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Abstract

Following the Non-Relativistic QCD approach we use a gauge invariant smearing

method with factorization to measure the excitation energies for a heavy Q �Q system

on a 243 � 48 lattice at � = 6:2. The results come from averaging over an ensemble

of 60 QCD con�gurations. In order to enhance the signal from each con�guration we

use wall sources for quark propagators. The quark Hamiltonian contains only the the

simplest non-relativistic kinetic energy term.

The results are listed for a range of bare quark masses. The mass splittings are

insensitive to this variable though there are a slight trends with increasing quark mass.

For an appropriate choice of UV cut-o� (a�1 = 3:2Gev) the mass spectrum compares

reasonably well with the experimental values for the spin-averaged energy gaps of the

� system.

We also present results for the DE and DT waves for the lowest bare quark mass.

The results are consistent with degeneracy between the two types of D wave. This

encourages the idea that even with our simple quark Hamiltonian the departure from

rotational invariance is not great.



1 Introduction

In a previous paper [1] we studied heavy quark bound states appropriate to a description of

the J= and� systems using the non-relativistic approach of Lepage (NRQCD) [2, 3, 4, 5].

We investigated the lowest bound states for S, P and D waves ignoring spin e�ects for

the quarks using gauge con�gurations from the UKQCD collaboration on a 163 � 48-lattice

with a �-value of 6.2. In the present paper we report results on the �rst excitations in the

S and P -channels for this system (again without spin). We obtained these results using

60 quenched QCD con�gurations from the UKQCD collaboration on a 243 � 48 lattice at

� = 6:2 . The new results are reasonably consistent with our previous ones but considerably

more precise.

Our results are based on the construction of a number of smeared and unsmeared opera-

tors that couple to the appropriate channels and the measurement of their cross correlators.

The smeared operators are constructed in a gauge invariant manner. Using a simple subtrac-

tion procedure we show that the correlation functions do indeed have a multi-exponential

structure. Our best estimates of the lowest states and the �rst excited states in both the

S and P -channels of the Q �Q system are established by performing consistent correlated �ts

to the measured operator correlators using appropriately factorizing two-exponential forms.

Some three-exponential �ts were attempted to test the range of applicability of the �ts but

did not lead to di�erent conclusions.

2 Quark Propagators

The quark propagator in a given gauge �eld background is

G(x; y) = h (x) y(y)i ; (1)

where the angle brackets indicate averaging over the quark degrees of freedom f (x)g and
x = (x; t), y = (y; 0) . When t = 0, G(x; y) = �xy .

The evolution for the (non-relativistic) quark propagator G(x; y) is

G(x+ t̂; y) = Uy

t̂
(x)

�
1� H0

n

�n
G(x; y) + �xy�t0 (2)

where t̂ denotes a unit step in the time direction and n is the order of the time-step update as

discussed by Thacker and Davies [6]. We set G(x; y) = 0 for t � 0 . The modi�ed update is

necessary for stability at certain values of the bare quark mass. In this paper we use n = 3 .

The hamiltonian H0 is that appropriate to non-relativistic propagation ignoring spin of a

quark of mass M , namely

H0 =
�1
2Ma

3X
�̂=1

�+
�̂�

�

�̂ (3)
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The covariant �nite di�erences �+, �� are given by their usual expressions (we have sup-

pressed all colour and spin indices)

�+
�̂G(x; y) = U�̂(x)G(x+ �̂; y)�G(x; y) ; (4)

��

�̂G(x; y) = G(x; y)� U
y

�̂(x� �̂)G(x� �̂; y) : (5)

3 Smeared Operators

The ideal method for detecting excitated states in a given channel is to construct operators

each of which couples only to one of the states. An alternative approach is to accept as a

starting point a basis set of operators with quantum numbers appropriate to the channel of

interest and to recognize that an intermediate state will couple to each of these operators

in a unique way so that the exponential contribution associated with that state to the cross

correlators of the basis operators will have a factorizing form. This is the approach we have

adopted in dealing with the gauge invariant smeared operators we construct and use in our

simulation.

The operators we investigated for the S-channel were in addition to the standard point

operator (we use �(x) to denote the anti-quark degrees of freedom)

O(0)(x) = �y(x) (x) + h.c. ; (6)

a set of operators of the form

O(m)(x) =
X
�̂

�y(x)
�
Mm

�̂ (x) (x+m�̂) + M̂m

�̂ (x) (x�m�̂)
�
+ h.c. ; (7)

where the �̂-sum is over space like directions and the matricesMm
� (x) and M̂

m
� (x) have the

(appropriately ordered) product forms

Mm

�̂ (x) =
m�1Y
�=0

U�̂(x+ ��̂) and M̂m

�̂ (x) =
mY
�=1

U
y
�̂ (x� ��̂) : (8)

For the P -channel we use a family of operators of the form

O
(m)

�̂ (x) = �y(x)
�
Mm

�̂ (x) (x+m�̂)� M̂m

�̂ (x) (x�m�̂)
�
+ h.c. ; (9)

The DE wave operators are

O
DE(m)

�̂�̂ (x) = �y(x)
�
Mm

�̂ (x) (x+m�̂) + M̂m

�̂ (x) (x�m�̂)
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�Mm

�̂ (x) (x+m�̂)� M̂m

�̂ (x) (x�m�̂)
�
+ h.c. ; (10)

and the DT wave operators are

O
DT (m)

�̂�̂ (x) = �y(x)
�
�

(m)

�̂ �
(m)

�̂ +�
(m)

�̂ �
(m)

�̂

�
 (x) + h.c. ; (11)

where

�
(m)

�̂  (x) =Mm

�̂ (x) (x+m�̂)� M̂m

�̂ (x) (x�m�̂) : (12)

The correlation functions we measure are

F S

nm(t) =
1

V

X
x;y

hO(n)(x)O(m)(y)i ; (13)

for S-wave analysis, and

F P

nm(t) =
1

3V

X
�̂;x;y

hOn

�̂(x)O
m

�̂ (y)i ; (14)

for the P -wave analysis. Here V = 243, the spatial lattice volume.

All of the above operators are of the form

O(x) = �y(x)	(x) ; (15)

where for an appropriate set of (SU(3)-matrix) coe�cients fCxx0g

	(x) =
X
x0

Cxx0 (x0) ; (16)

and x0 = (x0; t) . A typical correlation function can be expressed as

F12(t) =
1

V

X
xy

hTr �G12(x; y)G
y(x; y)i+ c.c. ; (17)

where
�G12(x; y) = h	(1)(x)	(2)y(y)i ; (18)

where 1 and 2 indicate the two (possibly the same) smeared operators. Of course the

Green's function �G12(x; y) =
P
x0 C

(1)

xx0G(2)(x0; y) where G(2)(x0; y) can be calculated with

an appropriate change of initial condition by the same method as the original quark Green's

function.

3



4 Wall Source Method

Because the computing overhead is considerable it is desirable to extract as much signal

as possible from each pass through a gauge �eld con�guration. To this end we modify the

measured correlators F S
nm(t), F

P
nm(t) and FD

nm(t)as follows. Eq(17) leads to a method of

computation for our typical correlation function F12(t) that requires the evaluation of the

Green's functions for at least a representative sample of y-values on the initial time slice

if we wish to maximize the information to be extracted from each con�guration. This is

computationally onerous. An alternative procedure is the following. We replace the single

y-summation in eq(17) with a double sum thus

F12(t) =
1

V

X
x;y;y0

hTr �G12(x; y)G
y(x; y0)i+ c.c. ; (19)

where y0 = (0;y0) . We now rely on the gauge �eld averaging to eliminate the contributions

from the gauge non-invariant o�-diagonal terms in the above double (y;y0)-sum leaving only

the contribution from the gauge invariant diagonal terms for which y = y0 . The disadvantage

of the method is that the o�-diagonal contributions provide noise even if they do average

to zero. The advantage of the method is that we pick up all the diagonal terms in one pass

since it is only necessary to compute the objects of the form

g(x) =
X
y

G(x; y) ; (20)

which satis�es the same equation as G(x; y) and the initial condition

g(0;x) = 1 : (21)

Similar remarks apply to �g12(x) =
P
y
�G12(x; y) . We have then

F12(t) =
1

V

X
x

hTr �g12(x)gy(x)i ; (22)

In practice we do �nd that the method works well and does provide a good signal relatively

economically. It is implicit in the discussion that no gauge �xing has been imposed on the

ensemble of gauge �elds. However because of the limitations of the data set the averaging

procedure may not work perfectly. The di�erent treatment of the two operators in the

correlation function may mean that the symmetry F S;P;D
mn (t) = F S;P;D

nm (t) no longer holds.

This does not destroy factorization and we allow for the asymmetry in �tting the data. This

procedure is similar to the multiple origin approach �rst utilised by Kenway[7] and Billoire

et al.[8], except we seed all sites on the initial timeslice. A quark wall source was also used

by Gupta et al.[9] although they �x to Coulomb gauge.
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5 Data Fitting

As indicated above we try to �t the correlation function F S
mn(t) with the multi-exponential

form

F S

mn(t) =
X
a


(a)m

0

(a)ne
�M(a)t : (23)

Our main results are obtained using a two exponential form requiring eight parameters. This

allows us to obtain estimates for the lowest S and P states together with the �rst excitations.

Our statistical method involved a correlated least squares �t based on an estimate of the

complete set of variances and cross correlators of all the �tted quantities. Since our results are

based on 60 statistically independent gauge �eld con�gurations we felt that eight parameters

was a reasonable number for the �tted form. We did perform three exponential �ts in certain

cases with twelve parameters. Where these seemed reliable they were consistent with the

two exponential �ts but with considerably less tight errorbars. The results we quote are

from separate S and P -channels �ts. We also carried out a combined S and P -channel �t

but obtained results that were little di�erent.

The limitations of the data led us to con�ne ourselves to two operators per channel in

any one �t. The precise form of the 2� 2 matrix of correlators was 
Fmm(t) Fmn(t)

Fnm(t) Fnn(t)

!

=

 
(
(1)m )2 
(1)m 
(1)n �(1)


(1)n 
(1)m (
(1)n )2�(1)

!
e�Mt +

 
(
(2)m )2 
(2)m 
(2)n �(2)


(2)n 
(2)m (
(2)n )2�(2)

!
e�(M+�M)t : (24)

This is equivalent to the form in eq(23). The asymmetry in the factorized forms is represented

by the departure of the parameters �(1) and �(2) from unity. Note that we have parametrized

the splitting �M between the two levels explicitly since this is the quantity of direct interest.

The basis of the �tting procedure is the estimate of the correlation matrix of results.

At any one time these comprised the two direct and two cross correlators for two operators

evaluated on 48 time slices. The correlation matrix was therefore of dimension 192 � 192 .

Our data is extracted from 60 independent gauge con�gurations. The correlation matrix is

therefore of rank r � 60 and therefore necessarily singular. In practice the e�ective rank

of the correlation matrix is even less than this since beyond a certain point the eigenvalues

become so small their estimation from the data is not reliable. The least squares �tting

procedure and the associated error estimates require the use of the inverse of the correlation

matrix. It is necessary and indeed correct to restrict the inversion of the matrix to an

appropriate subspace that is spanned by eigenvectors with eigenvalues large enough for

reliable estimation from the data. The dimension of the subspace is referred to as the

Singular Value Decomposition (SVD) cut.

In assessing the results of the �tting procedure we examined cases with a range of values

of initial o�-set and SVD cuts for di�erent combinations of smeared operators. Our criterion
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for a choice of result was that the �2-value be acceptably near unity per degree of freedom and

that the error was the best (usually the �rst) of a range of reasonably good and statistically

consistent �ts.

6 Explicit Diagonalization Scheme

Before exhibiting the results of the correlated �ts we show directly the existence of a second

exponential by means of a diagonalization method. L�uscher and Wol� [10] have shown that

the eigenvalues of the correlation matrix are of the form

e�M(a)t
�
1 +O(e��M(a)t)

�
(25)

where �M(a) is the distance of stateM(a) from other states. Thus we evaluate the eigenvalues

of the correlation matrix using the appropriate Numerical Recipes routines [11]. Fig. 1 shows

the result for Ma = 1:5 for the S-wave combination OS
0 (x) and O

S
4 (x) - the ground state

S-wave is suppressed revealing the existence of the exponential associated with the �rst

excited state. Fig. 2 shows e�ective mass plots for the 1S and 2S states obtained from

these graphs. Figs. 3 & 4 show similar results for the 1P and 2P states. The results are

reasonably consistent with those of the correlated �ts discussed below which were used to

produce the quoted numbers.

In order to obtain reasonably smooth plots the e�ective mass was de�ned as

M(t) = 0:25 � log
 

A(t)

A(t+ 4)

!
; (26)

where

A(t) =
�
F (t) + wF (t+ 1) + w2F (t+ 4) + w3F (t+ 3)

�
=4 ; (27)

and w is chosen to render the terms in the sum of comparable size.

7 Correlated Fits for S and P Waves

The results of the correlated �ts are shown in Table 1 . Also shown are the operators used

to obtain the results, the �2 per degree of freedom, the SVD-cuts and the o�-sets at which

a reasonable statistical stability set in.

It is also interesting to compare the various mass splits with the spin-averaged values of

the �-system. We use a conversion factor from lattice units to physical units of a�1 = 3:2 .

The results are listed in Table 2 .
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It is clear that the pattern of mass splitting for the lower two bare masses (M0a =

1:5 & 2:0) is reasonably close to the actual splitting for the � except for the 2S level which

appears to be too high but exhibits a downward trend as M0a increases. The other splits

are less sensitive to changes in the bare mass.

The ratios of mass splits is independent of the choice for a�1 . For each bare quark mass

these ratios are listed in Table 4 taking the central value of the 1S � 1P split as the base.

These results are not dissimilar to those of the phenomenological non-relativistic quark

models [12]. The spectrum is relatively independent of the bare quark mass though the

2S state is rather high. Apart from the anomalously high 2S state the ratios that �t best

correspond to a bare quark mass somewhere between M0a = 1:5 and M0a = 2:0 . Using the

same conversion factor as above we �nd these correspond to M0 = 4:8 Gev and M0 = 6:4

Gev. This is to be compared with the B-quark mass of � 5 Gev suggested by the mass of

the � itself. If we take the 1S � 1P mass split for M0a = 1:5 as the correct basis on which

to calculate then we �nd a�1 = 3:4(3) Gev which encompasses the above value.

Our results for a�1 are higher than suggested by a measurement of the string tension � .

At � = 6:2, �a2 = 0:026(1) [14, 13] that is
p
�a = 0:161(3) . If we use the phenomenological

value
p
� = :42 Gev we obtain a�1 = 2:6(1) Gev. This is in line with other estimates of a�1.

Another way of expressing this discrepancy is to note that our lattice calculation at � = 6:2

yields a ratio
p
�=�M(1S � 1P ) ' 1:25 whereas the phenomenological result is ' 1:0 . The

question then is whether or not there is a reasonable explanation of this discrepancy for our

model. One answer is to recognize that the string tension is associated with the long range

part of the quark potential while the 1S � 1P split comes about as a result of a balance

between long and short range e�ects in the potential. The short range force is controlled

by the strong coupling evaluated at a higher momentum, q�, than that, �q, associated with

the string tension. The main di�erence between the quenched and unquenched theories is

the di�erential renormalization of the strong coupling �(q) at a given q due to the vacuum

polarization e�ects of light quarks. If we �x the string tension to be the same in both theories

then we have �U(�q) = �Q(�q) However because the quenched coupling runs faster than the

unquenched one we have �U (q
�) > �Q(q

�) . The short range force in the quenched theory will

therefore be weaker than in the unquenched case. Because the S-wave states are particularly

sensitive to the short range part of the Q� �Q force they will be more deeply bound in the

unquenched theory than in the quenched one. The P -waves will be controlled more by the

longer range part of the force associated with the string tension. This will tend to leave the

P -waves unchanged between the two theories with the result that for a given string tension

�M(1S�1P ) will be greater in the unquenched relative to the quenched theory. In turn this

will yield a lower value for the ratio
p
�=�M(1S � 1P ) for the unquenched relative to the

quenched theory in line with our results. Similar results will hold for for any two quantities

associated with di�erent momentum scales. In the quenched theory they will yield di�erent

estimates for a�1 while unquenched theory (by de�nition) will produce consistent estimates.
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8 Correlated Fits for D Waves

In Table 4 we show the results for a two exponential �t to the two versions of the D wave

operators for the bare quark mass M0a = 1:5 .

The encouraging feature of these results is the degeneracy within errors not only of the

basic states in the two channels but also of the �rst excited states. The conclusion is that to a

good approximation the cubical symmetry of the (spatial) lattice is replaced by rotatational

symmetry. Expressed in physical units �M(1S�1D) = 0:83(4) Gev if we again use a�1 = 3:2

Gev. There is so far no observed D wave for the � system but the corresponding state for

charmonium (J= ) has �M(1S � 1D) = 0:702 Gev. Given the simple and approximate

nature of our heavy quark Hamilton this is an encouraging result. The quality of the results

from the simulation restricted the application of the �tting procedure to the range t < 20 so

the outcome for the mass gap may be expected to be on the high side. This circumstance

may also explain why the measured gap �M(1D � 2D) ' 1 Gev is implausibly high. It is

interesting that it showed in both versions of the D wave spectrum.

9 Conclusions

We have measured the Q �Q mass splittings for the radial excitations of the S and P waves

using the non-relativistic heavy quark propagators calculated from quenched gluon con-

�gurations from the UKQCD collaboration. Our measurements were based on 60 QCD

con�gurations on a 243� 48 lattice. The Hamiltonian we used to calculate the quark propa-

gators was of the simplest kind containing only the kinetic energy contribution and omitting

all higher corrections. The results emerged from two-exponential correlated �ts to pairs of

smeared operator correlators. Our best results yielded statistical errors � 10% for the mass

splittings.

On a broad picture our results are not inconsistent with the pattern of spin-averaged

splittings of the �-system. In particular the ratios �M(1S�1P ) : �M(1S�2P ) : �M(1S�
1D) seem roughly correct. The 2P wave shows a slight dependence on the bare quark mass.

We have not yet determined the dependence of the 1D wave on this mass. The absence of an

experimental 1D state for � restricts us to a comparison with the corresponding charmonium

state or theoretical quark model predictions but that comparison is encouraging. If we base

our evaluation of the cut-o� strictly on the 1S�1P mass split then we �nd the value a�1 = 3:4

Gev. This very much in line with scaling predictions from results of the corresponding

calculations performed at values of � =5.7 and 6.0 [15] . This suggested a bare quark mass

for the kinetic energy Hamiltonian in the range 4.8 to 6.4 Gev.

However there are two obvious problems that present themselves. The �rst is that the

ratio involving the string tension
p
�=�M(1S � 1P ) is measured as 1.25 compared to a

phenomenological value of 1.0 . It is plausible that this discrepancy may be due to the overly
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strong running of the coupling in the quenched theory. The second is the anomalously high

value of �M(1S � 2S)=�M(1S � 1P ) and its sensitivity to the bare quark mass. It may

be that the de�ciencies of the quenched approximation can resolve this problem also. An

alternative explanation is that there is a measurement problem with the S wave channel.

Future measurements using di�erent smeared operators constructed in the Coulomb gauge

from quark model wave functions should help to resolve the issue.
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Figure Captions

Fig. 1 The results for the S-wave propagator F
(S)
00 (t) (circles) together with the the

results of the diagonalization procedure applied to the correlation matrix for the oper-

ators O
(S)
0 and O

(S)
4 (diamonds) revealing the contribution of the 2S-state.

Fig. 2 The e�ective mass plot for the 1S (upper graph) and 2S states (lower graph).

The estimates obtained from the correlated �t are indicated by a full line.

Fig. 3 The results for the P -wave propagator F
(P )
22 (t) (circles) together with the the

results of the diagonalization procedure applied to the correlation matrix for the oper-

ators O
(P )
2 and O

(P )
6 (diamonds) revealing the contribution of the 2P -state.

Fig. 4 The e�ective mass plot for the 1P (upper graph) and 2P states (lower graph).

The estimates obtained from the correlated �t are indicated by a full line.
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M0a Chan. Ma �Ma �2/dof SVD-cut O�-set Operators m

1.5 S 1.1152(8) 0.198(24) 25.6/18 26 17 0 and 4

P 1.243(12) 0.116(12) 19.2/20 28 11 2 and 6

2.0 S 0.9788(7) 0.194(12) 11.53/12 20 12 1 and 4

P 1.112(13) 0.105(20) 14.48/20 28 11 2 and 6

3.0 S 0.8287(7) 0.179(17) 21.68/18 26 15 0 and 4

P 0.969(17) 0.090(17) 11.6/14 22 11 2 and 6

Table 1: The results for the ground states and �rst excited splits in the S and the P channels.

M0a 1S � 2S 1S � 1P 1S � 2P 1P � 2P

1.5 0.198(24) 0.128(12) 0.244(17) 0.116(12)

0.634(77) Gev 0.410(38) Gev 0.781(54) Gev 0.371(38) Gev

2.0 0.194(8) 0.133(13) 0.238(24) 0.105(20)

0.621(26) Gev 0.426(42) Gev 0.762(77) Gev 0.336(64) Gev

3.0 0.179(17) 0.140(17) 0.230(24) 0.090(17)

0.573(54) Gev 0.448(54) Gev 0.736(77) Gev 0.288(54) Gev

Expt(�) 0.563 Gev 0.430 Gev 0.795 Gev 0.365 Gev

Table 2: The results for various mass splits in lattice and physical units compared to the

spin-averaged results for the �-system. The conversion factor is a�1 = 3:2 Gev.

M0a 1S � 2S 1S � 1P 1S � 2P 1P � 2P

1.5 1.55(19) 1.00(12) 1.91(13) 0.91(9)

2.0 1.46(6) 1.00(13) 1.79(18) .79(15)

3.0 1.28(12) 1.00(17) 1.64(17) 0.64(12)

Expt(�) 1.31 1.00 1.85 0.85

Table 3: The results for various mass splits expressed as ratios to the central value of the

1S � 1P split and compared to the spin-averaged results for the �-system.

M0a Chan. Ma �Ma �2/dof SVD-cut O�-set Operators m

1.5 DE 1.373(11) 0.315(13) 23.7/18 26 6 2 and 6

DT 1.388(19) 0.389(41) 22.5/14 22 6 1 and 4

Table 4: The results for the ground states and �rst excited splits in the DE and the DT

channels.
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