
Concatenated Parallelism: A Technique for E�cient Parallel

Divide and Conquer1

(Preliminary Version)

Srinivas Aluru, Sanjay Goil2 Sanjay Ranka3

School of CIS and School of CISE

Northeast Parallel Architectures Center

Syracuse University University of Florida

Syracuse, NY 13244-4100 Gainesville, FL 32611

email: aluru, sgoil@top.cis.syr.edu ranka@cis.u
.edu

1We are grateful to Northeast Parallel Architectures Center and Minnesota Supercomputing Center for

allowing us to use their CM-5. The content of the information does not necessarily re
ect the position or

the policy of the Government and no o�cial endorsement should be inferred.
2Supported in part by NASA under subcontract #1057L0013-94 issued by the LANL.
3Supported in part by NSF under ASC-9213821, AFMC and ARPA under contract #F19628-94-C-0057

and the University of Florida.

Abstract

A number of problems have e�cient algorithms that are based on the divide and conquer paradigm.

Such problems can be solved in parallel by mapping the corresponding divide and conquer tree to

the parallel computer under consideration. Two basic strategies are used in such parallelizations:

Task Parallelism, in which di�erent subproblems are assigned to di�erent groups of processors and

Data Parallelism, in which the tasks are solved one after the other using all the processors. Task

parallelism involves signi�cant data movement and data parallelism causes problems due to load

imbalance.

In this paper we propose a new strategy, which we call Concatenated Parallelism, for e�cient

parallel solution of problems resulting in divide and conquer trees. Our strategy is useful when the

communication time due to data movement in distributing the subproblems using task parallelism

is signi�cant when compared to the time required to divide the subproblems. This happens to be

the case for a number of important applications including quicksort, quickhull and the construction

of quadtrees, octrees and multidimensional binary search trees. We consider both balanced and un-

balanced deterministic divide and conquer trees as well as randomized divide and conquer trees. We

provide both theoretical and experimental analysis of Concatenated Parallelism for coarse-grained

distributed memory parallel machines along with comparisons with task and Data Parallelism. We

have implemented our algorithms on the CM-5 and report on the experimental results. One useful

application of our technique is a scalable parallel quicksort algorithm.

1 Introduction

Scheduling a number of tasks on a parallel machine to minimize the running time for the completion

of all the tasks is a well-studied problem in parallel computing. In the most general case, the

tasks can be of varying sizes and each task itself can be solved in parallel. Two basic types of

parallelism can be exploited: Scheduling of independent tasks to di�erent groups of processors

such that the tasks can be solved simultaneously in parallel is called Task Parallelism. Solving

each individual task in parallel using all the processors and solving the tasks one after the other is

called Data Parallelism. Of course, it is possible to use a combination of these strategies for optimal

scheduling, and such a strategy is referred to asMixed Parallelism. Several researchers have worked

on exploiting mixed parallelism, both in theory [3, 6, 11, 17] and in practice [4, 5, 13, 16].

In a number of problems, all the tasks may not be known in advance but may be generated

dynamically as existing tasks are processed. This is the case with problems whose e�cient solutions

use the divide and conquer strategy. The execution of an instance of such a problem can be

represented by a divide and conquer tree. Each internal node of the tree corresponds to a task.

After performing some computation, the task is split (divide step) into several subtasks which are

represented by the children of the node. The subtasks are solved recursively and the solutions may

need to be combined to �nd the solution for the task (merge step).

Several important issues arise in parallelizing such applications using task and data parallelism.

Suppose that a task is currently distributed on a group of processors. After performing the work

required to divide the task into subtasks in parallel, several options exist for the solution of the

subtasks. In the task parallelism approach, the processors are divided into subgroups, perhaps

according to the size of the subtasks, and the subtasks are moved to their respective subgroups of

processors and solved independently. This requires movement of data to the appropriate processor

subgroup. In the data parallelism approach, the subtasks are solved one after another using all the

processors. Unfortunately, each subtask may not be uniformly spread across the processors even

though the parent task is. Hence, data parallelism may lead to severe load imbalance. Also, the

practical e�ciency of a parallel algorithm often decreases with increase in the number of processors.

If the time required to divide the subtasks is signi�cantly higher than the cost of redistribution,

communication time due to allocation of the subtasks can be ignored. Such an assumption is often

made in the literature [4]. Unfortunately, it is not valid for several important problems, which

include quicksort, quickhull, construction of quad/octrees and multidimensional binary search trees.

In this paper, we propose a new strategy called Concatenated Parallelism for e�cient solution of

problems resulting in divide and conquer trees. The basis idea is to solve all the subtasks together

using all the processors. Even though the distribution of each subtask is non-uniform, this scheme

does not lead to load imbalance (as in data parallelism) because the sum of the sizes of the subtasks

allocated to each processor is uniform. This scheme also eliminates the communication due to data

1

movement in the intermediate steps, the drawback of task parallelism. The strategy is particularly

useful when the sizes of the subtasks may be non-uniform. The only disadvantage of concatenated

parallelism is that communication in solving the subtasks involves all the processors as opposed to

increasingly smaller subsets as in task parallelism. However, we can often considerably reduce this

expense by spooling the communication required for all the subtasks. Such a strategy signi�cantly

reduces the communication cost because set up times for communication are typically higher than

transmission costs by two orders of magnitude. We use the concatenated parallelism strategy until

enough subtasks are generated to map them uniformly to individual processors. At this stage, one

redistribution is performed followed by sequentially solving the subtasks.

Our focus in this paper is in designing strategies that have practical e�ciency on parallel com-

puters. Therefore, we use coarse-grained distributed memory parallel computers as our models of

parallel computation as most existing parallel computers belong to this category. A coarse-grained

parallel computer consists of several relatively powerful processors connected by an interconnection

network. Instead of making speci�c assumptions about the network connecting processors, we de-

scribe our algorithms in terms of some basic communication primitives. The running time of our

algorithms on a speci�c interconnection network can be easily derived by substituting the running

times of the communication primitives. We provide such an analysis for hypercubes and meshes.

The rest of the paper is organized as follows: In Section 2, we describe our model of parallel

computation and outline some primitives used by our algorithms. In Section 3, we describe con-

catenated parallelism. In Sections 4, 5 and 6, we apply Concatenated Parallelism to three types

of divide and conquer trees: deterministic trees resulting in balanced subtasks, deterministic trees

resulting in non-uniform sized subtasks and randomized trees. For each type, we present sample

applications along with experimental results on the CM-5. The performance of concatenated par-

allelism is compared with both task and data parallelism. Section 7 contains various redistribution

strategies that can be used for distributing subtasks to individual processors. We conclude the

paper in Section 8.

2 Model of Parallel Computation

Coarse Grained Machines (CGMs) consist of a set of processors (tens to a few thousand) connected

through an interconnection network. The memory is physically distributed across the processors.

Interaction between processors is either through message passing or through a shared address

space. Popular interconnection topologies are buses (SGI Challenge), 2D meshes (Paragon, Delta),

3D meshes (Cray T3D), hypercubes (nCUBE), fat tree (CM5) and hierarchical networks (cedar,

DASH).

CGMs have cut-through routed networks which will be used for modeling the communication

cost of our algorithms. For a lightly loaded network, a message of size m traversing d hops of a

2

cut-through (CT) routed network incurs a communication delay given by Tcomm = ts + thd+ twm,

where ts represents the handshaking costs, th represents the signal propagation and switching delays

and tw represents the inverse bandwidth of the communication network. The startup time ts is

often large, and can be several hundred machine cycles or more. The per-word transfer time tw is

determined by the link bandwidth. tw is often higher (an order to two orders of magnitude is typical)

than tc, the time to do a unit computation on data available in the cache. The per-hop component

thd can often be subsumed into the startup time ts without signi�cant loss of accuracy. This is

because the diameter of the network, which is the maximum of the distance between any pair of

processors, is relatively small for most practical sized machines, and th also tends to be small. The

above expressions adequately model communication time for lightly loaded networks. However, as

the network becomes more congested, the �nite network capacity becomes a bottleneck. Multiple

messages attempting to traverse a particular link on the network are serialized. A good measure of

the capacity of the network is its cross-section bandwidth (also referred to as the bisection width).

For p processors, the bisection width is p

2
, 2
p
p, and 1 for a hypercube, wraparound mesh and for

a shared bus respectively.

Our analysis will be done for the following interconnection networks: hypercubes and two

dimensional meshes. The analysis for permutation networks and hypercubes is the same in most

cases. These cover nearly all commercially available machines. A permutation network is one for

which almost all of the permutations (each processor sending and receiving only one message of

equal size) can be completed in nearly the same time (e.g. CM-5 and IBM SP Series).

Parallelization of applications requires distributing some or all of the data structures among the

processors. Each processor needs to access all the non-local data required for its local computation.

This generates aggregate or collective communication structures. Several algorithms have been

described in the literature for these primitives and are part of standard textbooks [7, 9]. The use

of collective communication provides a level of architecture independence in the algorithm design.

It also allows for precise analysis of an algorithm by replacing the cost of the primitive for the

targeted architecture.

In the following, we describe some important parallel primitives that are repeatedly used in our

algorithms and implementations. For commonly used primitives, we simply state the operation

involved. The analysis of the running time is omitted and the interested reader is referred to [9].

For other primitives, a more detailed explanation is provided. Table 1 describes the collective

communication routines used in the development of our algorithms and their time requirements on

cut-through routed hypercubes and meshes. In what follows, p refers to the number of processors.

1. Broadcast. In a Broadcast operation, one processor has a message of size m to be broadcast

to all other processors.

2. Combine. Given a vector of size m on each processor and a binary associative operation,

3

Primitive Running time on a p processor

Hypercube Mesh

Broadcast O((ts + twm) log p) O((ts + twm) log p+ th
p
p)

Combine O((ts + twm) log p) O((ts + twm) log p+ th
p
p)

Parallel Pre�x O((ts + tw) log p) O((ts + tw) log p+ th
p
p)

Gather O(ts log p+ twmp) O(ts log p + twmp+ th
p
p)

Global Concatenate O(ts log p+ twmp) O(ts log p + twmp+ th
p
p)

All-to-All Communication O((ts + twm)p+ thp log p) O((ts + twmp)
p
p)

Transportation Primitive O(tsp+ twr + thp log p) O((ts + twr)
p
p)

Order Maintaining O(tsp+ tw(smax + rmax) + thp log p O((ts + tw(smax + rmax))
p
p + th

p
p)

Data Movement

Non-order Maintaining O(tsp+ tw(smax + rmax) + thp log p) O((ts + tw(smax + rmax))
p
p + th

p
p)

Data Movement

Table 1: Running times of various parallel primitives on cut-through routed hypercubes and square

meshes with p processors.

the Combine operation computes a resultant vector of size m and stores it on every processor.

The ith element of the resultant vector is the result of combining the ith element of the vectors

stored on all the processors using the binary associative operation.

3. Parallel Pre�x. Suppose that x0; x1; : : : ; xp�1 are p data elements with processor Pi con-

taining xi. Let
 be a binary associative operation. The Parallel Pre�x operation stores the

value of x0
 x1
 : : :
 xi on processor Pi.

4. Gather. Given a vector of size m on each processor, the Gather operation collects all the

data and stores the resulting vector of size mp in one of the processors.

5. Global Concatenate. This is the same as Gather except that the collected data should be

stored on all the processors.

6. All-to-All Communication. In this operation each processor sends a distinct message of

size m to every processor.

7. Transportation Primitive. It performs many-to-many personalized communication with

possibly high variance in message size. Let r be the maximum of outgoing or incoming tra�c

at any processor The transportation primitive breaks down the communication into two all-

to-all communication phases where all the messages sent by any particular processor have

uniform message sizes [14]. If r � p
2, the running time of this operation is equal to two

all-to-all communication operations with a maximum message size of O(r
p
).

8. Order Maintaining Data Movement. Consider the following data movement problem,

an abstraction of the data movement patterns that we encounter in subtask redistribution.

4

Initially, processor Pi contains two integers si and ri, and has si elements of data such

that
Pp�1

i=0 si =
Pp�1

i=0 ri. Let smax = max
p�1
i=0 si and rmax = max

p�1
i=0 ri. The objective is

to redistribute the data such that processor Pi contains ri elements. Suppose that each

processor has its set of elements stored in an array. We can view the
P

p�1
i=0 si elements as if

they are globally sorted based on processor and array indices. For any i < j, any element

in processor Pi appears earlier in this sorted order than any element in processor Pj . In the

order maintaining data movement problem, this global order should be preserved after the

distribution of the data.

The algorithm �rst performs a Parallel Pre�x operation on the si's to �nd the position of the

elements each processor contains in the global order. Another parallel pre�x operation on

the ri's determines the position in the global order of the elements needed by each processor.

Using the results of the parallel pre�x operations, each processor can �gure out the processors

to which it should send data and the amount of data to send to each processor. Similarly,

each processor can �gure out the amount of data it should receive, if any, from each processor.

The communication is performed using the transportation primitive. The maximum number

of elements sent out by any processor is smax. The maximum number of elements received

by any processor is rmax.

9. Non-Order Maintaining Data Movement. The order maintaining data movement algo-

rithm may generate much more communication than necessary if preserving the global order

of elements is not necessary. For example, consider the case where ri = si for 1 � i < p� 1

and r0 = s0+1 and rp�1 = sp�1�1. The optimal strategy is to transfer the one extra element

from Pp�1 to P0. However, this algorithm transfers one element from Pi to Pi�1 for every

1 � i < p� 1, generating (p� 1) messages.

For data movements where preserving the order of data is not important, the following modi-

�cation is done to the algorithm: Every processor retains minfsi; rig of its original elements.

If si > ri, the processor has (si�ri) elements in excess and is labeled a source. Otherwise, the

processor needs (ri� si) elements and is labeled a sink. The excessive elements in the source

processors and the number of elements needed by the sink processors are ranked separately

using two Parallel Pre�x operations. The data is transferred from sources to sinks using a

strategy similar to the order maintaining data movement algorithm.

The maximum number of outgoing elements at any processor is max
p�1
i=0 (si�ri), which can be

as high as smax. The maximum number of incoming elements at any processor is max
p�1
i=0 (ri�

si), which can be as high as rmax. Therefore, the worst-case running time of this operation

is identical to the order maintaining data movement operation. Nevertheless, the non-order

maintaining data movement algorithm is expected to perform better in practice.

5

3 Concatenated Parallelism

A generic divide and conquer algorithm divides a given task into a number of subtasks which are

solved recursively until the size of the subtasks is small enough to be solved directly. Consider a task

of size N on p processors, initially distributed such that each processor has N

p
elements. Without

loss of generality, assume that both N and p are powers of 2. For convenience of presentation,

assume that a task of size S is divided into two subtasks S1 and S2. We are considering problems

with jS1j+ jS2j � jSj, where jSj denotes the size of S. At stage i (0 � i < logN) of the subdivision,

2i subtasks are created. Our technique can be extended to problems in which the number of

subtasks is more than two or the sum of the sizes of the subtasks is larger than the size of the

parent task (e.g. binary space partitions).

There are two conventional approaches to solving a given number of tasks in parallel: Task

parallelism and Data parallelism. We describe each of them below and provide a comparison with

Concatenated parallelism that we propose in this paper. The bene�t of concatenated parallelism, as

will be clear from the discussion below, comes from eliminating repeated redistributions of subtasks

and providing load balancing. Concatenated Parallelism is decidedly superior to Task Parallelism

only when the time required to divide a task is linear in the size of the task or close to linear.

However, this restriction is valid for a large variety of practical and useful problems.

In task parallel execution, a di�erent group of processors is allocated for each task and all the

tasks are executed in parallel. A task parallel divide and conquer algorithm divides the initial task

S, using all the p processors. After the subdivision of S into two subtasks S1 and S2, each of these

will be allocated to a di�erent subgroup of processors. Two allocation schemes are possible: either

the processors are divided into two equal sized subgroups, or processor subdivision is proportional

to the sizes of S1 and S2. The choice depends on topological considerations for a given architecture.

This process is repeated recursively until there are p subtasks, one on each processor. A sequential

algorithm is now used to solve the subtasks.

When a task S of size N is divided into two subtasks S1 and S2, each processor will have some

data of both the subtasks. Moving the subtasks to di�erent processor groups causes redistribution

of data, which can be performed using the Transportation Primitive outlined in Section 2. Because

the total amount of data on each processor is O(N
p
), such a redistribution cost is proportional to

N on both hypercubes and meshes. If the sequential cost of dividing the task S is O(N�) for some

� > 1, this cost dominates the cost of redistribution. In this case, strategies to reduce redistribution

cost will not be e�ective. If � = 1, the cost of redistribution can no longer be ignored. Also, the

constant involved in the redistribution cost (which requires communication) is typically larger than

the constant in the subdivision cost (in which the dominant term is usually due to computation) by

an order of magnitude. Due to this reason, the communication cost cannot be ignored in practice

for some small values of � greater than 1. Tasks where the subdivision cost is like O(N logN) can

6

P2P1 P3 P4 P5 P6 P7P0

Redistribution at this stage

Level 2

Level 1

Level 0

Level 3

Figure 1: Illustration of Concatenated parallelism for p = 8.

potentially bene�t by reducing the redistribution cost for practical values of N .

A data parallel algorithm solves one task after another in parallel using all p processors. A task

S is subdivided into two and kept locally. Given tasks S1; S2; : : :S2i distributed on p processors,

after i subdivisions, the tasks are further subdivided one after another. Each processor has a

portion of each of the subtasks. There are two drawbacks to this approach: The distribution of

each subtask across processors may not be uniform. This creates problems due to load imbalance.

Also, since the sizes of the subtasks keep decreasing, the \grain-size" of the computation (size of

the problem on one processor) keeps reducing. Because unit communication is more expensive than

unit computation by two to three orders of magnitude, there is a threshold grain-size below which

the communication overhead severely limits any bene�ts due to parallelization.

In concatenated parallelism, all problems are solved together using all the p processors. A task is

divided into subtasks on each processor and subtasks are kept locally. A processor contains portions

of each of the 2i subtasks at the ith level, as shown in Figure 1. All k (1 � k � 2i) subtasks are

solved together in parallel using all the p processors. This process of dividing a task into subtasks

is repeated until a stage is reached where enough subtasks have been created to be distributed to

individual processors and solved sequentially. The �rst such stage is reached at the log pth level.

At this stage there are p subtasks, distributed across all the processors. A redistribution step can

gather a subtask on each processor. This works well when subdivision of tasks leads to balanced

subtasks. However, when dealing with unbalanced tasks, this can lead to grave load imbalance. This

can be recti�ed by using concatenated parallelism further, continuing to divide the tasks beyond

log p levels. This helps to achieve a better load balance as relatively �ne-grained tasks are being

gathered for allocation to processors. Apart from load balancing considerations, the level at which

7

Algorithm 1 Concatenated parallel algorithm

N : Total size of the task.

p : Total number of processors labeled from 0 to p� 1.

f(s; p) : Computation work for a task of size sp distributed on p processors.

g(s; p) : Communication required along with performing f(s; p).

h(s; p) : Redistribution cost for tasks with total size s on p processors.

Qj : size of the task j, 1 � j � 2k, at stage k. Initially k=0 and jQ1j = N .

x : 1 � x < N , a task of size N splits into subproblems of size x and N � x.

K : A value for jQjj below which partitioning will stop.

done = false

while(! done)

while (
P

j
g(Qj; p) < h(

P
j
Qj ; p) and maxj jQj j > K)

Step 1. Split each of the j tasks into two subtasks by appropriate subdivision

of Qj on all the processors. Increment k by 1.

/*Redistribution phase */

If maxj jQj j < K then

Step 2. Redistribute the task Qj , 1 � j � 2k to individual processors.

Step 3. done = true

else

Step 4. Redistribute the problems Qj , 1 � j � 2k to processor pools of size
P

2m
for a maximum m, 1 � m � log P such that

P
j
g(Qj ;

p

2m
) <

h(
P

j
Qj ;

p

2m
).

Step 5. Set p to p

2m .

Step 6. If (m == log P) done = true.

Figure 2: Concatenated parallel algorithm

8

concatenated parallelism should be stopped and redistribution done depends on the comparative

cost of task subdivision versus task redistribution. A later section describes redistribution strategies

and criteria for applying redistribution. The framework for Concatenated Parallelism is illustrated

in Figure 2.

At every stage, a processor works with N

p
elements even though they might belong to di�erent

subtasks. This is an important feature of the algorithm because it guarantees load balance at

every stage even though individual subtasks are not balanced. Another view of the Concatenated

Parallelism is that the grain-size is always N

p
and never decreases irrespective of how small the

individual subtasks are. Divide and conquer algorithms resulting in unbalanced or randomized

subdivisions especially bene�t from this algorithm.

We distinguish between three di�erent types of divide and conquer trees: deterministic balanced

trees, deterministic unbalanced trees and randomized trees. A generic divide and conquer algorithm

for Task Parallelism is modeled by the recurrence relation which can be written as T (N; p) =

max fT (x; b�pc); T (N � x; d(1� �)p)eg+f(N; p)+g(N; p), where � is a factor governing processor

allocation, f(N; p) is the computation cost and g(N; p) is the communication cost in dividing a task

of size N on p processors. A generic recurrence relation for Data Parallelism is T (N; p) = T (x; p)+

T (N � x; p) + f(N; p) + g(N; p). In Concatenated parallelism all tasks at each stage are solved

together spooling the communication, unlike the case of Data Parallelism, where tasks are solved

one after another. As discussed previously, we only consider problems for which f(N; p) = O(N
p
).

g(N; p) is chosen to be O((ts+tw) log p) in our analysis on both hypercubes and meshes, because the

communication required for subdividing a task typically requires a combination of Parallel Pre�x,

Combine and Broadcast operations for many applications. Of course, given a particular problem,

analysis speci�c to that problem can always be performed.

In a deterministic balanced divide and conquer algorithm, problems are split into two halves, and

therefore x is N

2
. In the other two categories, x has no guaranteed size. In deterministic unbalanced

trees, x can be any integer from 1 to N . However, the value of x is completely determined by the

input and two runs on the same input will give the same value of x. In randomized trees, x can take

any value from 1 to N with some probability associated with each possible value. Two runs on the

same input may lead to two di�erent values of x. In studying Task Parallelism, we either allocate

half the processors to each subproblem in which case � will be set to 1
2
, or allocate processors

proportional to the subtask sizes in which case � will be set to x

N
.

At a stage i, in Concatenated Parallelism, each of the 2i subtasks need to be divided into two

subtasks. This requires communication between processors which can be spooled together. Since

a processor contains portions of all tasks, it might need to broadcast data for a subtask. Di�erent

processors might end up broadcasting elements for di�erent subtasks. To avoid 2i broadcasts, we

adopt the following strategy for spooling communication: Each processor has an array of size 2i

corresponding to the 2i subtasks, with all elements initialized to zero. If a processor has the element

9

to broadcast for a subtask, it �lls the corresponding element of the array with that element. By

doing a Combine operation on this array using the `+' operation, the required elements for all

subtasks are stored on each processor.

Our goal is to analyze Concatenated Parallelism and compare it with both Task Parallelism and

Data Parallelism. One can easily show that Data Parallelism always performs worse than Concate-

nated Parallelism irrespective of the nature of the tree, size of the problem or number of processors.

Consider a case when the divide and conquer tree is evaluated up to i levels and let the 2i subtasks

be S1; S2; : : :S2i . Let Sj
k refer to the portion of the jth subtask on the kth processor, 0 � k < p and

1 � i � 2i. Let Tdp denote the computation time to divide all these subtasks into further subtasks.

Since tasks are performed in sequence and each subsequent task is solved on all p processors, the

computation time for subtask j is maxp�1
k=0jSj

kj. The time for all the 2i tasks is
P2i

j=1maxp�1
k=0jSj

k j.
It is easily seen that Tdp � O(N

p
). The equality is obtained when subtasks are uniformly distributed

among the processors. In Concatenated Parallelism, the computation time is O(N
p
). Also, in Con-

catenated Parallelism, the time spent in necessary communication for subdividing the subtasks is

always smaller than communication time spent in Data Parallelism. This is because communication

for all the subtasks is spooled together and this saves expensive set-up costs in individual communi-

cations. One can easily see that even when the sequential cost of subdividing a task of size N is any

general function of N (not necessarily linear), Concatenated Parallelism always provides at least as

good a load balance as Data Parallelism (maxp�1
k=0

P2i

j=1 (jSj
k j)� �

P2i

j=1maxp�1
k=0 (jSj

kj)�). There-

fore, we limit our theoretical and experimental comparisons to comparing Concatenated Parallelism

with Task Parallelism only.

The following sections present each of the three categories of divide and conquer algorithms.

For each category, we analyze Concatenated Parallelism and Task Parallelism with the assumption

that f(N; p) = O(N
p
) and g(N; p) = O((ts + tw) log p). A di�erent g(N; p) can be analyzed for

a problem if the need arises. This is done in a later section for construction of multidimensional

binary search trees, where this function is O((ts + tw) log p logN). Example applications follow

each category and performance results on the CM-5 are provided to supplement the analysis.

4 Deterministic Balanced Parallel Divide and Conquer

Deterministic balanced divide and conquer algorithms result in the subdivision of a task of size

N into two subtasks of size N

2
, at each stage. Thus after i iterations, each of the 2i subtasks will

have size N

2i
. Every processor contains portions of each subtask. A balanced divide and conquer

algorithm results in p perfectly balanced tasks after log p iterations. An appropriate criteria is

used for redistributing the p subtasks to individual processors. At a stage i,
P2i

k=0 f(
N

2i
; p) is the

computation cost to achieve the subdivision of all tasks. Communication is combined for all the

tasks. After log p steps of the subdivision, a �nal redistribution cost h(N; p) is incurred.

10

The running time to create p subtasks, one for each processor, using spooling of communication

for deterministic balanced divide and conquer is
Plog p�1

i=0 O(2i N
2ip

+ ts log p + tw2
i log p) on both

a hypercube and a mesh. Adding h(N; p) = O(tsp + tw
N

p
) on a hypercube and O(ts

p
p + tw

Np
p
)

on a mesh, we obtain O(N
p
log p + ts(p + log2p) + tw

N

p
) as the running time on a hypercube and

O(N
p
log p + ts(

p
p + log2p) + tw

Np
p
) on a mesh, for a deterministic balanced divide and conquer

algorithm.

In a task parallel approach which divides a processor subgroup equally at each level, there

are 2i subtasks, each being distributed on processor subgroups of size p

2i
at some level i. Each

subtask has size N

2i
which needs to be solved in parallel on the processor subgroup. We obtain the

running time for this method using the recurrence relation for Task Parallelism as
Plog p�1

i=0 O(N
2i
=
p

2i
+

ts(
p

2i
+ log p

2i
)+ tw(log

p

2i
+ N

p
)) on a hypercube. The redistribution cost is a part of the recurrence

relation in this case. This gives the running time as O(N
p
log p + ts(p + log2p) + tw

N

p
log p). The

corresponding running time on a mesh is
Plog p�1

i=0 O(N
2i
=
p

2i
+ ts(

q
p

2i
+ log p

2i
) + tw(log

p

2i
+ N

p

q
p

2i
))

= O(N
p
log p+ ts(

p
p+ log2p) + tw

Np
p
).

Note that this category yields the best case for task parallelism. However, concatenated par-

allelism does better in this case since it reduces the redistribution costs from N

p
log p to N

p
on a

hypercube.

4.1 Applications - Multidimensional Binary Search trees

Construction of multidimensional binary search trees (abbreviated k-d trees) [1], in which dividing

a task is based on the median element of the corresponding data set, uses a balanced divide

and conquer algorithm. The root of the k-d tree corresponds to the set of all points. Assume

k dimensional data with d1; d2; : : : ; dk as the dimensions. Choose a dimension dl and partition

points into two sets, one containing points with coordinates less than or equal to this median along

dimension dl and another containing points with coordinates greater than the median. The two

partitions are represented by the children of the root node. The tree is built recursively until each

node corresponds to a prespeci�ed number of points.

Consider the construction of a k-d tree of N points on p processors with N

p
points on each

processor initially. We use a randomized median �nding algorithm [2] to calculate the median for

points along dimension d1. Points are divided into two subsets, S1 and S2, using the median. S1

contains points with their d1 coordinate values less than or equal to the median and S2 contains

points having their d1 coordinate values greater than the median. Considering the processors par-

titioned into two halves, task parallelism would gather S1 on the lower half subgroup of processors

and S2 on the upper half subgroup of processors. This process is repeated recursively, changing

dimensions in a cyclic manner to �nd the median, until each processor has a subset and each pro-

cessor subgroup contains a single processor. A sequential algorithm is then applied to solve the

11

problem locally.

Thus, for k-d tree construction, f(N; p) is the cost of parallel median �nding of N elements

on p processors plus the cost of partitioning local data into two portions, one containing ele-

ments less than or equal to the median and another containing elements greater than the me-

dian. g(N; p) is the associated communication cost. For this method, f(N; p) is O(N
p
) and

g(N; p) is O((ts + tw) log p logN). Using Task Parallelism, building the �rst log p levels of the

tree on a hypercube requires
Plogp�1

i=0 O(N
2i
=
p

2i
+ (ts + tw) log

p

2i
log N

2i
+ k

N

p
+ ts

p

2i
+ tw

kN

p
) =

O(kN
p
log p+ ts(p+ log2 p logN) + tw(k

N

p
log p+ log2 p logN)) time. The time required on a mesh

is O(kN
p
log p+ ts(

p
p+ log2 p logN) + tw(

kNp
p
+ log2 p logN)).

A Concatenated Parallel algorithm divides the tasks across each processor. Starting with a single

task, subdivision is applied recursively to each subset resulting in 2i subsets after i partitions. After

redistribution, a sequential algorithm is used on each processor to construct the k-d tree locally. In

this case, communication for the 2i subtasks is combined together using the technique described in

an earlier section. The cost of median �nding at level i is O(N
p
+ ts log p logN + tw2

i log p logN) for

a hypercube and O(N
p
+ ts log p logN+ tw2

i log p logN) for a mesh. Median �nding is done for each

partition and the data in a partition is automatically subpartitioned into two subsets in the process.

Cost of the redistribution is O(kN
p
+tsp+tw

kN

p
) on a hypercube and O(kN

p
+ts

p
p+tw

kNp
p
) on a mesh.

Combining these costs, the running time for a deterministic balanced divide and conquer algorithm

using concatenated parallelism is O(N
p
(log p+k)+ ts(p+log2p logN)+ tw(

kN

p
+ p log p logN)) on a

hypercube. The corresponding time on a mesh is O(N
p
(log p+ k) + ts(

p
p+ log2p logN) + tw(

kNp
p
+

p log p logN)).

The data movement due to redistribution reduces by a factor of log p on hypercubes by using

Concatenated Parallelism. The cost of redistribution does not reduce on the mesh. Computation

cost reduces fromO(N
p
k log p) toO(N

p
(k+log p)) when Concatenated Parallelism is used. Therefore,

higher dimensional data results in even better performance by using Concatenated parallelism.

4.2 Experimental Results

We have implemented the construction of two dimensional binary search trees on the CM-5. Two

algorithms are compared: Task parallelism with processor groups being divided equally into two

subgroups at each stage and Concatenated parallel. Figure 3 presents a comparison of the two

approaches for various values of N

p
for tree construction up to log p levels. The results show that

concatenated parallelism works better than task parallelism for balanced divide and conquer only

when there are a large number of points on a processor. The gains from reducing redistribution cost

can be obtained only when the data is large in the balanced case. In the unbalanced case, as we

will observe in a later section, come both from reducing redistribution cost and providing good load

balance. For higher dimensional data, the cost of redistribution is more signi�cant since it involves

12

4K 8K 16K 32K 64K 128K 256K 512K
N/p

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

Ti
m

e
(in

 s
ec

on
ds

)

p = 32

Task Parallel
Concatenated Parallel

4K 8K 16K 32K 64K 128K 256K 512K
N/p

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

Ti
m

e
(in

 s
ec

on
ds

)

p = 64

Task Parallel
Concatenated Parallel

4K 8K 16K 32K 64K 128K 256K 512K
N/p

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

Ti
m

e
(in

 s
ec

on
ds

)

p = 128

Task Parallel
Concatenated Parallel

Figure 3: Comparison of Task Parallelism and Concatenated Parallelism for balanced divide and

conquer in construction of k-d trees for di�erent values of N=p.

a higher volume of data to be redistributed and hence Concatenated Parallelism is expected to

perform even better.

Figure 4 shows the component times for k-d tree construction up to log p levels with N = 2M

and 4M. The total time for tree construction is divided into computation time and communication

time for median �nding at all levels and data redistribution time. We observe that redistribution

time for Concatenated Parallelism is signi�cantly lower than for Task Parallelism. The computation

time for Concatenated Parallelism is slightly higher due to added list management. Concatenated

Parallelism involves all p processors at all stages for communication whereas for Task Parallelism

communication occurs in processor subgroups. Certain parallel machines (e.g CM-5) use a special

network when all the processors are participating in the communication. The cost of global com-

munication is lower in such a case.

8 16 32 64
Number of Processors

0.0

0.2

0.5

0.8

1.0

1.2

1.5

1.8

2.0

2.2

2.5

2.8

3.0

3.2

3.5

3.8

4.0

Tim
e (

in
se

co
nd

s)

N = 2M

Comp. + Comm.
Redistribution

TP

CP

8 16 32 64
Number of Processors

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Tim
e (

in
se

co
nd

s)

N = 4M

Comp. + Comm.
Redistribution

TP

CP

Figure 4: Time for tree construction up to log p levels divided into computation time for splitting

the points plus the associated communication time and cost of redistribution for N = 2M and 4M

on 8, 16, 32 and 64 processors. (TP: Task Parallel, CP: Concatenated Parallel)

13

5 Deterministic Unbalanced Parallel Divide and Conquer

Subdivision of tasks in certain divide and conquer algorithms result in subtasks of di�erent sizes.

The subdivision at each level remains unchanged for a given input and hence the algorithms are

deterministic in nature. Using Concatenated parallelism, the work associated with the portions of

subtasks on a processor may vary as a result of such subdivisions, but each processor still works on
N

p
elements. This method provides good load balancing for unbalanced parallel divide and conquer.

The number of points belonging to a subset may be highly imbalanced. Consider a problem

of size N at some stage of the subdivision process. Suppose the problem is divided into two

subproblems of sizes c and N�c, where c is a constant. Note that this de�nition will not subdivide

a problem of size c further. This will lead to the worst-case analysis as the problem size is reduced

by a constant. There is only one task to be solved at each stage. Concatenated Parallelism works

the same as Data Parallelism in this worst case. A task is subdivided into two tasks at each stage.

Let K be the size of a task after which it would not be subdivided. Subdivision of tasks is continued

till a stage where all tasks have a size at least K. The value of K is set appropriately so that there

are at least p subtasks and these can be allocated to processors to provide adequate load balance. A

choice of K = N

p
is good because it guarantees that no processor will have more than 2N

p
elements.

At a level i, all the p processors are working on a problem of size N� ic. Choosing values of f(N; p)

as O(N
p
) and g(N; p) as O((ts + tw) log p) the running time of a Concatenated Parallel unbalanced

divide and conquer is O(N
2

p2
)+
PdN�K

c
e�1

i=0
N�ic
p

+(ts+ tw) log p. Redistribution cost is O(tsp+ tw
N

p
)

on a hypercube and O(tsp+ tw
Np
p
) on a mesh. The time for unbalanced divide and conquer using

Concatenated Parallelism is O(N
2

p
+ ts(p+

N�K
c

log p) + tw(
N�K
c

log p + N

p
)) on a hypercube and

O(N
2

p
+ ts(p+

N�K
c

log p) + tw(
N�K
c

log p+ Np
p
)) on a mesh.

Task Parallelism can either partition the processors into two equal subgroups and allocate

each to a subtask, or processor allocation to subgroups can be done proportional to subtask sizes.

Unbalanced subdivisions lead to idling of processors as some processors have more work to do

than others in the case where half of the processors are allocated to a subgroup. The earlier the

imbalance occurs while subdividing, the worse the performance will be because larger subgroups of

processors are allocated during the earlier levels. Assume that a problem of size N is subdivided

into subproblems of sizes c and N � c, represented by the following recurrence relation T (N; p) =

T (N � c;
p

2
) + f(N; p)+ g(N; p)+ h(N; p). The redistribution cost at each level can be bounded by

an all-to-all communication using the transportation primitive. Substituting the generic values for

f(N; p) and g(N; p) de�ned earlier, we obtain a running time to create p subtasks as
Plogp�1

i=0 (N �
ic)= p

2i
+ (ts + tw) log

p

2i
+ ts

p

2i
+ tw(N � ic)= p

2i
on a hypercube and

Plog p�1
i=0 (N � ic)= p

2i
+ (ts +

tw) log
p

2i
+ ts

q
p

2i
+ tw(N � ic)=

q
p

2i
on a mesh. After log p iterations, one processor contains a

task of size O(N � c log p). The running time for deterministic unbalanced divide and conquer

algorithms using Task Parallelism is then O((N � c log p)2 + ts(p+ log2p) + twN) on a hypercube

14

and O((N � c log p)2 + ts(
p
p+ log2p) + twN) on a mesh.

The computation cost using Task Parallelism is O((N � c log p)2). This is reduced to O(N
2

p
)

using Concatenated Parallelism. Processor partitioning proportional to subproblem sizes for Task

Parallelism would lead to allocating a processor to a subproblem of size c. This would result in

O((N�cp)2) computation, not much better than the other case of Task Parallelism. Concatenated

Parallelism provides better load balance than both kinds of Task Parallelism. Redistribution cost

is reduced from O(N) to O(N
p
) on a hypercube, and to O(Np

p
) on a mesh by using Concatenated

Parallelism.

Algorithms for building quadtrees and �nding the convex hull using the quickhull technique

follow the unbalanced divide and conquer paradigm. We describe both these algorithms below.

5.1 Applications - Quadtrees and QuickHull

5.1.1 Quadtrees

Consider building a quadtree for a set of points S in aR�R planar space [15]. Four partitions each of

size R

2
�R

2
are created using the median coordinates of the space. This process is repeated recursively

until each point in the set belongs to a separate partition. At each stage of the subdivision the

number of points belonging to each partition depends on the input data. It can potentially lead to

unbalanced partitions and hence an unbalanced tree.

Given N points and p processors with N

p
points on each processor initially, each processor

partitions its points into four subsets, each of the subsets corresponding to points lying in a quadrant

of the given sample space. Each subset corresponds to a child node in the tree rooted with a node

representing a subspace with dimensions R�R for some m > 0. Each of these subsets is partitioned

recursively giving rise to 4i subsets after the ith stage of the subdivision. An appropriate stage is

chosen to redistribute subsets to individual processors to be solved sequentially.

5.2 QuickHull

In computational geometry, algorithms for �nding the convex hull of points in space [12], like

QuickHull, follow the divide and conquer approach of quicksort. In this case the subpartitions at

any stage of partitioning are not guaranteed to be balanced as they depend on the input data. It

follows that, given n points, the sequential algorithm for quickhull takes O(n2) worst case time, the

average case run time being O(n logn).

The convex hull of a set S containing N points is the smallest convex set containing S. It is

15

represented by a polygonal chain 1 which contains the points on the convex hull. The Quickhull

algorithm partitions S into two subsets, each of which computes a polygonal chain whose concate-

nation gives the convex hull polygon. The initial partition is determined by the line passing through

l and r, the two points with the minimum and the maximum x-coordinates. Let S(1) be the subset

of the points on or above the line lr and let S(2) be the subset of points below lr. A subset S(k) is

processed in the following manner: A point h 2 S
(k) is determined such that the triangle (hlr) has

the maximum area among all the triangles (plr), p 2 S
(k). h is a point on the convex hull. The

next step is to construct two lines, one directed from l to h, (lh), and another directed from h to

r, (hr). Points belonging to S
(k) are tested with respect to these two lines. Clearly, points in the

triangle (lrh) are interior points and have to be discarded. Points not to the left of hr but lying on

or to the left of lh form a set S(k;1). S(k;2) is similarly formed by the points not to the left of lh but

on or to the left of hr. This process is repeated recursively on the newly formed subsets. A parallel

algorithm for quickhull will start by �nding the points with minimum and maximum x coordinates

on all processors and performing a Combine operation to �nd the global minimum, minx;and the

global maximum maxx. These two points are on the hull as they are at extremities of the set. Each

processor �nds the point h, that gives the maximum area triangle with the line passing through

minx and maxx. Another Combine operation �nds the maximum, hmax, among all the h points.

hmax is a point on the hull. Points on the right of hmaxmaxx and to the left of minxhmax form

a subpartition. Another subpartition is de�ned for the points on the right of minxhmax but lying

to the left of hmaxmaxx. Each of these subsets is solved in parallel recursively on all p processors,

creating 2i subsets after i steps of the algorithm. An appropriate stage is chosen for redistribution

of subsets to individual processors, which apply the sequential algorithm to each subset separately.

5.3 Experimental Results

We present results for the quickhull algorithm on the CM-5. A concatenated parallel quickhull is

compared with a task parallel quickhull implementation in Figure 5. The convex hull is constructed

for 128K, 512K and 2M random points on 4, 8, 16, 32, 64 and 128 processors. Concatenated parallel

algorithm clearly performs much better than a task parallel quickhull. We observe from the results

that the gains of Concatenated Parallelism over Task Parallelism are diminishing with the increase

in p. A smaller value of N

p
results in lesser load imbalance for Task Parallelism, a factor where

Concatenated Parallelism gains the most. Redistribution costs are also lower and the gains from

lowering this cost are also lower. These observations are endorsed by the analysis of both the

methods in the previous section.

Similar results on experiments with building of quadtrees lead us to the conclusion that Con-

catenated Parallelism parallelizes well for deterministic unbalanced divide and conquer methods.

1A chain is a planar straight-line graph with vertex set u1; u2; : : : ; up and edge set (ui; ui+1): (1 � i � p� 1)

16

4 8 16 32 64
Number of Processors

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Ti

m
e

(in
 s

ec
on

ds
)

N = 128K

Task Parallel
Concatenated Parallel

4 8 16 32 64
Number of Processors

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

Ti
m

e
(in

 s
ec

on
ds

)

N = 512K

Task Parallel
Concatenated Parallel

4 8 16 32 64
Number of Processors

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

Ti
m

e
(in

 s
ec

on
ds

)

N = 2M

Task Parallel
Concatenated Parallel

Figure 5: Comparison of Task Parallelism and Concatenated Parallelism for unbalanced divide and

conquer in quickhull for N = 128K, 512K and 2M random data.

6 Randomized Parallel Divide and Conquer

The sizes of tasks after subdivision into two subtasks can be considered as random variables in

some divide and conquer algorithms. Randomized quicksort is such an application. The subdivision

process does not guarantee balanced partitions. However, something can be said about the expected

value of the subtasks and hence about the number of iterations required to reduce the problem

size to a speci�ed level so that redistribution can be done. In this case the subtask sizes are a

random variables. For the same input we could get di�erent subtask sizes, because the criteria

for subdivision is random and each element in the set is equally likely to be picked. In cases

of unbalanced partitioning, Concatenated Parallelism will perform better as seen in the previous

section.

In a randomized divide and conquer tree, the sizes of the subtasks of a given task depend on

random choices made in the algorithm. We again limit our attention to the case where each task

divides into two subtasks and sum of the sizes of the subtasks is the same as the size of the parent

task. Suppose a task of size N is split into two subtasks. The sizes of the subtasks are given by

x and N � x, where x is a random variable that can take any value between 1 and N . There is a

probability associated with x assuming each of the allowable values. The probability distribution

is often uniform. For example in quicksort, a random element from a given array is picked as a

pivot and used to partition the array into two subarrays.

For randomized divide and conquer trees with uniform distributions and for which the cost

of dividing a set is linear in the size of the set, a sequential analysis similar to quicksort shows

that the expected running time is O(N logN), even though the worst-case run time is O(N2).

However, there is a severe drawback to using Task Parallelism with equal subdivision of processors

for randomized trees. Suppose that the subtask sizes when the root of the tree is subdivided

are extremely unbalanced. This does not a�ect the expected running time of the subtasks in

17

the sequential algorithm. However, half the processors are committed to a small subtask in Task

Parallelism and the e�ect of this allocation will have a signi�cant e�ect on the running times of all

the subtasks in the subtree of the larger subtask.

For uniform distributions, the expected size of a subtask at level i of the tree is N

2i
. However,

the variance in the sizes of the subtasks at level i of the tree decreases with increase in i. When

a task of size N is split into two subtasks, the variance in the sizes of the subtasks can be shown

to be O(N), of the same order as the expected size. Concatenated Parallelism exploits this by

advancing on the tree, level by level in parallel using all the processors until a balanced distribution

of the subtasks to individual processors is possible. Since the variance decreases with levels, one can

expect the performance of Concatenated Parallelism on randomized trees with uniform distribution

to be similar to its performance on deterministic balanced trees.

6.1 Applications - Quicksort

Consider sorting a set S of N numbers in ascending order. Pick an element x from S and treat it

as a pivot to partition S into two subsets S1. containing elements smaller than or equal to x, and

S2, containing the remaining elements. This process is recursively applied to S1 and S2 to get the

sorted order for S.

Assume a set S containing N elements divided equally among p processors. To parallelize

quicksort on p processors assume that each processor contains N

p
elements to begin with. Pick

a pivot at random from any of the p processors and broadcast it to all others. Each processor

subdivides their elements using this pivot. This process is repeated recursively for each of the two

subsets of elements. After i such subdivisions there are 2i subsets to work with. An appropriate

stage is chosen to redistribute these subsets to processors which apply the sequential quicksort

algorithm to the sets allocated on them.

6.2 Experimental Results

Figure 6 presents a comparison between a task parallel and a concatenated parallel implementation

of quicksort. We report results of experiments on sorting 128K, 512K and 2M random
oating point

numbers using 4, 8, 16, 32 and 64 processors. Task Parallelism with processor allocation propor-

tional to the problem size [Task Parallelism (B)] performs better than Task Parallelism where half

the processors are allocated to each subproblem [Task Parallelism (A)]. Approach (A) has higher

imbalance due to which local sorting becomes a signi�cant factor since some processors might have

many more elements than others. Concatenated Parallelism has a lower running time than both

the other methods. Randomized partitioning strategies can result in unbalanced partitions at each

level leading to load imbalance and idling of processors. Load balancing is one advantage that

18

4 8 16 32 64
Number of Processors

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Ti
m

e
(in

 s
ec

on
ds

)
N = 128K

Task Parallel (A)
Task Parallel (B)
Concatenated Parallel

4 8 16 32 64
Number of Processors

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Ti
m

e
(in

 s
ec

on
ds

)

N = 512K

Task Parallel (A)
Task Parallel (B)
Concatenated Parallel

4 8 16 32 64
Number of Processors

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

Ti
m

e
(in

 s
ec

on
ds

)

N = 2M

Task Parallel (A)
Task Parallel (B)
Concatenated Parallel

Figure 6: Comparison of Task Parallelism allocating half the processors to a subproblem (A),

Task Parallelism with processor allocation proportional to subproblem sizes (B) and Concatenated

Parallelism for randomized divide and conquer in quicksort for N = 128K, 512K and 2M random

data.

Concatenated Parallelism o�ers to parallelize randomized divide and conquer methods. For Task

Parallelism, processor allocation proportional to subproblem sizes may not always be possible due

to topological considerations, or whenever possible may have higher overheads.

7 Redistribution Strategies

Subdivision of tasks into subtasks should be stopped as soon as the remaining subtasks can be

distributed to individual processors. Redistribution of subtasks to processors occurs at a level

when there are at least p subtasks and the size of each has reached a prespeci�ed value so that they

can be distributed to processors to be solved sequentially. This constant value determines the \grain

size" of the largest task that we have in a pool of tasks ready for redistribution. Redistribution can

potentially be done when the cost of subdividing a problem is more than the cost of redistribution.

Consider an example where log p
2

iterations of the subdivision have been performed and
p
p subtasks

created. If it is the case that partitioning costs at this stage are higher than redistribution costs

then the
p
p tasks can be redistributed to subpools of processors each of size p

2m
, 0 < m � log p.

However, redistribution should only be done when each subgroup of processors can be allocated

approximately equal work.

Using N

p
as the size of the largest subtask before redistribution this will ensure that no processor

gets tasks whose sizes sum up to more than 2N
p
. A load balancing algorithm is used to allocate

the subtasks to processors such that each processor gets nearly equal amount of work. There are

various load balancing strategies that can be used in this case. We describe two techniques below

which are illustrated in Figure 7.

19

1. Order preserving combinations � At a stage k, when redistribution is to be performed,

order the list of 2k (0 to 2k � 1) subtasks by using their indices in the list. The average

work associated with a task on a processor should be 2mN

p
; 0 < m � log p, for a processor

pool of size p

2m
. Beginning with the leftmost task entry in the ordered list, we can scan

the task list from left to right allocating a task to a processor(pool) until the total work

allocated to a processor (pool) is no more than the average value. However, this technique

does not lead to the optimal load balance because we can only guarantee that the total work

on a processor after the redistribution will not be more than twice the average work. This

technique preserves ordering of the subproblems which might be essential in some applications

where data ordering is important.

2. Relative order combinations � An idea similar to the one used for modi�ed order main-

taining load balance [2] can be used here. At stage k, the 2k subtasks are sorted in increasing

order by the work associated with them. Task allocation to a processor is guided by two

pointers, one placed at the start and another at the end of the sorted list. Problems are

combined by moving the left pointer to the right and the right pointer to the left, allocat-

ing tasks to processors till each processor contains at least the average work. This strategy

helps in allocating tasks to processors with total size on each processor as close to average

as possible. Larger tasks are combined with small tasks and towards the end smaller tasks

are aggregated which would help in not exceeding the average value by much. However, it

destroys the ordering of the subtasks which might be of importance in some applications. If

this happens at an intermediate level of the partitioning the ordering of tasks can be regained

by another redistribution step.

8 Conclusions

In this paper, we have proposed a new strategy called Concatenated Parallelism to e�ciently

parallelize applications resulting in divide and conquer trees. We compare this strategy to the two

traditional approaches used in solving such problems � Task Parallelism and Data Parallelism.

Task Parallelism causes signi�cant redistribution of data at every level of the divide and conquer

tree. However, it has the advantage that subtasks are uniformly distributed and allocated to

smaller groups of processors. Data Parallelism avoids redistribution of data. But, it causes load

imbalance and solves smaller sized subtasks using all processors, thus reducing practical e�ciency.

Concatenated Parallelism attempts to combine the advantages of both the approaches. It avoids

redistribution of data, and by combining the computation and communication of the subtasks,

avoids load imbalance and grain-size problems. The minimum grain-size N

p
, required for e�ective

parallelization of an algorithm typically increases with the value of p. Data Parallelism decreases

the grain-size and keeps the number of processors �xed. Concatenate Parallelism maintains the

20

8 3 6 5 5 4 2 7

P0 P1

(a)

2 3 4 5 5 6 7 8

(b)

11

Processors :

10

P3P2

10

P1

10

P0

10

Processors

Total task size:

:

11

Total task size:

Tasks sorted by size

Tasks

9 9

P3P2

Figure 7: Illustration of load balancing during redistribution of tasks (a) Order preserving (b)

Relative order combinations. Task allocation to processors is more balanced in (b).

grain-size and keeps the number of processors �xed. However, Task Parallelism maintains the

grain-size and decreases the number of processors, thus making the grain-size increasingly more

e�ective. This is the only advantage of Task Parallelism over Concatenated Parallelism.

Concatenated Parallelism always yields better results than Data Parallelism irrespective of the

nature of the divide and conquer tree. This is true irrespective of any parameter including the

number of children per node, amount of work involved in dividing a task and the distribution of the

sizes of the subtasks. It also holds true irrespective of the divide and conquer tree being balanced,

unbalanced or randomized.

Concatenated Parallelism can outperform Task Parallelism only when the cost of redistribution

of data is signi�cant when compared to the cost of dividing the subtasks. This depends on such

parameters as the topology of the parallel computer and the relative values of communication set-

up times and unit transmission and computation costs. Certainly, for problems in which the cost of

dividing the subtasks is linear, redistribution costs are signi�cant and Concatenated Parallelism is

bene�cial. However, this may be true for practical values of problem sizes even when the subdivision

cost is not linear but a function close to linear. We have shown several important problems for

which Concatenated Parallelism has advantages � quicksort, quickhull, construction of quadtrees,

octrees and multidimensional binary search trees.

The advantage of Concatenated Parallelism over Task Parallelism (when such an advantage

exists) depends upon the nature of the divide and conquer tree. For balanced tree, the redistribution

cost is reduced by a factor of log p on a hypercube while there is no advantages on a mesh. For

21

unbalanced problems, the advantage gained depends upon the e�ect of imbalance. In the worst

case, Task Parallelism fails to provide any speedup at all while Concatenated Parallelism always

provides linear speedup. Task Parallelism is sensitive to imbalance where as imbalance has no e�ect

on Concatenated Parallelism. For randomized divide and conquer trees, Concatenated Parallelism

takes advantage of the fact that the variance of the sizes of the subtasks at the i
th level of the

divide and conquer tree reduces with increase in i. Since redistribution is performed only at the last

stage, the subtask sizes allocated to individual processors are relatively uniform. Task Parallelism is

a�ected due to high variance in subtasks sizes close to the root of the divide and conquer tree. This

can be remedied by using an allocation of processors proportional to the individual subtask sizes

but this strategy will not yield ideal results because allocation of processors can not be fractional

and allocation that does not respect the topology often leads to congestion problems. It may also

be unnatural and hard to program.

There are still several issues that remain to be investigated. There is considerable choice in

redistribution strategies for Concatenated Parallelism. Redistribution should be done as soon as

a balanced allocation to individual processors is possible, in order to extract the full bene�ts of

Concatenated Parallelism. It would be interesting to investigate provably optimal redistribution

strategies. Another interesting avenue to explore is a hybrid approach combining Concatenated

Parallelism with Task Parallelism. One strategy is to continue with Concatenated Parallelism

until the communication cost at the next stage of subdivision exceeds redistribution cost. At this

stage, processors should be grouped into as many groups of equal size as possible such that a fair

redistribution can be done. After the redistribution, the same strategy is recursively applied to

each group. Such a strategy can potentially obtain the full bene�ts of both Concatenated and Task

parallelism by dynamically switching between the strategies during the execution of the divide and

conquer algorithm.

References

[1] I. Al-furaih, S. Aluru, S. Goil and S. Ranka, Parallel Construction of multidimensional binary

search trees, To appear in Proc. International Conference on Supercomputing, Philadelphia.

(1996)

[2] I. Al-furaih, S. Aluru, S. Goil and S. Ranka, Practical Parallel Algorithms for Selection on

Coarse-Grained Parallel Computers, To appear in Proc. International Parallel Processing Sym-

posium, Honolulu. (1996)

[3] K. Belkhale and P. Banerjee, An approximate algorithm for the partitionable independent task

scheduling problem, Proc. International Conference on Parallel Processing (1990).

22

[4] S. Chakrabarti, J. Demmel and K. Yelick, Modeling the bene�ts of mixed data and task

parallelism, Computer Science Division, University of California, Berkeley.

[5] S. Chatterjee, Compiling data-parallel programs for e�cient execution of shared-memory mul-

tiprocessors, Technical Report No. CMU-CS-91-189, Carnegie Mellon University, Pittsburgh,

PA, 1991.

[6] A. Feldmann, J. Sgall, and S.H. Teng, Dynamic scheduling on parallel machines, Foundations

of Computer Science (1992) 111-120.

[7] G. Fox, et. al. Solving Problems on Concurrent Processors: Volume I - General Techniques

and Regular Problems. Prentice Hall, Englewood Cli�s, NJ, 1988.

[8] R. M. Karp, Probabilistic Recurrence Relations, Journal of the ACM, Vol.41, No.6, pp. 1136-

1150, November 1994.

[9] V. Kumar, A. Grama, A. Gupta and G. Karypis, Introduction to Parallel Computing: Design

and Analysis of Algorithms, Benjamin Cummings Publishing Company, California, 1994.

[10] Z. Li and E. M. Reingold, Solution of a divide-and-conquer maximin recurrence, SIAM Journal

on Computing, Vol.18, No.6, pp 1188-1200, December 1989.

[11] W. Ludwig and P. Tiwari, Scheduling malleable and nonmalleable parallel tasks, Proc. Sym-

posium on Discrete Algorithms (1994) 167-176.

[12] F.P. Preparata and M.I. Shamos, Computational Geometry: An Introduction, Springer-Verlag,

New York, 1985.

[13] S. Ramaswamy, S. Sapatnekar and P. Banerjee, A convex programming approach for exploiting

data and functional parallelism on distributed memory multiprocessors, Proc. International

Conference on Parallel Processing (1994).

[14] S. Ranka, R.V. Shankar and K.A. Alsabti, Many-to-many communication with bounded tra�c,

Proc. Frontiers of Massively Parallel Computation (1995).

[15] H. Samet, Design and Analysis of Spatial Data Structures, Addison-Wesley Publishing Com-

pany, 1990.

[16] J. Subhlok, J. Stichnoth, D. O'Hallaron and T. Gross, Exploiting task and data parallelism

on a multicomputer, Proc. Principles and Practices of Parallel Programming (1993) 13-22.

[17] J. Turek, J.L. Wolf, and P.S. Yu, Approximate algorithms for scheduling parallelizable tasks,

Proc. Symposium on Parallel Algorithms and Architecture (1992) 323-332.

23

