed systems. We put \can" in

quotes because most applications \will not," in fact, \run" well today, and it is quite hard to

�nd the necessary return on investment for signi�cant industrial investment in the use of HPCC

systems.

We believe that this is not a failure of the concept or the work on HPCC up to now, but

rather that now we know what to do, we must build a robust HPCC software and systems

infrastructure. In an accompanying paper [Fox:96c], we have suggested that the key to HPCC

is implementation of the essential technologies, concepts and capabilities on top of a perva-

sive technology, and application base. In contrast, today, HPCC is \top-down" with a set of

beautiful \niche" technologies that we can not a�ord to build, maintain, and integrate into a

robust infrastructure. Our proposed bottom-up approach is illustrated in Figure 1, which shows

both \high-end" applications|typically, the so called Grand Challenges [HPCC:96a]|and the
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Figure 1: Integration of Grand Challenges and Pervasive Technologies

\integrated" metaproblems|or national challenges. In the analysis that follows, we group pos-

sible industrial uses of parallel computers into 33 broad classes, which include both Grand and

National Challenges. In the �nal section, we describe �ve particular applications to illustrate

the analysis of the relevance of HPCC in their solution. These include Grand Challenges, such

as Monte Carlo simulation, computational 
uid dynamics, and molecular dynamics as well as

National Challenges, such as multimedia (Web) information systems, manufacturing, and com-

mand and control. The latter three areas are \metaproblems" (de�ned precisely in Section 2),

which integrate several distributed applications including component grand challenges, such

as vehicle and process simulation in manufacturing, and weather prediction in command and

control.

The bottom-up approach of Figure 1 is proposed so that one can build HPCC applications

and software on a commercially viable base [Fox:95k]. There are two such natural technol-

ogy springboards|�rstly, shared memory multiprocessors, and secondly, Web or distributed

computing. The �rst choice leads to the interesting distributed shared memory environments,

whereas the second is naturally a message passing environment. We expect that both these

\viable bases" should and will be explored. One important feature of the broader distributed

computing base is that it \by de�nition" includes \everything," and so one can build complete

metaproblems in terms of a single technology framework.

From this point of view, this paper can be considered as a summary of results and require-

ments for \top of the pyramid" software, algorithms, and applications that need to be used in

designing and building the bottom-up HPCC technology.

Section 2 reviews our general study of the structure of problems, as this is helpful in under-

standing the appropriate hardware and software system in each case.

In Section 3, we show how the di�erent problem categories or architectures are addressed

by parallel software systems with di�erent capabilities. We give illustrative examples, but

not an exhaustive list of existing software systems with these characteristics. We consider

High Performance Fortran and its extensions as a data parallel language; message passing

systems, such as those supplied with commercial multicomputers; as well as approaches to

software integration. In Section 2, we point that our old classi�cation of problems omitted

metaproblems|problems built up from several components|each of which could have its own

parallelization issues.
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Note that our discussion is far more complete in the classic HPCC (parallel processing,

MPP) areas, as we have far more examples, and a clearer understanding of the programming

paradigms have than for the National (NII) challenges. However, we indicate where NII (Web)

concepts, such as Java or VRML might �t as our environments evolve to include these rapidly

developing technologies.

In Section 4, we combine the previous sections and describe informally the problem architec-

ture, and possible software and hardware needs for a selection of \real-world" applications. We

have grouped our discussion into �ve broad case studies; Monte Carlo methods; computational

chemistry; manufacturing and computational 
uid dynamics; command and control; InfoVI-

SiON, or the delivery of multimedia information on the \digital" superhighway. These cover

a range of software issues including, as we discussed, both the grand and national challenges,

and spanning both the bottom and top of the pyramid. We conclude with a glossary of some

terms used here, and in the accompanying paper [Fox:96c].

The applications, and their classi�cation come from a survey of New York State industry

[Fox:92e], [Fox:94a], [Fox:94b], [Fox:94c], [Fox:94h], [Fox:94i], [Mills:93a]. Tables 1{4 summa-

rizes the industrial opportunities for parallel computing in the form we will use them. Some

80 di�erent applications used in the survey have been broken up into 33 distinct areas. This is

certainly somewhat arbitrary, and there are many overlaps (and omissions). The importance,

di�culty of implementation, and degree of risk also di�er from case to case. However, these

issues will not be discussed here.

Table 1 describes the general guidelines used in organizing Table 4. Note that we did not

directly cover academic areas, and a more complete list (which included our industrial table)

was produced by the Peta
ops meeting [Peta:94a]. Notice that Tables 1{4 are organized around

the concept of \information." This corresponded to an early realization from the survey that the

major industrial opportunities for HPCC in New York State were information related. Thus,

for instance, simulation is subtitled \Information Production" with say, computational 
uid

dynamics simulations providing information to be used in either manufacturing (application

32) or education (application 33). It is not directly relevant to this paper, but the results of

this survey caused the ACTION program to refocus its e�orts and evolve into InfoMall [Fox:93c],

[Fox:94f], [Fox:94h], [Fox:95b], [Infourl:95a], [Mills:94a]. Here, \Info", in InfoMall, refers to the

information based application focus and \Mall" to the use of a virtual corporation (groups of

\storeholders") to produce the complex integrated applications enabled by HPCC.

The �rst column of Table 4 contains the area label and some sample applications. There is

also a pointer to Section 4, if appropriate. Algorithmic and other comments are in column two.

The third and fourth columns describe, respectively, the problem architecture and an estimate

of appropriate parallel software approach. The background for these two columns is described

in the following two sections.
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Table 1: Guidelines used in Developing Categories of Industrial and

Government Applications of HPCC shown in Tables 3{4

� De�ne information generally to include both CNN headline news and the insights

on QCD gotten from lattice gauge theories. There are four broad categories.

� Information Production (e.g., Simulation)

� Major concentration of MPPs and Grand Challenges at present

� Information Analysis (e.g., Extraction of location of oil from seismic data, Ex-

traction of customer preferences from purchase data)

� Growing area of importance and Short term major MPP opportunity in decision

support combined with parallel databases

� Information Access and Dissemination|InfoVision (e.g., Transaction Pro-

cessing, Video-On-Demand)

� Enabled by National Information Infrastructure. World Wide Web, and online

services are \prototype"

� Very promising medium term market for MPP but need the NII to be reasonably

pervasive before area \takes o�"

� MPPs used as high performance, high capacity, multi-media servers

� Information Integration

� Integrates Information Production, Analysis and Access, e.g.,

{ Decision support in business

{ Command and Control for Military

{ Concurrent Engineering and Agile Manufacturing

� Largest Long Term Market for MPP
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Table 2: Abbreviations used in Tables 3{4 of Industrial Applications of HPCC

Adaptive Software for Irregular Loosely Synchronous Problems handled by HPC++,

HPF extensions, Message Passing (Table 6)

Asyncsoft Parallel Software System for (particular) class of asynchronous problems

(Table 6)

CFD Computational Fluid Dynamics

ED Event Driven Simulation

FD Finite Di�erence Method

FEM Finite Element Method

HPF High Performance Fortran [HPF:93a], [HPFF:95a]

HPF+ Natural Extensions of HPF [Choudhary:92d], [HPF:94a], [HPFapp:95a]

Integration Software to integrate components of metaproblems (Table 6)

MPF Fortran plus message passing for loosely synchronous programming support

PDE Partial Di�erential Equation

TS Time Stepped Simulation

VR Virtual Reality

Note on Language: HPF, MPF use Fortran for illustration, one can use parallel Java, C, C++

or any similar extensions of data parallel or message passing languages
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Table 3: Five Categories of Problems

Problem Architecture Overall Software

Issue

Synchronous: Data Parallel

Tightly coupled and software needs to exploit fea-

tures of problem structure to get good perfor-

mance. Comparatively easy as di�erent data ele-

ments are essentially identical.

Data Parallel

Loosely Synchronous: Data Parallel

As above, but data elements, and/or their linkage,

are not identical. Still parallelizes due to macro-

scopic time synchronization.

Data Parallel, but harder to ex-

press and implement

Asynchronous:

Functional (or data) parallelism that is irregular

in space and time. Often loosely coupled and

so need not worry about optimal decompositions

to minimize communication. Hard to parallelize

(massively) unless : : :

Di�cult Task or object parallel

Embarrassingly parallel:

Essentially independent execution of disconnected

components (can involve reductions, e.g., global

sums to accumulate information).

Possible in most software

Metaproblems

Asynchronous collection of (loosely) synchronous

components where these programs themselves can

be parallelized

Coarse grain parallelism|each

component data parallel di�erent

components typically integrated

by object, data
ow, or task par-

allel systems.
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Table 4: Industrial HPCC Applications 1 to 5: SIMULATION

Application Area Problem Machine

Item and Examples Comments and Software

1 Computational � PDE, FEM � SIMD, MIMD for

Sec. Fluid Dynamics � Turbulence irregular adaptive

4.3 � Aerospace � Mesh Generation � HPF(+) but

� Military, Civilian � Unclear for

Vehicles adaptive irregular

� Propulsion mesh

2 Structural � PDE, FEM � MIMD as complex

Sec. Dynamics � Dominated by geometry

4.3 Vendor Codes such � HPF(+)

as NASTRAN

3 Electromagnetic � PDE solved by

Sec. Simulation moment method SIMD

4.2, � Antenna Design � Matrix solve HPF

4.3 � Stealth Vehicles dominates

� Noise in high � Newer FEM and SIMD, MIMD

frequency circuits FD Methods? HPF(+)

� Mobile Phones � Also fast multipole

4 Scheduling Expert Systems MIMD

Sec. � Manufacturing and/or (unclear Speedup)

4.1, � Transportation AsyncSoft

4.3 (Dairy delivery to Neural Networks SIMD

Military deployment) Simulated annealing HPF

� University Classes Linear Programming MIMD

� Airline Scheduling (hard sparse matrix) HPF+?

of crews, planes

in static or dynamic

(Syracuse snow

storm) cases

5 Environmental � PDE, FD, FEM � SIMD but

Modeling| � Sensitivity to � MIMD for

Earth/Ocean/Atmos- Data irregular adaptive

pheric Simulation mesh

� HPF(+) except

this unclear

for adaptive

irregular mesh
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Table 4: Industrial HPCC Applications 6 to 10: SIMULATION

Application Area Problem Machine

Item and Examples Comments and Software

6 Environmental � Empirical Models � Some SIMD but

Sec. Phenomenology � Monte Carlo and � MIMD more

4.1 |Complex Systems, Histograms natural

(Lead Concentration � HPF

in blood, acid rain in

the Adirondacks)

7 Basic Chemistry � Calculate Matrix � Probably MIMD

Sec. � Chemical Potentials Elements with perhaps

4.1, � Elemental Reaction � Matrix Eigenvalue SIMD possible

4.2 Dynamics determination, � HPF

Inversion,

Multiplication

8 Molecular Dynamics � Particle Dynamics � HPF(+) except

Sec. in Physics & Chemistry with irregular � need MPF or data

4.2 � Biochemistry cuto� forces parallel C++ for

� Discrete Simulation � Fast Multipole fast multipole

Monte Carlo for Methods

CFD (DSMC) � Mix of PDE and

� Particle in the Cell Particle methods

(PIC) in PIC and DSMC

9 Economic Modelling � Single �nancial

Sec. � Real Time instrument by SIMD, HPF

4.1 Optimization Monte Carlo [Makivic:95a]

� Mortgaged backed � Full Simulations MIMD or SIMD

Securities of complete with Integration

� Option Pricing portfolios Software

10 Network Simulations � Sparse matrices � MIMD

� Electrical Circuit � Zero structure � HPF for matrix

� Microwave and VLSI de�ned by elements

� Biological (neural) connectivity � MPF or library

Circuit for matrix solve
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Table 4: Industrial HPCC Applications 11 to 13: SIMULATION

Application Area Problem Machine

Item and Examples Comments and Software

11 Particle Transport Monte Carlo Methods

Sec. Problems as in neutron MIMD

4.1 transport for (nuclear) HPF

explosion simulations

12 Graphics (rendering) HPF for simple ray

� Hollywood � Several Operational tracing but MPF

� Virtual Reality Parallel Ray tracers for best algorithms

(VRML needs � Distributed model MIMD & Asyncsoft

parallelism?) hard for distributed

database

13 Integrated Complex � Event Driven � Timewarp or other

System Simulations (ED) and Event Driven

� Defense (SIMNET, � Time stepped Simulation needs

DSI, Flight Simulators) (TS) simulations Appropriate

� Education � Virtual Reality Asyncsoft

(SIMCITY) Interfaces � Integration

� Multimedia/VR in � Database backends Software

Entertainment � Interactive � Database

� Multiuser Virtual HPF+ for TS

Worlds Simulation

� Chemical and

Nuclear Plants
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Table 4: Industrial HPCC Applications 14 to 18: Information

Analysis|\DataMining"

Application Area Problem Machine

Item and Examples Comments and Software

14 Seismic and � Parallel Computers � SIMD useful but

Environmental already important MIMD might be

Data Analysis but necessary

� No oil in New � HPF

York State

15 Image Processing � Many commercial � Metacomputer

Sec. � Medical Applications of � Low Level

4.4 Instruments Defense Technology Vision is SIMD

� EOS (mission to � Component of many and HPF

Planet Earth) \metaproblems" � Medium/High Level

� Defense (Information Vision is MIMD

Surveillance Integration category) and HPF(+)

� Computer Vision � e.g., Computer � Software Integration

Vision in Robotics needs Asyncsoft

and Database

16 Statistical Analysis � Optimization HPF+ and especially

Packages and � Histograms C++ analogues is

Libraries � See application excellent for many

area 4 libraries

17 Healthcare Fraud Linkage Analysis of � SIMD or MIMD

Sec. � Ine�ciencies Data records � Parallel Relational

4.1 � Securities Fraud for correlations and Database access

� Credit Card outlier detection plus application

Fraud area 16

18 Market Sort and classify � Some cases are

Sec. Segmentation records to determine SIMD

4.1 � Mail Order customer preference � Parallel Database

� Retail by region from city to plus application

� Banking even individual home area 16
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Table 4: Industrial HPCC Applications 19 to 22 for Information

Access InfoVision|Information, Video, Imagery

and Simulation on Demand (Sec. 4.5)

Application Problem Machine &

Item Area Comments Structure Software

19 Transaction � Database-most Embarrassingly MIMD

Processing transactions short. Parallel Database

� ATM � As add \value"

(automatic this becomes

teller machine) Information

integration

20 Collaboration Research Center or Asynchronous High Speed

� Telemedicine doctor(s)|patient Network

� Collaboratory interaction without

for Research regard to physical

� Education location

� Business

21 Text on � Multimedia Embarrassingly MIMD

Sec. Demand database Parallel Database

4.5 � Digital (existing) (see areas 22, 23)

libraries � Full text search

� ERIC Education

database,

� United Nations-

Worldwide

newspapers

22 Video on � Multimedia Embarrassingly � MIMD

Sec. Demand Database Parallel for � Database

4.5 � Movies, News � Interactive VCR, multiple Users � Video Editing

(CNN Newsource Video Browsing, Software

& Newsroom), � Link of Interesting

� Current cable, video and text parallel

� United Nations- database compression � SIMD

Policy Support compression
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Table 4: Industrial HPCC Applications 23 to 24 for Information

Access InfoVision|Information, Video, Imagery

and Simulation on Demand (Sec. 4.5)

Application Problem Machine &

Item Area Comments Structure Software

23 Imagery on � Multimedia � Metaproblem MIMD but

Demand database � Embarrassingly much SIMD

Sec. � Kodak Global � Image Parallel plus image

4.5 Image On Demand Understanding for � Loosely analysis

� \clip art" on Content searching Synchronous

demand and (terrain) Image

� Medical images medical feature Understanding

� Satellite images identi�cation

24 Simulation on � Multimedia map � Synchronous � SIMD terrain

Demand database terrain engine (parallel

Sec. � Education, � Generalized rendering with rendering)

4.1, Tourism, City 
ight simulator � Asynchronous � MIMD

4.4, planning, � Geographical Hypermedia database

4.5 � Defense Information � Integration

mission planning System software

� VRML displays in

the home from

weather simulations

� Financial modeling on

server or client to

aid investment
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Table 4: Information Integration Applications 25 to 28

� These involve combinations of Information Production, Analysis, Access and Dis-

semination and thus need the Integration of the various Software and Machines

Architecture Issues discussed under previous application areas.

� Many need collaboration and \computational steering" technology correspond-

ing to integration of computers, people, and instruments \in the loop."

� Sometimes Called System of Systems

� 25: Military and Civilian Command and Control (C2, C3, C4I : : :)

(Sec. 5.4)

� Battle Management, Command, Control, Communication, Intelligence and

Surveillance (BMC3IS)

� Military Decision Support

� Crisis Management|Police and other Government Operations

� SIMNET (now DSI|Distributed Simulation Internet) simulates this and with

people and computers in the loop has many of same issues

� 26 to 28: Applications of InfoVision Services (Sec. 5.5)

� Generalize Compuserve, Prodigy, America Online, Dialog and Other Infor-

mation Services, implemented with Web Server, Digital Library, Internet, and

Netscape/Java/VRML/.. technology.

� 26: Decision Support Information and Entertainment for Society

� Settop Box/PC based Information Systems

� Community Information Systems

� Travel and Generalized Yellow Page Services

� 27: Business Decision Support|One example is:

� Health Care with Image and Video databases supporting telemedicine

� 28: Public Administration and Political Decision Support

� Government Information Systems

� Maxwell School at Syracuse University teaches use of realtime video to aid

world wide decisions (United Nations)
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Table 4: Information Integration Applications 29 to 33

� 29: Real-Time Control Systems

� Robotics uses Imagery to make decisions (control vehicles)

� Energy management controls power use and generation

� 30: Electronic Banking

� Requires Security, Privacy, Authentication, Electronic Cash, etc.

� 31: Electronic Shopping

� 32: Agile Manufacturing|Multidisciplinary Design

and Concurrent Engineering (Sec. 4.4)

� Combines CAD with Applications 1 to 3

� Requires major changes to Manufacturing Infrastructure and Approach

� 33: Education (Sec. 4.5)

� Many commonalities with Application 25

� InfoMall Living Schoolbook|6 Schools on ATM network linked to HPCC InfoVi-

sion Servers at NPAC [Mills:95a]

This paper is not intended to advocate a particular parallel software environment or lan-

guage. Rather, we want to describe the broad capabilities of, and give examples of the parallel

programming paradigm needed for the applications of Table 4. We believe that the program-

ming functionality needed by a particular application is broadly determined by the problem

architecture described in the following section. In discussing software needs, we do not discuss

all the components of the parallel software environment, but just those relevant for expressing

problems.

For this reason, we use broad software classi�cations using, for instance, MPF (Fortran plus

message passing) as typical of all similar explicit messaging systems|one could substitute here

C plus message passing, or Fortran M programming environments. Again, PVM, MPI, or any

such message passing system could be used without changing the signi�cance of the tables.

High Performance Fortran is used as a typical data parallel language, although this has an

evolving de�nition and similar C++, or even Java, environments could well be more attractive,

and can be substituted in the table.

2 Problem Architectures

We have described our classi�cation of problem architectures several times before, but here we

just summarize it.

This classi�cation [Angus:90a], [Denning:90a], [Fox:88b;90p;91g;94a], was deduced from our

experience at Caltech combined with a literature survey that was reasonably complete up to the

middle of 1989. At Caltech, we developed some 50 applications on parallel machines, 25 of which

led to publications in the scienti�c literature, describing the results of simulations performed on

our parallel computers [Fox:87d] [Fox:88a], [Fox:88oo], [Fox:89n]. Our Caltech work was mainly

on the hypercube, but the total of 300 references used in original classi�cation covered work on
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Figure 2: Computation and Simulation as a Series of Maps

the Butter
y, transputers, the SIMD Connection Machine, and DAP. We originally identi�ed

three temporal structures and one especially important (as it was so simple) spatial structure,

which are the �rst four entries in Table 3. Chapter 3 of [Fox:94a] describes a \complex systems"

approach to computation and introduces the spatial and temporal structure of problems and

computers. We studied software as a mapping (Figure 2) of problems to computers with the

software structure determined by the structure (architecture) of both the individual complex

systems|computers and problems|and their interrelation. In Figure 3, we summarize issues

in the spatial-temporal plane. \Space" here refers to data (problem) or nodes and their linkage

(computer). \Time" is iteration number and simulation time (problem) or counts clock cycles

(computer).

The three general temporal structures are called synchronous, loosely synchronous, and

asynchronous. The temporal structure of a problem is analogous to the hardware classi�cation

into SIMD and MIMD. Further detail is contained in the spatial structure or computational

graph of Figure 4a describing the problem at a given instant of simulation time [Fox:88tt].

This is important in determining the performance, as shown in Chapter 3 of [Fox:94a] of an

implementation, but it does not a�ect the broad software issues discussed here. In Table 3, we

only single out one special spatial structure, \embarrassingly parallel," where there is little or

no connection between the individual parallel program components. For embarrassingly parallel

problems, illustrated in Figure 5, the synchronization (both software and hardware) issues are

greatly simpli�ed.

Synchronous problems are data parallel in the language of Hillis [Hillis:87a] with the re-

striction that the time dependence of each data point is governed by the same algorithm. Both

algorithmically and in the natural SIMD implementation, the problem is synchronized micro-

scopically at each computer clock cycle. Such problems are particularly common in academic

applications as they naturally arise in any description of some world in terms of identical funda-
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Essentially Independent Parallel Processes

Example: Divide large database among processors and independently search each portion of

database to answer query.

Figure 5: Embarrassingly Parallel Problem Class

mental units. This is illustrated in Figure 6 by quantum chromodynamics (QCD) simulations

of the fundamental elementary particles that involve a set of gluon and quark �elds on a regular

four-dimensional lattice. These computations form one of the largest use of supercomputer time

in academic computing.

Loosely synchronous problems are also typically data parallel, but now we allow di�erent

data points to be evolved with distinct algorithms. Such problems appear whenever one de-

scribes the world macroscopically in terms of the interactions between irregular inhomogeneous

objects evolved in a time synchronized fashion. Typical examples, as in Figure 7, are computer

or biological circuit simulations where di�erent components or neurons are linked irregularly

and modeled di�erently. Time driven simulations and iterative procedures are not synchro-

nized at each microscopic computer clock cycle, but rather only macroscopically \every now

and then" at the end of an iteration or a simulation time step.

Loosely synchronous problems are spatially irregular, but temporally regular. The �nal

asynchronous class is irregular in space and time, as in Figure 4b. A good example is an event

driven simulation, illustrated in Figure 8, that can be used to describe the irregular circuits

we discussed above, but now the event paradigm replaces the regular time stepped simulation.

Other examples include computer chess [Felten:88i] and transaction analysis. Asynchronous

problems are hard to parallelize and some may not run well on massively parallel machines.

They require sophisticated software and hardware support to properly synchronize the nodes

of the parallel machine, as is illustrated by time warp mechanism [Wieland:89a].

Both synchronous and loosely synchronous problems parallelize on systems with many

nodes. The algorithm naturally synchronizes the parallel components of the problem with-

out any of the complex software or hardware synchronization mentioned above for event driven

simulations. In the original survey, 90% of the surveyed applications fell into the classes that

parallelize well. This includes 14% from the embarrassingly parallel classes, and roughly equal

(38% each) amounts from synchronous or loosely synchronous class. It is interesting that

massively parallel distributed memory MIMD machines that have an asynchronous hardware
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EXAMPLE OF SYNCHRONOUS PROBLEMS

For example:

Microscopic Description of Fundamental Interactions

| In Particular, QCD
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� Computational structure (almost) identical for all elements in the data domain

� Parallelize by regular partition of data domain

� Run well on SIMD machines

� Message Passing or High Performance Fortran implementation on MIMD ma-

chines

Figure 6: The Synchronous Problem Class
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For example:  Macroscopic description of physical
system in terms of interactions between irregular
inhomogeneous objects evolved as a time
synchronized simulation.  
In particular - biological neural networks

Loosely Synchronous Problems - 
Example from Biology and General Structure
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Parallelize by irregular partition of data domain

Hardware:
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Software:
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Figure 7: The Loosely Synchronous Problem Class

19



ASYNCHRONOUS PROBLEMS

For example:

The world looked at macroscopically in terms of interactions between irregular inhomogeneous

objects evolved as an event-driven simulation

T
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E

SPACE

ouch

take
cover ouch

#1 division march

fire

think

hide

#2 division fire

Harold (and his men) archers pikemen the other guysTheir Commander

Battle of Hastings

� Parallelize by \data parallelism" over space of events but no automatic algorithmic syn-

chronization

� Need sophisticated software built on top of message passing between events to ensure

synchronization

� Speedup very problem-dependent

� MIMD architectures essential

� See SIMNET or DSI with very loosely coupled distributed event-driven simulation

Figure 8: The Asynchronous Problem Class
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architecture are perhaps most relevant for loosely synchronous scienti�c problems.

We have looked at many more applications since the detailed survey in [Fox:88b], and the

general picture described above remains valid. Industrial applications have less synchronous and

more loosely synchronous problems than academic problems. We have recently recognized that

many complicated problems are mixtures of the basic classi�cations. The �rst major example

with which I was involved was a battle management simulation implemented by my collaborators

at JPL [Fox:94a], [Meier:89a]. This is formally asynchronous with temporally and spatially

irregular interconnections between various modules, such as sensors for control platforms and

input/output tasks. However, each module uses a loosely synchronous algorithm, such as the

multi-target Kalman �lter [Gottschalk:90b] or the target-weapon pairing system. Thus, the

whole metaproblem consists of a few (� 10{50) large grain asynchronous objects, each of which

is a data parallel synchronous or loosely synchronous algorithm. This type of asynchronous

problem can be implemented in a scaling fashion on massively parallel machines. We call this

a metaproblem or asynchronous combination of several synchronous or loosely synchronous

problems. A similar example of this asynchronous or embarrassingly synchronous problem

class is machine vision and signal processing, where one �nds an asynchronous collection of

data parallel modules to perform various image processing tasks, such as stereo matching and

edge detection. Figure 9 illustrates another example where we outline an approach to designing

a new airframe that involves aerodynamics, structures, radar signature, and the optimization

discussed later in Section 4.3. This �gure also points out the interesting analogy between

heterogeneous metaproblems, and a heterogeneous computer network. Section 4.3 and Figure 12

gives a more concrete example of such a metaproblem, which as usual, involves both database

(I/O), and computational subproblems.

In the above cases, the asynchronous components of the problems were large grain modules

with modest parallelism. This can be contrasted with Otto and Felten's MIMD computer

chess algorithm, where the asynchronous evaluation of the pruned tree is \massively parallel"

[Felten:88i]. Here, one can break the problem up into many loosely coupled but asynchronous

parallel components, which give excellent and scalable parallel performance. Each asynchronous

task is now a synchronous or loosely synchronous modestly parallel evaluation of a given chess

position.

The World Wide Web is an enormous metasystem with many task parallel subproblems

(Web servers handling many connections). Examples include data or task parallel \applets"

handling computationally intense client computing for �nancial modeling, or a VRML rendering

job. Data parallelism occurs in large data mining sub-applications on servers with links to Java

or VRML clients, that just handle visualization and interpretation modules.

There were a few examples of metaproblems in our original survey, but a major part of

Table 4, from our New York State activity, is the Information Integration classi�cation. This

class includes manufacturing and the applications 25{33, all examples of metaproblems. As

stated boldly in Table 1, this class is the most important long-term area for HPCC, and is

discussed in Sections 4.3 and 4.4. Further, as in battle management case, many problems

that formerly appear asynchronous and were classi�ed in this way in our original survey, are

in fact metaproblems. Thus, the parallelism does not come from the di�cult (impossible?)

asynchronous structure, but the synchronous or loosely synchronous components buried inside

the asynchronous shell. Thus, we believe metaproblems and their software support to be very

important.
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Figure 9: The Mapping of Heterogeneous Metaproblems onto Heterogeneous Metacomputer
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3 Some Software and Machine Issues

Naturally parallel implementations work \best" if the machine architecture is \similar" to that

of the problem. This is summarized in Table 5 where to be precise, success requires that

the machine architecture \contains" (is a superset of) the problem architecture. Thus, both

SIMD and MIMD machines express synchronous problems, but SIMD machines are typically

unsuitable for loosely synchronous problems.

Table 5: What is the \Correct" Machine Architecture

for each Problem Class?

Problem Class Machine

Synchronous SIMD, MIMD

Loosely Synchronous MIMD, maybe SIMD

Asynchronous MIMD, but may not perform well

without special hardware features

Compound Heterogeneous network

(Metaproblems) (including World Wide Web)

Embarrassingly Parallel Network of workstations

MIMD, World Wide Web,

sometimes SIMD

Software systems need to be designed so that they can express problems well, and be targeted

to relevant machines. Software should not be designed for a particular machine model|it

expresses problem and not machine characteristics.

We have described those issues at length in [Fox:90p;91g;94a], and here we present only a

simple table (Table 6) mapping the �ve problem architectures into possible software environ-

ments. This is presented in a di�erent fashion for HPF and HPC++ in Figure 10 and Table 7,

which also points out the distinct runtime support needed for each problem class. One always

has a tradeo� between performance and 
exibility. Systems listed under \asynchronous" in Ta-

ble 6 can typically also be used for synchronous and loosely synchronous problems. As shown

in Figure 11, the \asynchronous" software used on loosely synchronous problems will probably

provide greater 
exibility, but lower performance than software systems explicitly designed for

this problem class.
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Table 6: Candidate Software Paradigms for Each Problem Architectures

� Synchronous: High Performance Fortran (HPF) [Foster:95a], [HPFCSep:95a],

[Koelbel:94a]; Fortran 77D [Bozkus:93a], [Fox:91e], [Hiranandani:92c]; Vienna

Fortran [Chapman:92b]; C* [Hatcher:91a;91b]; Crystal [Chen:88b]; APL; For-

tran for SIMD parallel computers

� Loosely Synchronous: Extensions of the above, especially HPF

[Chapman:94b], [Choudhary:92d], [HPF:94a]; and parallel HPC++ [Bodin:91a],

[Chandy:93a], [Grimshaw:93b], [Lemke:92a]; Fortran or C plus message passing

[Fox:91m], [McBryan:94a]

� Asynchronous: Linda [Factor:90a;90b], [Gelertner:89a]; CC++ [Chandy:93a];

Time Warp [Wieland:89a]; PCN [Chandy:90a]; WebWork [Fox:95a], including

Java based distributed simulation

� Compound Metaproblems: AVS [Mills:92a;92b], [Cheng:93a]; PCN, Linda

(or Trellis built on Linda); Webwork (CGI, Java,and Javascript Integration)

[Fox:96c]; Fortran-M [Foster:95a]. Generally, extensions of ADA, Fortran, C,

or C++ controlling modules written in synchronous or loosely synchronous

approach

� Embarrassingly Parallel: Several approaches work?

� PCN, Linda, WebWork, PVM [Sunderam:90a], Network Express

[Parasoft:88a], ISIS [Birman:87a;87b;91a]

Table 7: Imprecise Mapping of Problem Classes into Runtime

and Language Terms

� STATIC Runtime

� Synchronous and Embarrassingly Parallel Problems|current HPF

� ADAPTIVE Runtime

� Loosely Synchronous but not Synchronous|future capabilities of High

Performance Fortran (HPF+) but can be supported well in message passing

� ASYNCHRONOUS Runtime

� Asynchronous Problems

� Support rollback, as in time warp

� Java thread based systems very promising

� INTEGRATION Runtime and Programming Environments

� Metaproblems

� AVS works well, but such integration capability also can be integrated into

languages such as HPC++, Fortran-M

� Web Technology very important|JavaScript integrates frames in a

Netscape Metawindow
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Figure 11: Mapping of Asynchronous, Loosely Synchronous, and Synchronous Levels or Compo-

nents of Machine, Software and Problem. Each is pictured hierarchically with the asynchronous

level at the top and synchronous components at lowest level. Any one of the components may

be absent.

Loosely synchronous problems are in some sense the hardest as they have di�cult ir-

regularities which must be expressed with high e�ciency by the underlying compiler and

runtime systems. We, and others, have discussed this at length, both in general [Choud-

hary:92d;92e], [Fox:90p], [Goil:94a;95a], , and in case of High Performance Fortran [Bogucz:94a],

[Chapman:94b], [Cheng:94e], [Choudhary:92g;94c], [Fox:94g], [Hawick:95a;95c], [HPF:94a],

[HPFapp:95a], [Joubert:95a], [Muller:95a], [Robinson:95a], [Sturler:95a].

Note that Figure 10 refers to \HPF+"|this is some extension, called o�cially HPF2 (and

later 3 perhaps) of HPF [HPF:93a], [HPFF:95a] to �ll gaps in the original language. The current

HPF1 handles most synchronous and embarrassingly applications, but requires extension to

handle the adaptive irregular data structures typical of loosely synchronous problems.

We now quantify these remarks with three case studies, which will link the material of

Sections 2 and 3.

4 General HPCC Hardware and Software Issues for Five Case

Studies

We now illustrate the di�erent machine, problem, and software issues with �ve case stud-

ies. These are each broad application areas where there is no one approach. Rather, several

very distinct application subclasses are present in each case for which di�erent programming

paradigms and machine architectures are appropriate. We will move from compute dominated

to communication/data intensive cases.
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4.1 Monte Carlo Methods (Applications 4, 6, 7, 9, 11)

We have already mentioned in Section 2, Quantum Chromodynamics Simulations as a classic

example of large scale Monte Carlo simulations suitable for parallel machines. As described in

Chapter 4 of [Fox:94a], this application is straightforward to parallelize and very suitable for

HPF as the basic data structure is an array. The array represents a regular structure in space

time as seen in the simplest �nite di�erent problems. The Monte Carlo occurs at each grid point

and is typically local (nearest neighbor) so that the overall problem architecture is just like that

of a PDE. This speci�c computation is from an academic �eld, but is typical in structure of

some practical material science problems. Further, just as many PDEs have irregular data

structures, the same is true of many Monte Carlos. QCD is typical of simulations of crystalline

substances with a regular array of atoms. However, many substances|in particular gases and

liquids|have irregular particle distributions and many of issues discussed brie
y in Section 4.3

for �nite element methods. As described in Chapter 14 of [Fox:94a], there is a subtle point that

distinguishes Monte Carlo and PDE algorithms as one cannot simultaneously update in Monte

Carlo, sites with overlapping neighbors. This complicates the loosely synchronous structure and

can make problem architecture look like that of asynchronous event driven simulations|here

events are individual Monte Carlo updates. \Detailed balance" requires that such events be

sequentially (if arbitrarily) ordered. In the example of [Johnson:86c] described in [Fox:94a], a

clever implementation gave good parallel performance.

Monte Carlo methods can be implemented quite di�erently|above we decomposed the

underlying physical data. One can also use \data parallelism" on the random number set

used in the simulation. This is not possible for QCD for two reasons. Firstly, the physical

dataset is so large it would not �t in the memory of a single node|we need to decompose the

physical dataset just to get enough total memory. More importantly, one can run QCD with

several di�erent starting points. However, all Monte Carlos|using importance sampling of the

Metropolis type employed by QCD|have a \thermalization stage" where one must get \into

equilibrium" before the sampling is useful. Thermalization is very time consuming for QCD and

makes multiple starting points of limited value. However, there are many cases where this is not

true, and as shown in Chapter 7 of [Fox:94a], one can get an embarrassing parallel architecture

for Monte Carlo problems. Each instance of the problem has the full physical dataset, but can

be run independently with di�erent random number streams. Like many such embarrassingly

parallel cases, the di�erent instances do need to accumulate their data|in this case, Monte

Carlo averages. One important examples of this class of application is Quantum Monte Carlo

used in many ab initio chemistry problems [Kalos:85a].

Yet, a di�erent set of issues comes with a class of Monte Carlo problems which are termed

\clustered." In most physical system Monte Carlos, one updates a single \entity" (grid point

or particle) at a time. This is very ine�ective when there is substantial correlation between

neighboring points. A simple example comes from ferromagnetic materials where domains form

where spins are locked in the same direction over large regions., Clustering algorithms are quite

hard to �nd for sequential systems, and their parallelization is challenging and very di�erent

from the earlier examples. As discussed in Section 12.6 of [Fox:94a], the algorithm is similar

to that used in region �nding in image processing [Copty:93a;94a;95a]. Parallelism requires

consideration (as in domain decomposition for PDEs) of inter and intra region issues.

Makivic [Makivic:95a] has described the implementation of sophisticated path integral

Monte Carlos for economic modeling, in particular for option pricing. He describes an HPF im-
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plementation, but one would probably use simple parallel C++ (or even Java) in a production

implementation, as parallelization is rather straightforward with an array holding the di�erent

Monte Carlo paths linked by global reduction operations. This �eld shows a generalization to

metaproblems when pricing a full portfolio consisting of many separate �nancial instruments.

4.2 Computational Chemistry and Electromagnetics
(Applications 3, 7, and 8)

Many chemistry problems are formulated in terms of states of a chemical system, which can be

labelled by an index corresponding to species, choice of wave function, or internal excitation (see

Chapter 8 of [Fox:94a]). The calculation of energy levels, potential or transition probability can

often be related to a matrix Mij whose rows and columns are just the possible system states.

M is often an approximation to the Hamiltonian of the system or it could represent overlap

between the states. There are two key stages in such problems

a) �rstly, calculate the matrix elements Mij

b) secondly, perform one or more of a set of matrix operations

{ Matrix Multiplication as in change of basis

{ Matrix Eigenvalue determination as in energy level computations

{ Matrix Equation solution as in solving multichannel scattering problems

This structure has been elegantly exploited within the \Global Array" programming model

built at Paci�c Northwest Laboratory [Nicplocha:94a] with a set of tools (libraries) designed

for this class of computational chemistry problem.

These two steps have very di�erent characteristics. The matrix element computations a), is

of the embarrassingly parallel case as each Mij can essentially be calculated independently even

though subexpressions may be shared between two or more distinct Mij. Each Mij is a multi-

dimensional integral with the computation depending on the details of the states i and j. Thus,

this computation is very time consuming and is not suited for SIMD machines. The natural

parallel algorithm associates sets of (i; j) with each node of a parallel computer. There are some

relatively straightforward load balancing issues and essentially no internode communication.

Thus, a MIMD cluster of workstations with modest networking is su�cient for this step a).

The �nal matrix manipulations have quite a di�erent character. These synchronous problem

components are suitable for SIMD machine and often required substantial communication so

that a workstation cluster will not be e�ective. Matrix multiplication could be exception as it

is insensitive to latency and communication bandwidth for large matrices and so suitable for

workstation clusters.

One of the standard approaches to computational electromagnetics (CEM) is the method of

moments [Harrington:61a;67a;68a], [Jordon:69a]. This is a spectral method, which rather than

solving the underlying partial di�erential equation (Maxwell's), expands the desired solution in

a set of \moments". This leads to a similar situation to that described above for computational

chemistry where i and j label moments for CEM and not the chemical state [Cheng:94a;94c].

Note that in both cases, the matrixM is usually treated as full [Cheng:94c], and is quite di�erent

from the familiar sparse matrices gotten from discretizing a partial di�erential equation. We
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note in passing that such spatial discretization is a quite viable approach to CEM and leads to

a totally di�erent computational problem architecture from the spectral moment formulation.

HPF can handle both stages of the matrix based CEM or chemistry problems [Robinson:95a].

The matrix solution stage exploits fully the Fortran 90 array manipulation and clearly requires

good compiler support for matrix and vector manipulation primitives. NPAC's experience with

a production CEM code PARAMOM from the Syracuse Research Corporation is illuminating

[Cheng:94c]. Both stages could be implemented on IBM SP-2 with specialized Fortran code

for the matrix element generation joined to SCALAPACK based matrix solution [Choi:92c].

However, the CM-5 implementation was not so simple. The CMSSL library provided exceptional

matrix solution with good use being made of the CM-5's vector nodes. However, the matrix

element computation was not so straightforward. Performance on the CM-5 nodes was poor

and required conversion of the original Fortran 77 to Fortran 90 to both exploit the vector

nodes and link to CMSSL. However, whereas the Fortran 90 notation was very suitable for

matrix manipulation, it is quite irrelevant for the matrix element generation stage|as already

explained, this exploits the INDEPENDENT DO and not the array notation for explicit parallelism.

Thus, we split the PARAMOM code into a metaproblem with two sub-problems corresponding

to the two stages discussed above. Now we implemented each stage on the most appropriate

architecture. The \embarrassingly parallel" Fortran 77 matrix element generation stage was

run on a network of workstations, the equation solution stage used the optimized libraries on

the CM-5 or SP-2. The linkage of these stages used AVS, but one could alternatively use

many other coordination software approaches. We expect to test our use of World Wide Web

technology WebWork [Fox:95a] on this example.

This simple example illustrates three problem classes: embarrassingly parallel, synchronous

and metaproblems, and associated machine and software architecture. There is an interesting

software engineering issue. Typically, one would develop a single Fortran program for such a

computational chemistry or electromagnetics problem. However, better is separate modules|

in this case, one for each of two stages|for each part of problem needing di�erent parallel

computer treatment. In this way, we see the breakup of metaproblems into components, and

use of systems such as AVS as helpful software engineering strategies [Cheng:92a;94d]. We have

successfully used such an approach to produce an e�ective parallel version of the public domain

molecular orbital chemistry code MOPAC [MOPAC:95a].

Not all chemistry computations have this structure. For instance, there is a set of ap-

plications such as AMBER and CHARMM that are based on molecular dynamics simula-

tions, as described in Chapter 16 of [Fox:94a], [Ranka:92a]. These are typically loosely syn-

chronous problems with each particle linked to a dynamic set of \nearest neighbors" com-

bined with long-range nonbonded force computations. The latter can either use the syn-

chronous O(N2
particle) algorithm or the faster, but complex loosely synchronous fast multi-

ple O(Nparticle) or O(Nparticle logNparticle) approaches [Barnes:86a], [Edelsohn:91b], [Goil:94a],

[Goil:95a], [Greengard:87b], [Salmon:90a], [Singh:93a], [Sunderam:93a], [Warren:92b], [Warren:93a].

4.3 Computational Fluid Dynamics and Manufacturing (Applications 1, 2,
3, 4, and 32)

CFD (Computational Fluid Dynamics) has been a major motivator for much algorithm and

software work in HPCC, and indeed extensions of HPF have largely been based on CFD (or
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similar partial di�erential equation based applications) and molecular dynamics [Bogucz:94a],

[Choudhary:92d;94c], [Dincer:95b], [Goil:94a;95a], [Hawick:95a;95b], , [HPF:94a]. Partial dif-

ferential equations can be quite straightforward on parallel machines if one uses regular grids,

such as those coming from the simplest �nite di�erence equations. However, modern numerical

methods use either �nite elements or a re�nement strategy for �nite elements, which gives rise

to irregular meshes. Approaches, such as domain decomposition and multigrid, also give use

to complex data structures. From a Fortran programmer's point of view, simple �nite di�er-

ences can be well described by Fortran array data structures. Corresponding parallelization of

such applications is well suited to the current HPF language, which is centered in decomposing

arrays. All the more advanced partial di�erential equation schemes naturally need somewhat

more sophisticated (than simple arrays) data structures, including arrays of pointers, linked

lists, nested arrays, and complex trees. The latter are also seen in fast multipole particle dy-

namics problems, as well as fully adaptive PDE's [Edelsohn:91b]. Some excellent methods, such

as the Berger-Oliger adaptive mesh re�nement [Berger:84a] require modest HPF extensions as

we have shown in our Grand Challenge work on colliding black holes [Haupt:95a]. However, as

Saltz's group has shown in a set of pioneering projects [HPF:94a], many important PDE meth-

ods require nontrivial HPF language extensions, as well as sophisticated runtime support, such

as the PARTI [Saltz:91b] and CHAOS systems [Edjali:95a], [Hwang:94a], [Ponnusamy:93c;94b].

The needed language support can be thought of as expressing the problem architecture (com-

putational graph as in Figure 4(a), which is only implicitly de�ned by the standard (Fortran)

code. Correctly written, this vanilla Fortran implies all needed information for e�cient paral-

lelism. However, this information is realized in terms of the values of pointers and cannot be

recognized at compile time for either static or compiler generated dynamic runtime parallelism.

This fundamental problem is of course why Fortran is a more successful parallel language than

C as latter naturally uses pointer constructs that obscure the problem architecture even more.

The runtime support for PDE's must cope with irregular and hierarchical meshes and provide

the dynamic alignment decomposition and communications optimization that HPF provides for

arrays.

We now move from CFD to manufacturing, or rather design and manufacturing, which

metaproblem includes CFD as a subarea. Manufacturing is particularly interesting, as it needs

all aspects of the HPCC initiative from powerful computational engines, huge databases to

pervasive secure high-performance networks. Now we use the word \manufacturing" in its

broadest sense to include design, the actual processes that build the product, and the full

life cycle maintenance. HPCC has a natural high pro�le role in implementing the popular

concept of agile manufacturing, which supposes the model where virtual corporations generate

\products-on-demand." The NII is used to link collaborating organizations. HPCC is needed

to support instant design (or more accurately redesign or customization) and sophisticated

visualization and virtual reality \test drives" for the customer. At the corporate infrastructure

level, concurrent engineering involves integration of the di�erent component disciplines|such as

design, manufacturing, and product life cycle support|involved in engineering. These general

ideas are tested severely when they are applied to the design and manufacturing of complex

systems such as automobiles, aircraft, and space vehicles such as shuttles. Both the complexity

of these products, and in some sense the maturity of their design, places special constraints and

challenges on HPCC.

High-performance computing is important in all aspects of the design of a new aircraft.

However, it is worth noting that it has been estimated that less than 5% of the initial costs of the
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Boeing 777 aircraft were incurred in computational 
uid dynamics (CFD) air
ow simulations|

the \classic" Grand Challenge in this �eld described above. On the other hand, over 50% of

these sunk costs could be attributed to overall systems issues. Thus, it is useful but not su�cient

to study parallel computing for large scale CFD. This is \Amdahl's law for practical HPCC."

If only 5% of a problem is parallelized, one can at best speed up and impact one's goals|

a�ordability, time to market|by this small amount. HPCC, thus, must be fully integrated into

the entire engineering enterprise to be e�ective. Very roughly, we can view the ratios of 5% to

50% as a measure of ratio of 1:10 of the relevance of parallel and distributed computing in this

case, or alternatively as the ratio of \old style" to \new style" HPCC.

The maturity of the �eld is illustrated by the design criterion used today. In the past, much

e�ort has been spent on improving performance|more speed, range, altitude, size. These are

still critical under extreme conditions, but basically these just form a given design framework

that su�ces to buy you a place at the table (on the short-list). Rather, the key design criteria

is competitiveness, including time to market, and total a�ordability. Although the design phase

is not itself a major cost item, decisions made at this stage lock in most of the full life cycle

cost of an aircraft with perhaps 80% of total cost split roughly equally between maintenance

and manufacturing. Thus, it certainly would be important to apply HPCC at the design

phase to both shorten the design cycle (time to market) and lower the later ongoing costs of

manufacturing and maintenance.

We take as an example the design of a future military aircraft|perhaps 10 years from now.

This analysis is taken from a set of NASA sponsored activities centered on a study of ASOP|

A�ordable Systems Optimization Process. This involved an industrial team, including Rockwell

International, Northrop Grumman, McDonnell Douglas, General Electric, and General Motors.

ASOP is one of several possible approaches to multidisciplinary analysis and design (MAD)

and the results of the study should be generally valid to these other MAD systems. The

hypothetical aircraft design and construction project could involve six major companies and

20,000 smaller subcontractors. This impressive virtual corporation would be very geographically

dispersed on both a national and probably international scale. This project could involve

some 50 engineers at the �rst conceptual design phase. The later preliminary and detailed

design stages could involve 200 and 2,000 engineers, respectively. The design would be fully

electronic and demand major computing, information systems, and networking resources. For

instance, some 10,000 separate programs would be involved in the design. These would range

from a parallel CFD air
ow simulation around the plane to an expert system to plan location

of an inspection port to optimize maintainability. There is a corresponding wide range of

computing platforms from PCs to MPPs and a range of languages from spreadsheets to high-

performance Fortran. The integrated multidisciplinary optimization does not involve blindly

linking all these programs together, but rather a large number of suboptimizations involving at

one time a small cluster of these base programs. Here we see clearly, an essential role of HPCC

to implement these optimizations, that could well need linking of geographically separated

compute and information systems. An aircraft is, of course, a very precise system, which must

work essentially 
awlessly. This requirement implies a very strict coordination and control of

the many di�erent components of the aircraft design. Typically, there will be a master systems

database to which all activities are synchronized at regular intervals{perhaps every month. The

clustered suboptimizations represent a set of limited excursions from this base design that are

managed in a loosely synchronous fashion on a monthly basis. The con�guration management

and database system are both critical and represent a major di�erence between manufacturing

31



ORGANIZATION  SPECIFIC  ASOP  INFRASTRUCTURE

NII  INFRASTRUCTURE  AND  SERVICES

1.0 - ASOP  Design  Environment

2.0 - ASOP  Object  Backplane

2.4 -

Access Services
Security and

2.5 -

Services
Object and Data

2.1 -

Services

Collaboration

2.2 -

Services
Metacomputing

2.3 -

Services
Metacomputing

1.1 - 1.2 - 1.3 - 1.4 -
Analysis

1.5 - 1.6 -

Design 

Engine

Visualizaton

Toolkit

Geometry

Toolkit
Modeling 

Toolkit Toolkit
Modeling

Cost

Toolkit
Modeling
Process

Simulation
Engine

1.7 -

Optimization

Engine

1.8 -

Figure 12: A�ordable Systems Optimization Process (ASOP) Implemented on the NII for

Aeronautics Systems

and command and control, where in the latter case, real time \as good as you can do" response,

is more important than a set of precisely controlled activities. These issues are characteristic

of the linkage of HPCC, and the NII where, although loosely coupled, the computers on our

global network are linked to \solve a single problem."

ASOP is designed as a software backplane (the NII) linking eight major services or modules

shown in Figure 12. These are design (process controller) engine, visualization, optimiza-

tion engine, simulation engine, process (manufacturing, productibility, supportability) model-

ing toolkit, costing toolkit, analytic modeling toolkit, and geometry toolkit. These are linked

to a set of databases de�ning both the product and also the component properties. Paral-

lel computing is important in many of the base services, but the linkage of NII, and HPCC

technologies is seen in the full system. Using compute enhanced Web Technology (such as, Web-

Work [Fox:95a] in such systems is natural because one has the mix of geographically distributed

people/computers needing both data and simulation services.

4.4 Command and Control (Crisis Management)|Application 25

Command Control (sometimes adding in Computing, Communications, Intelligence Surveil-

lance, and Battle Management with abbreviations lumped together as BMC 4IS) is the task of

managing and planning a military operation. It is very similar to the civilian area of Crisis

management, where the operations involve combating e�ects of hurricanes, earthquakes, chem-

ical spills, forest �res, etc. Both the military and civilian cases have computational \nuggets"

where parallel computing is relevant. These include processing sensor data (signal and image

processing|Application 15) and simulations of such things as expected weather patterns and

chemical plumes. In this way, many of the components (Applications 1 to 12 in Table 4) are

linked as part of this large metaproblem. One also needs large-scale multimedia databases with

HPCC issues related to those described for InfoVISiON in Section 4.5.

High-performance communication is needed to link military planners and decision makers,

crisis managers, experts at so-called anchor desks, workers (warriors) in the �eld, information

sources such as cable news feeds, and large-scale database and simulation engines.
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A key characteristic of the required HPCC support is adaptivity. Crises and battles can

occur anywhere and destroy an arbitrary fraction of the existing infrastructure. Adaptivity

means making the best use of the remaining links, but also deploying and integrating well

mobile enhancements. The information infrastructure must exhibit security and reliability

or at least excellent fault tolerance (adaptivity). Network management must deal with the

unexpected capacity demands and real time constraints. Priority schemes must allow when

needed critical information (such as the chemical plume monitoring and military sensor data)

precedence over less time critical information, such as background network video footage.

Needed computing resources will vary from portable handheld systems to large backend

MPPs. As there will be unpredictable battery (power) and bandwidth constraints, it is im-

portant that uniform user interfaces and similar services be available on all platforms with, of

course, the �delity and quality of a service re
ecting the intrinsic power of a given computer. As

with the communications infrastructure, we must cope with unexpected capacity demands. As

long as the NII is deployed nationally, computational capacity can be exploited in remote sites.

The Department of Defense envisages using the basic NII (GII) infrastructure for command

and control, augmented by \theater extensions" to bring needed communications into critical

areas. The \take it as it is" characteristic of command and control requires that operating

systems and programming models support a general adaptive mix (metacomputer) of coordi-

nated geographically distributed but networked computers. This network will adaptively link

available people (using perhaps personal digital assistants) to large-scale computation on MPPs

and other platforms. There are large computational requirements when forecasting in real-time

physical phenomena, such as the weather e�ects on a projected military action, forest �res,

hurricanes, and the structure of damaged buildings. On a longer time scale, simulation can

be used for contingency planning and capability assessment. Training with simulated virtual

worlds supporting televirtuality, requires major computational resources. In the information

arena, applications include datamining to detect anomalous entries (outliers) in large federated

multimedia databases. Data fusion including sensor input and processing, geographical infor-

mation systems (with perhaps three-dimensional terrain rendering), and stereo reconstruction

from multiple video streams are examples of compute intensive image processing forming part

of the needed HPCC environment.

A critical need for information management involves the best possible high-level extraction

of knowledge from databanks|the crisis manager must make judgments in unexpected urgent

situations|we cannot carefully tailor and massage data ahead of time. Rather, we need to

search a disparate set of multimedia databases. As well as knowledge extraction from particular

information sources, the systematic use of metadata allowing fast coarse grain searching is very

important. This is a speci�c example of the importance of standards in expediting access to

\unexpected" databases. One requires access to databases speci�c to crisis region or battle�eld,

and widespread availability of such geographic and community information in electronic form

is essential. There are very di�cult policy and security issues, for many of these databases

need to be made instantly available in a hassle-free fashion to the military commander or crisis

manager|this could run counter to proprietary and security classi�cation constraints. The

information system should allow both network news and warriors in the �eld to deposit in near

real-time, digital versions of their crisis and battle�eld videos and images.

As mentioned, we expect that human and computer expertise to be available in \anchor

desks" to support instant decisions in the heat of the battle. These have been used in a set
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Figure 13: The basic InfoVISiON scenario as seen by a home in the year 2000 with an intelligent

settop box interfacing the digital home to a hierarchical network of InfoVISiON servers

of military exercises called JWID (Joint Warrior Interoperability Demonstrations). We note

that this information scenario is a real-time version of that described in the next section as

InfoVISiON to support the society of the Information Age.

Command and Control has historically used distributed computing as the relevant computer

and communication resources, are naturally distributed, and not centralized into a single MPP.

We see such a HPCC model growing into the standard information support environment for all

the nation's enterprises, including business, education, and society. We now explore this in the

following section.

4.5 InfoVISiON in Society (Applications 19{24, 26{28, 33)

High-performance distributed computers solve problems in science and engineering. We think of

these problems as simulations of air
ow, galaxies, bridges, and such things. However, presum-

ably entertaining, informing, and educating society is an equally valid problem. Computers and

networks of the NII will be able (see Figure 13) to deliver information at many megabits/second

to \every" home, business (o�ce), and school \desk." This network can be considered as a dis-

tributed HPCC system because one expects the information to be stored in a set of distributed

multimedia services that could vary from PCs to large MPPs and be delivered to a larger

set of clients. As shown in Figure 14, one can estimate that the total compute capability in

these servers and clients will be some hundred times greater than that of the entire set of

supercomputers in the nation.

The computational issues in this application are somewhat di�erent than those for the

previous cases we considered. Classic data parallelism and languages, such as High Performance

Fortran, are not important. Large-scale distributed databases are the heart of this application,

which are accessed through the exploding set of Web technologies. Presumably, these will need

to migrate from today's clients (PC/workstations) to more user friendly, and at least initially

less 
exible settop box implementations controlling home entertainment systems. We will �nd

the same need for data locality as in large scale simulations. As shown in Figure 15, when

the latest Hollywood movie is released on the NII, one will not have half the nation directly
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Figure 14: An estimate of the communication bandwidth and compute capability contained in

the NII and supercomputer industries

connected to Hollywood. Rather, data is automatically replicated or cached on local servers so

that one will only need to communicate such \hot" information over a distance of a few miles.

As in simulation examples, communication bandwidth will be limited and such steps are needed

to reduce demand.

InfoVISiON will require simulation, but it will be more loosely coupled than for say large-

scale CFD, and consist of very many smaller problems. Interactive videogaming with multiple

players sharing a virtual world is one clear need for simulation on the NII, and for this the

three-dimensional database VRML has been introduced. However, another example that can

use the same technology is remote viewing and exploration of consumer products, such as cars,

furniture, and large appliances. Simulation will support virtual reality like exploration and the

automatic customization of such products for particular customers.

InfoVISiON at its \simplest" is \just" access to multimedia database. But even here the

\media" can, as in Application 24 include simulation. Further, InfoVISiON underlies decision

support in business, government, and military areas (Applications 25, 27, and 28), as well as

education (Application 33). Thus, this HPCC application is of great importance, and can be

expected to a major business opportunity for the vendors, as shown in Figure 14.
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Figure 15: A typical hierarchical server network depicted for a master system in Hollywood

cascading down with a fragment of node systems shown for central New York
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Glossary

ACTION (Advanced Computing Technology is an Innovative Opportunity Now) The original

form of InfoMall focused on large-scale simulations.

Adaptive See Table 2.

APL See Table 6.

Applets An application interface where referencing (perhaps by a mouse click) a remote ap-

plication as a hyperlink to a server causes it to be downloaded and run on the client.

ASOP (A�ordable Systems Optimization Process) refers to a process using multidisciplinary

optimization to produce more a�ordable systems.

Asynchronous See Table 3.

Asynchronous Transfer Mode (ATM) ATM is expected to be the primary networking

technology for the NII to support multimedia communications. ATM has �xed length

53 byte messages (cells) and can run over any media with the cells asynchronously trans-

mitted. Typically, ATM is associated with Synchronous Optical Network (SONET) op-

tical �ber digital networks running at rates of OC-1 (51.84 megabits/ sec), OC-3 (155.52

megabits/sec) to OC-48 (2,488.32 megabits/sec).

Asyncsoft See Table 2.

AVS See Table 6.

Back Substitution The stage in LU decomposition where an upper triangular matrix Ux =

L
�1
b is solved \backwards" from the end.

Bandwidth The communications capacity (measured in bits per second) of a transmission line

or of a speci�c path through the network.

C� See Table 6.

C++ See Table 6.

CC++ See Table 6.

CFD (Computational Fluid Dynamics) refers to computational solutions of di�erential equa-

tions, such as the Navier Stokes set, describing 
uid motion.

Clustered Computing A commonly found computing environment consists of many worksta-

tions connected together by a local area network. The workstations, which have become

increasingly powerful over the years, can together, be viewed as a signi�cant comput-

ing resource. This resource is commonly known as cluster of workstations, and can be

generalized to a heterogeneous collection of machines with arbitrary architecture.

Collective A communication or processing activity in which many messages or compute prim-

itives are linked together.
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Command and Control This refers to the computer support decision making environment

used by military commanders and intelligence o�cers. It is described in Section 4.4.

Computational Graph The computational or spatial structure of a problem that is expressed

as a dependency graph among linked elements in the computation.

Conjugate Gradient Method A technique for solving systems of linear algebraci equations,

which proceeds by minimizing a quadratic residual error function. The method is iterative,

but quite powerful: in the absence of roundo� error, it will converge exactly in M steps,

where M is the order of the system in question.

Crystal See Table 6.

Data
ow A model of parallel computing in which linked programs are represented by a graph,

and execution of a node (of graph) is triggered by arrival of one or more pieces of data

\
owing" from previously executed nodes.

Data Fusion A common command and control approach where the disparate sources of infor-

mation available to a military or civilian commander or planner, are integrated (or fused)

together. Often, a GIS is used as the underlying environment.

Data Locality and Caching A key to sequential parallel and distributed computing is data

locality. This concept involves minimizing \distance" between processor and data. In

sequential computing, this implies \caching" data in fast memory and arranging compu-

tation to minimize access to data not in cache. In parallel and distributed computing,

one uses migration and replication to minimize time a given node spends accessing data

stored on another node.

Data Mining This describes the search and extraction of unexpected information from large

databases. In a database of credit card transactions, conventional database search will

generate monthly statements for each customer. Data mining will discover using ingenious

algorithms, a linked set of records corresponding to fraudulent activity.

Data Parallelism A model of parallel or distributed computing in which a single operation

can be applied to cell elements of a data structure simultaneously. Often, these structures

are arrays.

Decision Support Use of computers to supply and process information needed to make de-

cisions. Term is typically applied to business applications.

Distributed Computing The use of networked heterogeneous computers to solve a single

problem. The nodes (individual computers) are typically loosely coupled.

Distributed Memory A computer architecture in which the memory of the nodes is dis-

tributed as separate units. Distributed memory hardware can support either a distributed

memory programming model, such as message passing or a shared memory programming

model.

Embarrassingly Parallel A class of problems that can be broken up into parts, which can

be executed essentially independently on a parallel or distributed computer (see Table 3).
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Event Driven Simulation See Table 2.

Express See Table 6.

Finite Di�erence Method A direct method for the approximate solution of partial di�eren-

tial equations on a discrete grid, by approximating derivatives of the unknown quantities

on the grid by linear di�erences. SIMD machines typically lend themselves very well to

the e�cient implementation to this sort of applications. See also �nite element method.

Finite Element Method An approximate method for solving partial di�erential equations by

replacing continuous functions by piecewise approximations de�ned on polygons, which

are referred to as elements. Usually, polynomial approximations are used. The �nite

element method reduces the problem of �nding the solution at the vertices of the polygons

to that of solving a set of linear equations. This task may then be accomplished by a

number of methods, including Gaussian elimination, the conjugate gradient method, and

the multigrid method. See also �nite di�erence method.

Fortran-M See Table 6.

Gaussian Elimination A method for solving sets of simultaneous linear equations by elimi-

nating variables from the successive equations. The original equation in the form Ax = b

(A is a matrix, b the vector of known values, and x the unknown solution vector) is re-

duced to A = LU and Ux = c, where U is an upper triangular matrix. The solution

vector x can then be found by back substitution. This method is usually formulated as

LU decomposition.

Geographical Information System (GIS) A user interface where information is displayed

at locations on a digital map. Typically, this involves several possible overlays with

di�erent types of information. Functions, such as image processing and planning (such as

shortest path) can be invoked.

Gigabit A measure of network performance|one Gigabit/sec is a bandwidth of 109 bits per

second.

Giga
op A measure of computer performance|one Giga
op is 109 
oating point operations

per second.

Global Information Infrastructure (GII) The GII is the natural world-wide extension of

the NII with comparable exciting vision and uncertain vague de�nition.

Grand Challenges Computation-intensive fundamental problems in science and engineering,

with broad economic and scienti�c impact, whose solution can be advanced by applying

HPCC technologies and resources.

HPC++ See Table 6.

High-Performance Computing and Communications (HPCC) Refers generically to the

federal initiatives, and associated projects and technologies that encompass parallel com-

puting, HPDC, and the NII.
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High-Performance Distributed Computing (HPDC) The use of distributed networked

computers to achieve high performance on a single problem, i.e., the computers are coor-

dinated and synchronized to achieve a common goal.

High-Performance Fortran (HPF) A language speci�cation published in 1993 by experts

in compiler writing and parallel computation, the aim of which is to de�ne a set of

directives which will allow a Fortran 90 program to run e�ciently on a distributed memory

machine. At the time of writing, many hardware vendors have expressed interests, a few

have preliminary compilers (Digital, IBM), and a few independent compiler producers

(APR, Portland Group) also have early releases. If successful, HPF would mean data

parallel programs can be written portably for various multiprocessor platforms.

HPF+ See Table 2.

Hyperlink The user level mechanism (remote address speci�ed in a HTML or VRML object)

by which remote services are accessed by Web Clients or Servers.

Hypertext Markup Language (HTML) A syntax for describing documents to be displayed

on the World Wide Web.

Hypertext Transport Protocol (HTTP) The protocol used in the communication Web

Servers and clients.

InfoMall (http://www.infomall.syr.edu) A virtual corporation of some 50 organizations, funded

by New York State and led by NPAC at Syracuse University, aimed at building practical

HPCC systems and applications.

InfoVISiON Information, Video, Imagery, and Simulation ON demand is scenario described

in Section 4.5 where multimedia servers deliver multimedia information to clients on

demand|at the click of the user's mouse.

Integrated Service Data Network (ISDN) A digital multimedia service standard with a

performance of typically 128 kilobits/sec, but with possibility of higher performance.

ISDN can be implemented using existing telephone (POTS) wiring, but does not have

the necessary performance of 1{20 megabits/second needed for full screen TV display at

either VHS or high de�nition TV (HDTV) resolution. Digital video can be usefully sent

with ISDN by using quarter screen resolution and/or lower (than 30 per second) frame

rate.

Integration Software See Table 2.

Internet A complex set of interlinked national and global networks using the IP messag-

ing protocol, and transferring data, electronic mail, and World Wide Web. In 1995,

some 20 million people could access Internet|typically by POTS. The Internet has some

high-speed links, but the majority of transmissions achieve (1995) bandwidths of at best

100 kilobytes/sec. the Internet could be used as the network to support a metacomputer,

but the limited bandwidth indicates that HPDC could only be achieved for embarrassingly

parallel problems.
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Internet Protocol (IP) The network-layer communication protocol used in the DARPA In-

ternet. IP is responsible for host-to-host addressing and routing, packet forwarding, and

packet fragmentation and reassembly.

Irregular Problems Problems whose computational graph has an irregular structure as seen

in �nite element approaches to simulation of complex systems.

Java A distributed computing language (Web Technology) developed by Sun, which is based

on C++ but supports Applets.

JavaScript A fully interpreted language based loosely on Java, but aimed at integration of

client capabilities of Netscape Web clients (browsers or navigators).

Latency The time taken to service a request or deliver a message which is independent of the

size or nature of the operation. The latency of a message passing system is the minimum

time to deliver a message, even one of zero length that does not have to leave the source

processor. The latency of a �le system is the time required to decode and execute a null

operation.

Linda See Table 6.

Living School Book A collaboration involving NYNEX, Syracuse University School of Ed-

ucation, Columbia Teachers College, and NPAC developing InfoVISiON applications for

six schools on a high-speed ATM network.

Loose and Tight Coupling Here, coupling refers to linking of computers in a network. Tight

refers to low latency, high bandwidth; loose to high latency and/or low bandwidths. There

is no clear dividing line between \loose" or \tight."

Loosely Synchronous See Table 3.

LU Decomposition A technique where a matrix A is represented as the product of a lower

triangular matrix, L, and an upper triangular matrix U . This decomposition can be made

unique either by stipulating that the diagonal elements of L be unity, or that the diagonal

elements of L and U be correspondingly identical.

MAD (Multidisciplinary Analysis and Design, or Multidisciplinary Optimization) refers to the

coupling of several areas, such as structural dynamics and 
uid 
ow in a combined tradeo�

to produce higher capability vehicles.

Massively Parallel Processing Processor (MPP) The strict de�nition of MPP is a ma-

chine with many interconnected processors, where `many' is dependent on the state of the

art. Currently, the majority of high-end machines have fewer than 256 processors. A more

practical de�nition of an MPP is a machine whose architecture is capable of having many

processors|that is, it is scalable. In particular, machines with a distributed memory

design (in comparison with shared memory designs) are usually synonymous with MPPs

since they are not limited to a certain number of processors. In this sense, \many" is a

number larger than the current largest number of processors in a shared-memory machine.

Megabit A measure of network performance|one Megabit/sec is a bandwidth of 106 bits per

second. Note eight bits represent one character|called a byte.
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Message Passing A style of inter-process communication in which processes send discrete

messages to one another. Some computer architectures are called message passing archi-

tectures because they support this model in hardware, although message passing has often

been used to construct operating systems and network software for sequential processors,

shared memory, and distributed computers.

Message Passing Interface (MPI) The parallel programming community recently orga-

nized an e�ort to standardize the communication subroutine libraries used for program-

ming on massively parallel computers such as IBM SP2, Intel's Paragon, Cray's T3D,

as well as networks of workstations. MPI not only uni�es within a common framework

programs written in a variety of exiting (and currently incompatible) parallel languages

but allows for future portability of programs between machines.

Metacomputer This term describes a collection of heterogeneous computers networked by

a high-speed wide area network. Such an environment would recognize the strengths of

each machine in the Metacomputer, and use it accordingly to e�ciently solve so-called

Metaproblems. The World Wide Web has the potential to be a physical realization of a

Metacomputer.

Metaproblem This term describes a class of problem which is outside the scope of a single

computer architectures, but is instead best run on a Metacomputer with many disparate

designs. These problems consist of many constituent subproblems. An example is the de-

sign and manufacture of a modern aircraft, which presents problems in geometry grid gen-

eration, 
uid 
ow, acoustics, structural analysis, operational research, visualization, and

database management. The Metacomputer for such a Metaproblem would be networked

workstations, array processors, vector supercomputers, massively parallel processors, and

visualization engines.

Metropolis A distinguished Los Alamos scientist whose name is associated with a particular

importance sampling (optimized choice of points) approach to Monte Carlo methods

aimed at statistical physics problems.

Monte Carlo An approach in which many independent trials are used to evaluate integrals,

with trial parameters chosen randomly.

Message Passing Fortran (MPF) See Table 2.

Multimedia Server or Client Multimedia refers to information (digital data) with di�erent

modalities, including text, images, video, and computer generated simulation. Servers

dispense this data, and clients receive it. Some form of browsing, or searching, establishes

which data is to be transferred. See also InfoVISiON.

Multiple-Instruction/Multiple-Data (MIMD) A parallel computer architecture where the

nodes have separate instruction streams that can address separate memory locations on

each clock cycle. All HPDC systems of interest are MIMD when viewed as a metacom-

puter, although the nodes of this metacomputer could have SIMD architectures.

Multipurpose Internet Mail Extension (MIME) The format used in sending multime-

dia messages between Web Clients and Servers that is borrowed from that de�ned for

electronic mail.
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National Challenges Information-intensive fundamental applications that have broad and

direct impact on the Nation's competetitivess and the well-being of its citizens, and that

can bene�t from the application of HPCC technologies and resources.

National Information Infrastructure (NII) The collection of ATM, cable, ISDN, POTS,

satellite, and wireless networks connecting the collection of 108{109 computers that will

be deployed across the U.S.A. as set-top boxes, PCs, workstations, and MPPs in the

future.

The NII can be viewed as just the network infrastructure or the full collection of networks,

computers, and overlayed software services. The Internet and World Wide Web are a

prototype of the NII.

Network A physical communication medium. A network may consist of one or more buses, a

switch, or the links joining processors in a multicomputer.

Node A parallel or distributed system is made of a bunch of nodes or fundamental computing

units|typically fully 
edged computers in the MIMD architecture.

NPAC (http://www.npac.syr.edu) The Northeast Parallel Architectures Center at Syracuse

University is an HPCC research and development organization focusing on industrial

relevance.

N(UMA) UMA|Uniform Memory Access|refers to shared memory in which all locations

have the same access characteristics, including the same access time. NUMA (Non-

Uniform Memory Access) refers to the opposite scenario.

Parallel Computer A computer in which several functional units are executing indepen-

dently. The architecture can vary from SMP to MPP and the nodes (functional units)

are tightly coupled.

Partial Di�erential Equation (PDE) The most common mathematical description of phys-

ical systems.

PCN See Table 6.

POTS The conventional twisted pair based Plain Old Telephone Service.

Protocol A set of conventions and implementation methodologies de�ning the communication

between nodes on a network. There is a famous seven layer OSI standard model going

from physical link (optical �ber to satellite) to application layer (such as Fortran subrou-

tine calls). Any given system, such as PVM or the Web implements a particular set of

protocols.

PVM PVM was developed at Emory and Tennessee Universities, and Oak Ridge National

Laboratory. It supports the message passing programming model on a network of het-

erogeneous computers (http://www. epm.ornl.gov/pvm/).

Quantum Chromodynamics (QCD) A model of the behavior of matter on sub-nuclear

scales, the simulation of which is very hungry of computing power.
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Regular Problems Problems whose computational graph has a regular structure as seen in

Quantum Chromodynamics simulations or many �nite di�erent problems.

Runtime The part of systems support software used when a program is executed. This should

be contrasted with compile-time preparation of program.

Settop Box The interface between the home entertainment system (now TV) and outside

information (now cable). Future settop boxes will need personal computer-type function-

ality, and link to Web Technology.

Shared Memory Memory that appears to the user to be contained in a single address space

that can be accessed by any process or any node (functional unit) of the computer. Shared

memory may have UMA or NUMA structure. Distributed computers can have a shared

memory model implemented in either hardware or software|this would always be NUMA.

Shared memory parallel computers can be either NUMA or UMA.

Virtual or Distributed Shared Memory is (the illusion of) a shared memory built with

physically distributed memory.

Single-Instruction/Multiple-Data (SIMD) A parallel computer architecture in which ev-

ery node runs in lockstep accessing a single global instruction stream, but with di�erent

memory locations addressed by each node. Such synchronous operation is very unnatural

for the nodes of a HPDC system, or the NII.

Supercomputer the most powerful computer that is available at any given time. As perfor-

mance is roughly proportional to cost, this is not very well de�ned for a scalable parallel

computer. Traditionally, computers costing some $10 M{$30 M are termed supercomput-

ers.

Symmetric Multiprocessor (SMP) A Symmetric Multiprocessor supports a shared mem-

ory programming model|typically with a UMA memory system, and a collection of up

to 32 nodes connected with a bus.

Synchronous See Table 3.

Televirtual The ultimate computer illusion where the user is fully integrated into a simulated

environment and so can interact naturally with fellow users distributed around the globe.

Tera
op A measure of computer performance|one Tera
op is 1012 
oating point operations

per second.

Terrain Rendering The graphics processing of a three-dimensional scene, typically with a

digital map as a 3D backdrop.

Timewarp See Table 6.

Time Stepped Simulation (TS) See Table 2.

Video-on-Demand A component of InfoVISiON where digital video (movies, news, etc.) is

supplied at the request of clients.

Vienna Fortran See Table 6.
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Virtual Reality (VR) See Table 2.

Virtual Reality Modeling Language (VRML) A \three-dimensional" HTML that can be

used to give a universal description of three-dimensional objects that supports hyperlinks

to additional information. The latest VRML 2.0 is aimed at supporting virtual environ-

ments implementing televirtuality.

Web Clients and Servers A distributed set of clients (requesters and receivers of services)

and servers (receiving and satisfying requests from clients) using Web Technologies.

WebTop refers to the implementation of a set of standard desk top and personal computer

tools, which are essential in any computing environment.

WebWindows The operating environment created on the World Wide Web to manage a

distributed set of networked computers. WebWindows is built from Web clients and Web

servers.

WebWork (Fox:95a) An environment proposed by Boston University, Cooperating Systems

Corporation, and Syracuse University, which integrates computing and information ser-

vices to support a rich distributed programming environment.

World Wide Web and Web Technologies A very important software model for accessing

information on the Internet based on hyperlinks supported by Web technologies, such as

HTTP, HTML, MIME, Java, Applets, and VRML.
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