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Introduction

Much interest has been generated recently in lattice models for euclidean quantum gravity
based on dynamical triangulations [1, 2, 3, 4, 5, 6, 7, 8]. The study of these models was

prompted by the success of the same approach in the case of two dimensions, see for

example [9]. The primary input to these models is the ansatz that the partition function

describing the 
uctuations of a continuum geometry can be approximated by performing

a weighted sum over all simplicial manifolds or triangulations T .

Z =
X

T

� (T ) (1)

In all the work conducted so far the topology of the lattice has been restricted to the

sphere Sd. The weight function � (T ) is taken to be of the form

� (T ) = e��dNd+�0N0 (2)

The coupling �d represents a bare lattice cosmological constant conjugate to the total
volume (number of d-simplices Nd) whilst �0 plays the role of a bare Newton constant

coupled to the total number of nodes N0.
We can rewrite eqn. 1 by introducing the entropy function 
d (Nd; �0) which counts the

number of triangulations with volume Nd weighted by the node term. This the primary
object of interest in this note.

Z =
X

Nd


d (Nd; �0) e
��dNd (3)

For this partition sum to exist it is crucial that the entropy function 
d increase no
faster than exponentially with volume. For two dimensions this is known [10] but the only
evidence for this in higher dimensions has come from numerical simulation. The proof of

a bound for three dimensions given by Boulatov [11] has been shown to be incorrect [12].
In four dimensions there is still some uncertainty in the status of this bound [13, 14, 8].

With this in mind we have conducted a high statistics study of the three dimensional

model at �0 = 0, extending the simulations reported in [15] by an order of magnitude in
lattice volume and with increased statistics. Whilst we observe a rather slow approach to
the asymptotic, large volume limit, our results are entirely consistent with the existence of

such a bound. This is our most important result. Furthermore, the measured mean node

number per unit volume also shows strong �nite volume e�ects. We will argue that the
detailed nature of these provides a strong consistency check on our results for the bound.

If we write 
3 (N3) as


3 (N3) = ae�
c

3
(N3)N3 (4)

the e�ective critical cosmological constant �c3 is taken dependent on the volume and a

bound implies that �c3 ! const < 1 as N3 ! 1. In contrast for a model where the
entropy grew more rapidly than exponentially �c3 would diverge in the thermodynamic
limit.
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To control the volume 
uctuations we add a further term to the action of the form �S =


 (N3 � V )
2
. Lattices with N3 � V are distributed according to the correct Boltzmann

weight up to correction terms of order O
�

1p

V

�
where we use 
 = 0:005 in all our runs.

This error is much smaller than our statistical errors and can hence be neglected.
Likewise, as a �rst approximation, we can set �c3 equal to its value at the mean of the

volume distribution V which allows us to compute the expectation value of the volume

exactly since the resultant integral is now a simple gaussian. We obtain

hN3i =
1

2


�
�33 (V )� �3

�
+ V (5)

Equally, by measuring the mean volume hN3i for a given input value of the coupling �3
we can estimate �c3 (V ) for a set of mean volumes V . The algorithm we use to generate a
Monte Carlo sample of three dimensional lattices is described in [16]. We have simulated
systems with volumes up to 128000 3-simplices and using up to 400000 MC sweeps (a

sweep is de�ned as V attempted elementary updates of the triangulation where V is the
average volume).

Our results for �c3 (V ), computed this way, are shown in �g. 1 as a function of lnV .
The choice of the latter scale is particularly apt as the presence of a factorial growth in

3 would be signaled by a logarithmic component to the e�ective �c3 (V ). As the plot

indicates there is no evidence for this. Indeed, the best �t we could make corresponds to
a convergent power law

�c3 (V ) = �c3 (1) + aV �� (6)

If we �t all of our data we obtain best �t parameters �c3 (1) = 2:087(5), a = �3:29(8)

and � = 0:290(5) with a corresponding �2 per degree of freedom�2 = 1:3 at 22% con�dence
(solid line shown). Leaving o� the smallest lattice V = 500 yields a statistically consistent

�t with an even better �2 = 1:1 at 38% con�dence. We have further tested the stability
of this �t by dropping either the small volume data (V = 500 � 2000 inclusive), the large
volume data (V = 64000�128000 inclusive) or intermediate volumes (V = 8000�24000).

In each of these cases the �ts were good and yielded �t parameters consistent with our

quoted best �t to all the data. Furthermore, these numbers are consistent with the earlier
study [15]. We are thus con�dent that this power law is empirically a very reasonable
parameterisation of the approach to the thermodynamic limit. Certainly, our conclusions

must be that the numerical data strongly favour the existence of a bound.

One might object that the formula used to compute �c3 is only approximate (we have

neglected the variation of the critical coupling over the range of 
uctuation of the volumes).

This, in turn might yield �nite volume corrections which are misleading. To check for this

we have extracted �c3 directly from the measured distribution of 3-volumes Q (N3). To do
this we computed a new histogram P (N3)

P (N3) = Q (N3) e
�3N3+
(N3�V )2 (7)
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As an example we show in �g. 2 the logarithm of this quantity as a function of volume

for V = 64000. The gradient of the straight line �t shown is an unbiased estimator of

the critical coupling �c3 (64000). The value of 1:9516(10) compares very favourably with

the value �c3 (64000) = 1:9522(12) obtained using eqn. 5. Indeed, this might have been

anticipated since we might expect corrections to eqn. 5 to be of magnitude O
�
V �(1+�)

�

which even for the smallest volumes used in this study is again much smaller than our
statistical errors.

In addition, we have measured the mean node number per unit volume. We will

argue that the �nite volume corrections to this quantity are essentially determined by the
behaviour of �c3 (V ). This follows from the usual rule hN0i =

@ lnZ
@�0

with Z replaced by


3 (V; �0) for our quasi-microcanonical simulations.

hN0=V i =
@�c3 (V; �0)

@�0
(8)

Our data for this quantity are shown in �g. 3. From eqn.8 the �nite volume corrections
to this quantity should be similar to those of the critical coupling �c3 (V ). Speci�cally, if

we attempt a power law �t to the data shown in �g. 3 we should �nd a power statistically
consistent with that governing the approach to in�nite volumes of the critical coupling.
Initially we have �tted the data in two ways

hN0=V i = b+ cV �d (9)

In the �rst the parameter b =
@�c

3
(1)

@�0
is set to zero and we �t for only two parameters

c = @a

@�0
and d (using the notation introduced in eqn.6). These �ts appear to be rather

poor { even leaving o� all the data for lattices with volume V � 32000 the resultant �t
c = 0:572(8), d = �0:296(1) has a �2=dof = 7:0. The problem is the rather steep rise at
small volumes which is inconsistent with the long tail. Notice, though that the power d is
rather close to that obtained from the critical coupling (which we have called �). This may
be taken as an argument in favour of the �t { the poor �2 can be interpreted as resulting

from the presence of rather large subleading corrections at most of the lattice volumes we
could reach. As an alternative we have �tted with the b-parameter left free. In this case
acceptable �ts are obtained by taking data from lattices V � 8000 { our best �t yields

b = 0:0045(1), c = 1:14(2), d = �0:380(3) at a �2 per degree of freedom of �2 = 1:6.

Fits to subsets of the large volume data yield consistent results. The errors quoted are

simply those of the �t { they are almost certainly underestimates of the true errors due
to the presence of subleading corrections. Notice that whilst the �ts are `better' in the
sense of their �2 values, the exponent d is now rather larger than �. Of course, as we have

remarked, since it is hard to estimate the absolute errors in these parameters they may
still be consistent.

We can attempt to model the small volume behaviour more closely by allowing for

the presence of power law corrections to the leading exponential behaviour of 
3 (V ).

The presence of such corrections would lead to an additional term in eqn. 9 of the form

e lnV=V (we set the constant b = 0). The data for V � 8000 can now be �tted as
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e = 4:4(4), c = 0:452(8) and d = 0:278(2) with a �2 = 1:7. This �t has the merit of

yielding an estimate for d close to the � power, with a reasonable goodness-of-�t. Both

this �t and the b = 0 �t imply that in the thermodynamic limit the lattices have an in�nite

node coordination number.

Finally, we show in �g. 4, a plot of the mean intrinsic size of the ensemble of simplicial

graphs versus their volume. This quantity is just the average geodesic distance (in units

where the edge lengths are all unity) between two randomly picked sites. The solid line is

an empirical �t of the form

L3 = e+ f (lnV )
g

(10)

Clearly, the behaviour is close to logarithmic (as appears also to be the case in four

dimensions [7]), the exponent g = 1:047(3) from �tting all the data (�2 = 1:7 per degree

of freedom). This is indicative of the extremely compact nature of the typical simplicial
manifolds dominating the partition function at this node coupling. It is natural to associate
this with the very small (possibly zero) value of the b-parameter discussed in the last
section.

An alternative way to parametrise the data (essentially small deviations from a simple

logarithm) might be to add a correction term of the form ln lnV .

L3 = e+ f lnV + g ln lnV (11)

This gives a competitive �t with e = �1:45(4), f = 1:438(4) and g = �0:55(3) with
�2 = 1:6. One might be tempted to favour this �t on the grounds that it avoids the

problem of a power close to but distinct from unity. However, there are very many other
ways to �t the data which are a priori equally acceptable. The situation must remain
ambiguous without further theoretical insight.

To summarise this brief note we have obtained numerical results consistent with the
existence of an exponential bound in a dynamical triangulation model of three dimensional

quantum gravity. One rather robust way to characterise the approach to the thermody-
namic limit is via a small power. Furthermore, we have argued that these �nite volume

corrections are the same for both the critical coupling and mean node coordination. Our
numerical results support this picture. We have also attempted to address the question

of whether the coordination number diverges in the thermodynamic limit i.e whether the
parameter b is indeed zero or merely small.

We have argued that this is a delicate question and depends very strongly on how

one parametrises the subleading corrections to the leading �nite volume behaviour. It is
clear that a simple power �t with b zero does not model the data. However, it is hard
to distinguish a non-zero b-�t from one with additional terms involving lnV=V . The

latter have some motivation as arising from possible power corrections to the exponential

behaviour of the entropy function 
3. Without any theoretical guidance it is impossible

to be sure of this question.
Finally, we show data for the scaling of the mean intrinsic extent with volume which
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suggests a very large (possibly in�nite) fractal dimension for the typical simplicial mani-

folds studied.
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Figure 1: Critical coupling vs volume
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Figure 2: Modi�ed distribution of 3-volumes
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Figure 3: Number of nodes per unit volume
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Figure 4: Mean intrinsic extent
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