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Abstract

Recently a block spin renormalization group approach was proposed for the dy-

namical triangulation formulation of two-dimensional quantum gravity. We use this

approach to examine non-perturbatively a particular class of higher derivative actions

for pure gravity.
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I. INTRODUCTION

Dynamically triangulated random surfaces provide a lattice representation of two-

dimensional quantum gravity [1,2]. Both in the continuum and on a simplicial lattice the

usual Einstein action based on the Ricci scalar is a topological invariant. Thus the simplest

action for the lattice theory at �xed volume and genus can then be taken as zero.

In principle, it is possible to add other operators to this lattice action which are consistent

with the underlying symmetries of the model - here reparametrization invariance. The lattice

action would then take the form S =
P

i �iOi where fOig are a set of generic operators with

associated coupling constants f�ig. For example, it is natural to consider operators which are

the lattice analogues of higher derivative terms { integrals of powers of the scalar curvature.

In general these actions may then possess one or more critical points f�c
i g in the coupling

constant space where it may be possible to construct continuum limits for the model.

The usual theory of two dimensional quantum gravity is constructed about the special

point �i = 0. Perturbation theory then indicates that the higher operators are all irrelevant

in the renormalization group sense { that is the long distance continuum physics of models

with �i non-zero is identical to that at the �xed point �i = 0. Unfortunately, perturbation

theory can tell us nothing, in principle, about the existence and properties of other �xed

points situated in regions of the parameter space where any of the �i are not small. To

probe such regions a nonperturbative procedure is required. For conventional statistical

mechanical models the block spin renormalization group is one such technique [3]. In this

technique, a local kernel is used to construct an e�ective theory with a carefully controlled

change of scale which allows the calculation of critical couplings and critical exponents.

Such a block spin formalism has recently been developed for dynamical triangulations

and applied to two-dimensional quantum gravity coupled to Ising spins [4]. In contrast, a

heuristic renormalization group inspired approach has been advocated in [5]. In this paper,

we apply the block spin renormalization group approach to pure quantum gravity. The aim

is to explore the �xed point structure of the lattice model when a particular class of higher
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derivative operator is included in the action. Speci�cally, we use an action S = �
P

i ln qi

where qi is the coordination number of a site. Such a term consists of an in�nite series

of powers of the curvature and arises naturally when we couple the theory to scalar �elds.

We show that the approach does indeed yield an appropriate �xed point and present results

which give strong evidence for the nonperturbative irrelevance of such higher order curvature

terms.

II. BLOCK SPIN RENORMALIZATION GROUP

The details of the algorithm are given in [4]. Here, we just summarize the approach. The

traditional way of implementing the renormalization group within a numerical simulation is

to generate a sequence of lattice �eld con�gurations which are distributed according to the

usual Boltzmann weight. Each of these is then progressively coarsened in some way which

preserves the long distance physics. Corresponding to each initial �ne lattice con�guration

a succession of `blocked' lattices is thus generated. Typically, the �elds on each `blocked'

lattice are determined by the �elds of the lattice at one less blocking level. By examining

the ows of expectation values of a set of operators and their correlators as a function of

blocking level, it is then possible to extract the critical couplings and critical exponents.

The choice of an apt `blocking' transformation is a very important issue. For the case

of random triangulations, the lattice itself is the dynamical object. We thus require an

algorithm for replacing a given random mesh with a succession of coarsened descendents

with approximately the same long distance features. The most natural way to measure

distance in this context is by de�ning all lattice links to have length unity. The distance

between any two points is then taken as the geodesic length between them { the length (in

lattice units) of the shortest path connecting them on the lattice.

In order for the blocking algorithm to be apt it must be able to replace a given mesh

by one with a subset of the nodes triangulated in such a way that the relative lengths of

blocked geodesics reect the underlying geodesic structure. That is, like a metric, the blocked
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triangulation tells us which points are near and which are far apart and this must accurately

reect the situation on the underlying lattice. It appears to be a hard problem to give a rule

which when applied to an arbitrary random lattice accomplishes this task. Our method,

however, relies on a simple, local, iterative procedure to generate the coarsened lattices.

Suppose, by some method, it has been possible to generate a set of blockings of a given

triangulation. In order to generate a Monte Carlo sample, the �ne lattice (blocking level

zero) is then updated using the stochastic link ip algorithm. In order that the coarsened

lattices reect the new �ne lattice it is necessary to perform block link ips according to some

suitable rule. This rule then ensures that they `follow' the parent lattice as it is updated.

Denote a generic lattice at blocking level k by Tk and its successor at level k + 1 by Tk+1.

Thus, any rule which speci�es when to ip links in Tk in response to ips of the links in

Tk�1 provides a de�nition of the blocking transformation. An apt rule appears to be to ip

a block link in Tk whenever that would connect two points that are closer (on the lattice

Tk�1) than the two currently linked. This process is iterated recursively to generate a tower

of blocked lattices for each �ne lattice. This block rule ensures that a given block lattice

is determined from its `parent' at one less blocking level in such a way that the relative

distance of blocked nodes is preserved.

There are two convenient ways to choose the original lattice and its blocked form. One is

to start with a regular lattice and to choose distinct subsets of points (those corresponding

to a usual square lattice blocking) that can obviously be triangulated in a regular way. The

other is to start with a triangulation that is viewed as the block lattice and to add as many

points as desired to produce the bare lattice. Updating the block lattice with a number of

block link sweeps then relaxes the block lattice.

The Monte Carlo cycle thus begins with an update sweep of the �ne lattice followed by a

number of applications of the block link update rule (typically �ve to ten block link sweeps)

at each blocking level.

Any expectation values computed on a blocked lattice can be viewed as coming from an

e�ective action. There is a sequence of e�ective actions that corresponds to the sequence of
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blocking levels. If the original action is critical (and if the renormalization group transforma-

tion is apt), this sequence converges to a �xed point. Such should be the case for dynamical

triangulations with action equal to zero. Such should also be the case if any irrelevant term

is added to the action. In this case, the sequence should converge, not just to any �xed

point, but to the same �xed point obtained without the irrelevant terms.

In practice, although the e�ective actions converge to a �xed point when the theory is

critical, the expectation values obtained on the block lattices do not. This is because each

renormalization group transformation reduces the size of the lattice and hence increases the

�nite size e�ects. A single sequence of blocking levels with their corresponding expectation

values will not display convergence toward a �xed point. However, two sequences, begin-

ning with bare lattices of di�erent volumes can do this. The trick is to choose the bare

lattice of one of the sequences to have the same volume as the �rst blocked level of the

other sequence. In this way, expectation values can be compared on lattices with the same

volume (and therefore the same �nite size e�ects) but with di�erent numbers of iterations

of the renormalization group transformation. Since the �nite size e�ects are identical, any

di�erence in expectation values can only be due to a di�erence in e�ective actions. As the

renormalization group transformation is iterated and the actions ow toward a �xed point,

the di�erence in e�ective actions should rapidly decrease yielding a progressively smaller

di�erence in expectation values.

III. RESULTS

Our �rst goal, then, is to implement the block spin renormalization group transformation

described above on dynamical triangulations with an action equal to zero and to see if the

matching procedure just outlined produces pairs of expectation values that are increasingly

close as the blocking level is increased. Seven operators are used in this study. The �rst

six are all powers or correlations of the coordination number at a site (qi) minus six (its

at-space, regular lattice value) and are all normalized by the number of links. The �rst is
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the nearest neighbor correlation:

O1 =
X

<ij>

(qi � 6)(qj � 6):

The second is the correlation between the nodes conjugate to a link (the nodes that the link

would join if it were ipped):

O2 =
X

<ij>

(qi0 � 6)(qj0 � 6)

(where i0 and j0 represent the nodes where the ends of the ipped link would go). The third

is the product of the �rst two:

O3 =
X

<ij>

(qi � 6)(qj � 6)(qi0 � 6)(qj0 � 6):

The fourth, �fth, and sixth are the second, third, and fourth powers of the coordination

number minus six:

O4 =
X

i

(qi � 6)2; O5 =
X

i

(qi � 6)3; O6 =
X

i

(qi � 6)4:

Finally, the seventh operator is the maximum coordination number of the lattice:

O7 = max(qi)

Lattices were used with 9, 36, 144, 576, and 2304 nodes which allowed for up to four iterations

of the blocking transformation. The results shown correspond to 1�105 bare lattice sweeps.

Table 1 shows the expectation values at all blocking levels starting from the largest lattice.

There is a great variation in the expectation values as a function of block level and it is not

at all obvious that they are approaching a �xed point. The matching can be seen in table 2

which compares the seven expectation values after three and four iterations of the blocking

transformation on lattices such that the �nal number of nodes is nine. They match fairly

well, an indication that the e�ective theory is near its �xed point. Figure 1 uses expectation

value di�erences of O7 to give a graphical representation of the approach to the �xed point.

It would be interesting to measure the string susceptibility exponent to con�rm that indeed

this �xed point corresponds to the usual two-dimensional gravity theory.
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Now consider a perturbation of this scenario using the action

S = �
X

i

ln(qi)

If this term is irrelevant, the sequence of expectation values generated by iterating the

blocking transformation should approach those generated with S = 0 at large blocking

levels, even if the expectation values di�er a great deal at the lower blocking levels. Table

3 shows the data in the case of � = �1. Figure 2, using O7 again, gives a graphical

representation of this data along with data for � = +1. The fact that the expectation value

di�erences approach zero as the blocking level increases con�rms that ln(q) is indeed an

irrelevant operator. The results are similar for much larger �. Figure 3 shows the analogous

data for � = �10. At a true �xed point, all of the expectation values should match, not just

one. Figures 4 and 5 give the expectation value di�erences for O1 at the same values of �

as in �gures 2 and 3 respectively. Matching is demonstrated for this operator as well. Thus,

our results provide an independent check of the universality �rst reported in [6] where str

was computed numerically and found independent of � in the region � � �2! � � 10. It

is also consistent with the lack of any phase transition seen in the simulation study [7].

In [1] there is however evidence that for negative enough � there may be a phase transition

to some crumpled state. Such a transition is not visible in perturbation theory [8]. If such a

transition exists, one would expect the expectation values to ow to a set of values di�erent

from those obtained with S = 0. We �nd that while at negative values of � the expectation

values on the bare lattice start looking dramatically di�erent from those at S = 0 (for

instance the value of O7 increases by more than an order of magnitude) the renormalization

group trajectories ow to the same point within statistics.

Thus, the renormalization group scheme used here gives no evidence for a phase transi-

tion. It is possible that there is such a transition and that either the particular renormal-

ization group transformation used here is not \apt" for that transition or the expectation

value di�erences of the blocked operators are smaller than our errors. The statistical uncer-

tainty of the � = �10 data at the highest level of blocking is from three to �ve times larger
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(depending on the operator) than that of any of the other values of � considered in this

paper. In this regard, it should be noted that the e�ects of Ising matter at the critical point

on expectation values in the gravitational sector are too small to be detected with current

statistics. However, the e�ects of matter on the gravitational sector are notoriously small

for this formulation of quantum gravity whereas the higher derivative term can clearly have

a strong e�ect. It may be that there is a transition that is nearby in the space of theories

possibly of a higher order of multicriticality. To see such a �xed point would require tuning

of additional couplings.

To summarize, we have presented results concerning the �xed point structure of the

dynamical triangulation model for two dimensional quantum gravity. These have been

obtained using an adaptation of the Monte Carlo renormalization group to the situation

where the lattice itself carries the dynamical degrees of freedom. Firstly, we have given

evidence that our renormalization group procedure does indeed yield a �xed point with the

usual (trivial) bare action.

We have further studied a class of higher derivative operator and given evidence that

such an operator is truly irrelevant outside of perturbation theory. We see no evidence for

new �xed points or equivalently new phase transitions in the lattice model. It is possible

however, that other choices of higher derivative operator might indeed show new structure

[9]. The technique used in this paper can easily be applied to other actions as well.
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List of Figures

1. The di�erence between expectation values of the maximum coordination number, O7,

computed on lattices of the same size but for systems that di�er (by one) in the number

of times they have been blocked. The blocking level listed is that of the system that

has been blocked the most. The original action is zero.

2. The di�erence between expectation values of the maximum coordination number, O7,

computed with two di�erent actions as a function of the blocking level. The diamonds
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represent expectation values obtained with S = �
P

i ln(qi) minus those obtained with

S = 0 when � = +1 while the squares represent the analogous results for � = �1.

3. This �gure is like �gure two except that the squares represent � = +10 and the crosses

represent � = �10. Crosses are missing for levels zero and one because the data is o�

scale by more than an order of magnitude.

4. This is the same plot as �gure 2 except that O1 is used instead of O7.

5. This is the same plot as �gure 3 except that O1 is used instead of O7. Again, some of

the � = �10 data is o� scale.
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TABLES

operator n = 0 n = 1 n = 2 n = 3 n = 4

O1 1.499(1) 4.99(5) 4.33(6) 1.12(5) -0.367(7)

O2 2.611(2) 6.68(5) 8.3(2) 4.2(1) 0.35(2)

O3 -4.63(2) 10.9(5) -2(1) 0(1) 0.19(8)

O4 3.500(1) 5.01(2) 5.42(8) 3.91(6) 0.70(1)

O5 22.25(2) 56.5(8) 70(3) 26(1) -0.58(3)

O6 328.7(7) 1400(30) 1900(200) 370(20) 3.8(1)

O7 29.87(3) 35.2(2) 28.8(4) 17.4(2) 7.89(1)

TABLE I. Expectation values of seven operators at all blocking levels beginning with a 2304

node lattice. The action is zero.

operator V = 2304 V = 576

O1 -0.367(7) -0.363(4)

O2 0.35(2) 0.34(1)

O3 0.19(8) 0.27(4)

O4 0.70(1) 0.677(5)

O5 -0.58(3) -0.52(1)

O6 3.8(1) 3.54(5)

O7 7.89(1) 7.881(6)

TABLE II. The expectation value of the seven operators on two lattices which have been

blocked three and four times, respectively. The original volumes were chosen so that the �nal

blocked lattices have the same number of nodes (nine).
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operator n = 0 n = 1 n = 2 n = 3 n = 4

O1 2.295(2) 5.10(6) 4.43(6) 1.12(5) -0.367(8)

O2 4.138(4) 7.16(8) 8.4(2) 4.5(2) 0.34(2)

O3 -10.93(5) 11.1(6) -2(2) 0(1) 0.31(8)

O4 4.360(2) 5.16(3) 5.47(5) 4.04(8) 0.694(8)

O5 38.68(7) 66(1) 71(2) 28(1) -0.56(2)

O6 727(3) 2000(70) 1900(100) 416(30) 3.71(7)

O7 36.79(5) 37.5(3) 29.1(2) 17.9(2) 7.89(1)

TABLE III. Expectation values of seven operators at all blocking levels beginning with a 2304

node lattice. The action is S = �
P

i ln(qi)
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