
CERN-TH.7197/94

ILL-(TH)-94-07

SCCS-762

Is there an exponential bound in

four dimensional simplicial gravity ?

S. Catterall 1

TH-Division, CERN CH-1211,
Geneva 23, Switzerland.

J. Kogut

Loomis Laboratory, University of Illinois at Urbana,
1110 W. Green St, Urbana, IL 61801.

R. Renken

Department of Physics, University of Central Florida,
Orlando, FL 32816.

Abstract

We have studied a model which has been proposed as a regularisation for four

dimensional quantum gravity. The partition function is constructed by performing

a weighted sum over all triangulations of the four sphere. Using numerical simula-

tion we �nd that the number of such triangulations containing V simplices grows

faster than exponentially with V . This property ensures that the model has no

thermodynamic limit.
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Introduction

In the last few years there has been considerable interest generated in a model for quantum
gravity in which the functional integral over metrics (ill-de�ned in the continuum) is

replaced by a discrete sum over random triangulations. The initial proposal [1, 2, 3] arose

as a natural generalisation of random surface theories in two dimensions. The results of

these numerical studies were encouraging and were con�rmed by other groups [4, 5]. The

most exciting possibility was the observation of a possible phase transition for a critical

value of the bare Newton constant. The hope was that a nonperturbative quantum theory
for gravity could be recovered in the vicinity of this new �xed point. These observations

were rendered more quantitative by the recent work [6] in which a serious �nite size scaling

study was performed.
The model is de�ned from the partition function.

Z =
X
T (S4)

e��4N4+�0N0 (1)

The sum is restricted to run over all simplicial manifolds (triangulations) with the topol-

ogy of S4. The �rst term in the action N4 is just the number of four simplices in the
triangulation T and this allows us to identify the corresponding coupling �4 as a bare
cosmological constant. The second term depends only on the number of vertices in the

triangulation N0 and plays the role of the integrated Ricci scalar { the coupling �0 is then
essentially the inverse bare Newton constant.

This correspondence is clear classically from the usual Regge expression for the curva-
ture associated to any triangle rijk with the extra constraint that the four simplices are
all considered equilateral

rijk = 2� � cos�1
�
1

4

�
n
ijk
4 (2)

Notice that if the volume is bounded, the number of four simplices shared by a given
triangle nijk4 is necessarily also bounded. This automatically ensures that the model is well
de�ned at �nite volume { it is a dynamical question as to whether the problems associated

to the unboundedness of the continuum action return on taking the large volume limit.

As we have remarked, the analogous model in two dimensions has been studied exten-
sively, see, for example, the review [7]. It seems clear that at least for central charges less
than unity, the sum over triangulated graphs correctly mimics the continuum functional

integrals over the metric including the conformal anomaly. In four dimensions it is not

at all clear that a simple generalisation, such as the one described above, is su�cient to
explore the space of metrics. However, it constitutes a simple ansatz which may be studied

using numerical simulation.
We may rewrite eqn.1 in the form

Z =
X
N4

e��4N4
(N4; �0) (3)
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The partial sum 
 (N4; �0) counts the number of triangulations (weighted by the Ricci

term) with volume N4. The results we discuss here are concerned with the volume depen-

dence of this entropy function 
 (N4; �0). It is helpful at this point to recall the behaviour

of the equivalent two dimensional model.

Two dimensional gravity regulated using dynamical triangulations has a partition anal-

ogous to eqn. 1. The number of simplices is now just N2 with corresponding cosmological

constant �2. The coupling �0 plays no role in two dimensions as the number of vertices N0

is strictly proportional to the number of two simplicesN0 =
1
2
N2+� if the Euler character

� is kept constant (for example S2). If we sum over all two dimensional triangulations with
�xed volume we arrive at a quantity ! (N2) analogous to 
 (N4; 0) for the four dimensional

theory.

There are rigorous proofs [8, 9] that this quantity is exponentially bounded.

! (N2) � e�
c

2
N2 (4)

This property is crucial for the very existence of the partition function. It implies that for
a su�ciently large bare cosmological constant �2 > �c2 the partition function will be �nite.
The thermodynamic limit N2 ! 1 is then obtained by tuning �2 towards this critical
value �c2. The mean volume hN2i then behaves as hN2i � (�2 � �c2)

�1. If the number of
triangulations were to increase faster than exponentially, it would be impossible to tune
the bare cosmological constant to approach the large volume limit in a regular fashion {

the partition function would be dominated by in�nite volume triangulations independent
of the bare lattice parameters. Constructing a continuum limit would then be impossible.

Thus, it is absolutely essential for the very existence of these higher dimensional models
that there be such a bound. Unfortunately, there are no analytic proofs available for
dimension greater than two. If the topology is not �xed it can be shown that the number of

triangulations increases factorially with volume even in two dimensions [10]. The situation
is made worse by the lack of any topological classi�cation of three and four dimensional
manifolds.

Faced with this we have used numerical simulation to estimate the volume of the

triangulation space. Whilst the previous studies [1, 2, 4, 5] have claimed evidence for

an exponential bound we believe the issue is of such paramount importance that a very

detailed study is required. Indeed, the results we shall present favour a very di�erent
scenario.

Method

For an entropy function that behaves exponentially with volume we have argued that it

is possible to choose the coupling �4 to �x the mean volume hN4i. In practice this is a

di�cult �ne tuning problem. Even under the assumption of an exponential bound, the

entropy 
 (N4; �0) is of the form


 (N4; �0) � N
a(�0)
4 e�

c

4
(�0)N4 (5)
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We have included the leading power law correction parametrised by a (�0). In practice

the power a is negative, so that the partition function is dominated by small or large

volumes depending on the sign of ��4 = �4 � �c4 (�0).

This problem has been tackled in a variety of ways. We have followed the approach of

Migdal et al. [1] and added to the action a small correction term of the form

�S =  (N4 � V )
2

(6)

Replacing the sums by integrals and forgetting for the moment any power law corrections

it is now simple to obtain a relation between the mean volume hN4i and the parameters

in the action.

hN4i =
1

2
(��4 + 2V ) (7)

Thus tuning �4 to yield an average volume V yields a measurement of the coupling �c4 (�0).

The auxiliary coupling  merely controls the magnitude of volume uctuations. We have
set  = 0:005. The presence of power law (and other subleading) corrections gives �c4 (�0)
a volume dependence �c4 (�0) = �c4 (V; �0). The relation eqn. 7 may be rewritten

�c4 (N4; �0) = �4 + 2 (hN4i � V ) (8)

In practice we iterate the above relation during the thermalisation stage of our sim-

ulation and apply it once more at the end of our run to compute our �nal estimate for
�c4.

In this picture the presence of an exponential bound would be signalled by this critical
cosmological constant �c4 (V; �0) having a �nite limit for large volumes V . In contrast
�c4 (V; �0) would increase logarithmically in a model for which 
 (N4; �0) grew factorially
with volume (this just follows from the asymptotic result (x!)� � e�x ln x).

Notice that it is su�cient to prove an exponential bound for a single value of �0 { the
following inequality guarantees that there will then be a bound for any other �0 > 0.


 (N4; 0) � 
(N4; �0) � exp (��0N4)
 (N4; 0) (9)

We have used a Monte Carlo algorithm to sample the triangulation space of the model

{ the details are given in [11]. Our code is written in such a way as to make the dependence

on dimension d trivial { it enters only as an input parameter to the program.
We have simulated systems from size V = 500 to V = 32000. Typical runs utilised

on the order of 4 � 105 MC sweeps with one sweep corresponding to V trial updates. In

addition we performed a series of runs for both the two dimensional and three dimensional
models. The results of these simulations could then be contrasted with the equivalent four

dimensional data and served as an important test of our code.

Results

Fig. 1 is a plot of the critical cosmological coupling �cd (V; �0) against the logarithm of the

volume for the two, three and four dimensional models at �0 = 0 (To improve clarity we
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plot �c2 � 0:5 and �c3 � 1:0). Clearly, the presence of an exponential bound emerges very

clearly in the two dimensional case { �c2 (V; 0) is statistically consistent with a constant

�c2 (1) = 1:1249(6) for volumes V � 2000.

For three dimensions the situation is rather di�erent. The �nite volume dependence

of �c3 (V; 0) is large over the full range of volumes analysed. However, as the plot reveals

there is no strong evidence of a logarithmic component { indeed the best �t we could

make to the data corresponds to a convergent power law (the solid line in the �gure)

�c3 = a + bV c. The �t yields a = 2:01(1), b = �3:2(1) and c = �0:28(1) with a �2 per

degree of freedom 2:0. Thus, our data in three dimensions favours a bound. Indeed these
numbers are consistent with the ones quoted in a previous study by Ambj�rn and Varsted

[12] who give a = 2:06, b = �3:9 and c = �0:32. Their �t derives from lattice sizes of

V = 14000 and smaller with lower statistics but it is reassuring to see that we are in pretty
good agreement. We are currently extending our dimension three runs to larger lattices
to strengthen our con�dence in the three dimensional bound.

The situation in four dimensions is radically di�erent. Clearly, the data support the
hypothesis that there is a logarithmic component to the critical volume coupling �c4 (V; 0).
A �t of all the d = 4 data to a simple logarithm �c4 = a + b lnV results in a value for

b = 0:0315(3) with a �2 per degree of freedom 2:7 (solid line shown). Converging power
�ts simply fail to describe the data.

To test this hypothesis further we looked at the situation for non zero �0. Fig. 2 shows
a plot of �c4 (V; �0) for �0 = 0:0, �0 = 0:5 and �0 = 1:0. The inequality eqn.9 implies
that the coe�cient of this logarithm should be universal (independent of �0). The leading

e�ect of a non zero value for �0 is simply a renormalisation of any exponential terms in

 (N4; 0). This is con�rmed by the data in �g. 2. Although the curves start out with

di�erent gradients their large volume behaviour appears to be the same.
However the plot makes it also clear that the onset of this asymptotic regime is depen-

dent on �0 { as �0 increases the curves start o� increasingly at and the logarithm only

manifests itself for large volumes.
We found that very long runs were required to thermalise the four dimensional lattices.

The initial con�gurations were created by employing only the node insertion move which
e�ectively generates lattices corresponding to large values of �0. For the largest volumes

we employed, V = 32000, we found that subsequent relaxation times were of the order of

105 sweeps. This di�culty of reaching true equilibriumwas the main factor in determining
the largest volumes we could reach. It is perhaps a practical demonstration of the results
reported in [13] in which the algorithmic unrecognisability of four manifolds is shown to

lead to a lack of a reasonable bound on the number of local moves needed to pass from

one con�guration to another.
Thus our four dimensional data would indicate that the entropy 
 (V; 0) has a leading

behaviour


 (V; 0) � (V !)� (10)

If we �t the �0 = 0:0; 0:5; 1:0 data for the three largest volumes by straight lines we
�nd consistent estimates for the exponent �. These are � = 0:027(1); 0:026(1); 0:025(2)

respectively. We would then assign our best estimate for � as � = 0:026(5).
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Outlook

In summary, we have presented results which are consistent with a leading factorial be-
haviour for the entropy of triangulations of the four sphere 
 (V; 0). Speci�cally, the

number of triangulations of S4 grows like


 (V; 0) � exp (aV ) (V !)
�

(11)

Furthermore, we estimate the exponent � = 0:026(5). This rapid growth renders it impos-

sible to take the thermodynamic (large volume) limit { the partition function for any �0
is dominated by large volumes. This in turn implies there is no continuum limit for the

model.
We have argued that the presence of large �nite volume e�ects can obscure this be-

haviour for large values of the inverse bare Newton constant (�0) on lattices that are
computationally accessible. It is tempting to speculate that the rather rapid shift of the

pseudo critical node coupling reported in [6] is further evidence for the lack of a well-
de�ned continuum limit. The data presented in [6] is not inconsistent with a scenario
in which this pseudo-critical coupling diverges as the mean volume approaches in�nity,
leaving the system in an extremely crumpled, degenerate phase.

It is important to notice also that the term added to help �ne tune the cosmological

constant �4 is now playing a crucial role in de�ning the partition function. There is now
no reason to believe that di�erent methods of doing this are equivalent.

Clearly an extension of this work (with perhaps a more re�ned method for computing
�c4 (V; �0)) to larger volumes and node couplings would help to con�rm these conclusions.
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Figure 1: Critical cosmological constant �0 = 0
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Figure 2: �c4 (V ) d = 4
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