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Abstract

We use a scaling ansatz to examine geodesic correlation functions in spin sys-

tems coupled to two-dimensional gravity. The numerical data support the scaling

assumption and indicate that the quantum geometry develops a non-perturbative

length scale. The existence of this length scale allows us to extract a fractal dimen-

sion, which in the case of pure gravity is in agreement with other recent calculations.

We discuss the inuence of the back-reaction of the matter on the fractal dimension.

March 1995



1 Introduction

Remarkable strides have been made in recent years in our understanding of the properties
of two-dimensional quantum gravity [1]. Calculations carried out within the framework

of conformal �eld theory have yielded the gravitational dressing of integrated matter �eld

operators, the correlation functions on the sphere, and the torus partition function. On

the other hand the matrix models have provided us with powerful calculational tool that

enables us to compute the above mentioned quantities and also enables us to perform the

nonperturbative sum over topologies.
Many important geometrical quantities of physical interest are not as yet, however,

well understood analytically. One such quantity is the Hausdor� dimension of the two di-

mensional surfaces corresponding to matter coupled to two dimensional gravity. In some
sense one could think of the Hausdor� dimension as an order parameter characterising
the di�erent phases of the two dimensional surfaces. If there exists a power law relation
between two reparametrisation invariant quantities with the dimension of length and vol-
ume, this provides a well-de�ned fractal dimension. But as there is no natural notion of a

length scale in these theories one has to be introduced by hand, at least in the continuum
formulation. In the discretized approach this length scale is provided by the short distance
cut-o� corresponding to the �nite elementary link length.

Recently a transfer matrix formalism utilizing matrix model amplitudes has been de-
veloped that predicts the Hausdor� dimension dH = 4 for pure 2d gravity [15]. This

approach has not yet been extended to the case of unitary minimal models coupled to
gravity. On the other hand the analysis of the di�usion equation for a random walk on
the ensemble of 2d manifolds determined by the Liouville action yields a prediction for the
Hausdor� dimension which agrees with the transfer matrix approach for pure gravity. It
may also be extended to include the coupling of conformal matter of central charge c � 1

[7].
These analytic predictions for the Hausdor� dimension rely on the validity of certain

scaling assumptions. It also appears that there are several potentially inequivalent def-

initions of an appropriate fractal dimensionality. It seems very worthwhile therefore to
explore these issues numerically. Earlier numerical work addressing this question has been
remarkably inconclusive [4, 2, 3]. Indeed for a while it was claimed that there was no well-

de�ned Hausdor� dimension in the case of pure gravity [2]. In contrast clear numerical

evidence for a fractal scaling of gravity coupled to c = �2 matter was found in [5].
In this letter we establish that this scaling behavior extends to pure gravity as well

as the Ising and 3-state Potts models coupled to gravity. The key technique is a careful

�nite size scaling analysis of appropriate correlation functions. For pure gravity we �nd

dH � 3:85 in qualitative agreement with [15, 7, 6]. For the Ising and 3-state Potts models
the values of dH that we obtain do not show conclusive evidence of the back reaction of

matter on the fractal structure.

This paper is organized as follows. In section 2 we describe the application of �nite size

scaling to loop-loop correlation functions. In section 3 we outline our numerical procedures

and results. In section 4 we present the existing theoretical predictions for the Hausdor�
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dimension. Section 5 is a discussion of our conclusions.

2 Scaling

Finite size scaling is a well-established technique for the critical behavior of conventional

statistical mechanical models [8]. In numerical studies of quantum gravity it has tradi-

tionally only been employed in a rather limited context - typically by extracting a power

law scaling for integrated matter �eld operators at the critical point [9].
In general, the scaling ansatz asserts that if we have some observable O (x; y) a func-

tion of two variables x and y, then close to criticality it will depend on only one scaling

combination � = y=xq up to an overall scale set by xp

O (x; y) � xpf (y=xq) (1)

The powers p and q are related to the critical exponents of the model. We will use this

as an ansatz for analysing geodesic correlators de�ned on dynamical triangulations. The

latter are sampled via the usual Monte Carlo procedure.
The fundamental objects in two-dimensional gravity are loop-loop correlators. To

de�ne these consider two marked loops of length l and l0 on a triangulation. If we consider
matter coupled systems (a generic �eld � living on the vertices) these loops will be dressed
with �xed boundary spin con�gurations S and S0. If we de�ne a geodesic distance r
between the loops on the graph as the minimal number of links that must be traversed to

go from l to l0, we can de�ne a correlation function Gl;l0;S;S0 (r) as simply the fraction of
all graphs satisfying these constraints.

Gl;l0;S;S0 (r) =

P
�

P
T (N);l;l0;S;S0 e

�S(�;T )P
�

P
T (N) e

�S(�;T )
(2)

We are working in a microcanonical ensemble in which we include only triangulations

T (N) with N triangles. This is convenient computationally and the e�ect of restricting
to �xed volume can be exploited in the �nite size scaling analysis. The con�gurations are

distributed with the usual Boltzmann weight depending on the action S (�; T ) of the spin
model.

In practice we further consider the degenerate case when the loop sizes l and l0 shrink to
zero and we talk of the point-point correlator. The boundary spin con�gurations are then
simply speci�ed by describing the state of the spin on the marked point. By exploiting

the symmetry of the spin models we can further reduce the possible correlators to two

distinct types which we denote f1 (r;N) and f2 (r;N). The correlator f1 then counts the

number of points at distance r at which the spin variable is in the same state as the initial
marked point. The correlator f2 counts the number of spins in di�erent states.

The total number of points at geodesic distance r (the quantity n (r;N) introduced

earlier) is then the sum f1 plus f2.

n (r;N) = f1 (r;N) + f2 (r;N)
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To recover the usual (unnormalised) spin-spin correlator for a general q-states Potts

spin we form the di�erence

gun =

 
1� 1

q

!
f1 (r;N)� 1

q
f2 (r;N)

We have also measured the normalized spin-spin correlator

gn (r;N) =

*P
ij �i�j� (dij � r)P
ij� (dij � r)

+
(3)

The quantity dij is precisely the geodesic distance as measured on the graph between

points i and j.

The scaling ansatz applied to n (r;N) implies

n (r;N) = Np� (r=N q) (4)

The combination lG = N q constitutes a dynamical length scale which appears non-

perturbatively in the theory. It can be used to de�ne a Hausdor� or fractal dimension

dH = 1=q characterizing the quantum geometry. Notice that in this case the exponent
p is not free - it is constrained by the fact that the integral of n (r;N) over all geodesic
distances recovers the total number of points N . This yields p = 1 � 1=dH .

Similarly, for the spin-spin correlator we expect that

gun (r;N) = N


�d
H

�r
 (r=N r) (5)

The overall power is again determined from the constraint that the integral of gun (r;N) is

just the usual spin susceptibility which scales as � � N


�dH at criticality. The exponent r

determines another linear scale associated with the critical spin correlations. In at space
of course this would be identical with the geometrical scale (here lG) and r = 1=dH . It is
not clear on a dynamical lattice that this is necessarily so; one could imagine a scenario in

which the geometrical scale varies anomalously with the spin scale lG � l!S . The quantity

! would then constitute a new exponent characterizing the coupled matter-gravity theory.

This spin correlation length scale can also be extracted from the normalized correlator
gn (r;N) assuming a similar scaling behavior occurs there.

3 Numerical Simulations

To investigate the validity of the scaling hypothesis we have performed Monte Carlo sim-

ulations on three models; pure gravity (central charge c = 0), the Ising model (c = 1=2)

and 3-state Potts model (c = 4=5) coupled to gravity. In the microcanonical ensemble the
partition function of these models is given by

Z(�;N) =
X
T2T

ZM (�;N) (6)
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where ZM (N;�) describes the matter sector (absent for pure gravity) and which for a

q-state Potts model is

ZM (�;N) =
X
f�ig

exp

0
@� X

<i;j>

(��i;�j � 1)

1
A : (7)

�i 2 f1; � � � ; qg are the Potts spins, i denotes a lattice site and < i; j > indicates that the
sum is over neighboring pairs on the lattice.

The integration over manifolds is implemented as a sum over an appropriate class of

triangulations T . Since it has been observed that �nite size e�ects in numerical determina-

tions of critical exponents are generally smaller if one includes degenerate triangulations in

T , i.e. triangulations allowing two vertices connected by more than one link and vertices
connected to itself [10]1, we will work in that ensemble.

In the simulations a standard link-ip algorithm was used to explore the space of

triangulations and a Swendsen-Wang cluster algorithm for spin updates. Lattice sizes
ranging from 500 to 32000 triangles were studied and typically 106 to 4�106 Monte Carlo
sweeps performed for each lattice size (a sweep consists in ipping about N links and one
SW update of the spin con�guration).

3.1 Pure Gravity

We start with the results for pure gravity. Here we measured the point-point distributions

n(r;N) both on the direct and the dual lattice. On the dual lattice geodesic distances

are measured as shortest paths going from one triangle to another. Having measured
these distributions for di�erent lattice sizes there are several ways we can use the scaling
assumption (4) to extract dH . We use two methods.

First we �tted a distribution (for a given lattice size) to an appropriately chosen func-
tion from which we located the maximum of the distribution r0 and its maximal value

n(r0). Then the scaling assumption implies that r0 � N1=dH and n(r0) � N1�1=dH . As a

function to �t to we chose the following

Pl(r) exp(�arb) (8)

The exponential is included in order to capture the long-distance behavior of the distri-

bution and Pl is an l-order polynomial. The order of the polynomial is chosen in such

way that we get a reasonably good �t; a 4th order polynomial turned out to be su�cient.

We checked that the values of r0 and n(r0) did not change appreciable if we increased the
order of Pl(r). The values of r0 and n(r0) obtained in this way are plotted in Figs. 1a and
1b on log-log plots. As expected both quantities scale well with N (signi�cantly better for

the direct lattice), the Hausdor� dimensions extracted from the slopes are listed in Table

1.

Another way to extract dH is to use the scaling relations directly to collapse distribu-

tions for di�erent lattices sizes on the same curve using only a single scaling parameter.

1This corresponds to allowing tadpoles and self-energy diagrams in the dual lattice formulation.
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Figure 1: Volume scaling of (a) the location of the peak r0 in the distributions n(r;N)
and (b) their maximal value n(r0) in the case of pure gravity. Data is shown both for the
direct and dual lattices and the extracted values of dH are included.

Direct lattice Dual lattice

dH ~�2 dH ~�2

(a) 126 � 250 3.640(60) 44.6 2.497(37) 49.2

250 � 500 3.707(45) 13.0 2.715(40) 29.1

500 � 1000 3.727(42) 8.0 2.871(38) 20.5
1000 � 2000 3.770(38) 4.2 2.996(26) 22.6

2000 � 4000 3.800(54) 2.3 3.111(39) 12.5
4000 � 8000 3.804(55) 1.5 3.217(47) 9.7

8000 � 16000 3.810(55) 0.97 3.264(34) 6.9

16000 � 32000 3.830(50) 1.4 3.411(89) 4.8

(b) 1000 � 32000 3.790(30) 13.0 3.150(31) 85

(c) position 3:835(59) 0.03 3:133(43) 10.45

height 4:040(98) 0.09 3:594(77) 0.37

Table 1: Extracted values of dH from n(r;N) in the case of pure gravity. The values in (a)

are obtained by collapsing data for two consecutive lattices sizes on a single curve using
one scaling parameter. (b) is the same except data from all lattice sizes between 1000 and

32000 triangles are used. In (c) the values are obtained from the volume scaling of r0 and

n(r0) separately. The quality of the �t is indicated by ~�2 and the errors (in (a) and (b))
are obtained from where ~�2 changes by unit of one.
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Figure 2: Scaling plots for the point-point distributions n(r;N) in the case of pure gravity;
(a) the direct and (b) dual lattice. Shown are the curves �tted to distributions after a

scaling with a single parameter dH had been applied. The value of dH is chosen so as it
minimized the total chi-square of the �ts.

This we have done including all the data (for N � 1000) and also, to explore the �nite

size corrections, only using pairs of datasets (N and 2N). The same functional form Eq.
8 was used in the �ts. The results are shown in Table 1, together with the quality of the
�ts (~�2 = �2=dof ) The errors quoted indicate where ~�2 changes by one unit. In Figs. 2a
and 2b we show an overall scaling plots for n(r;N), both for the direct and dual lattices.

Looking at the data there are a few things we would like to point out. We start with
the direct lattice. Fig. 2a shows that the scaling hypothesis is indeed well satis�ed for the

distribution n(r;N), this is also evident from the low values of ~�2 for the �ts (Table 1). The
values of dH obtained from the scaling of r0 and n(r0) and collapsing the data are close to
the expected value of dH = 4. Noting that these results are obtained on moderately small
lattices shows how superior this way of extracting dH is to earlier numerical attempts.

But we also notice that there is a systematic increase in the value of dH with lattice

size. Even though this e�ect is too small compared to the uncertainty in the measured
values to allow reliable extrapolation to in�nite volume dH , it indicates that the di�erence

between measured and expected values of dH is due to �nite-size e�ects. The improvement
of the ~�2 values of the �ts with increasing lattice size also implies diminishing deviations
from scaling.

It is also intriguing that the scaling of the peak heights seems to give better values
of dH (the exact one for the direct lattice). It is plausible that the heights of the peaks

are less sensitive to the discretization as they take continuous values, as opposed to the
geodesic distances which are discrete in this approach.

On the dual lattice we observe much larger �nite size deviations. This is evident both

from Fig. 2b and the values of ~�2 in Table 1. This is not hard to understand. The short

distance behavior of n(r;N) is dominated by a power growth rdH�1. But as the order of

vertices on the dual lattice are �xed to be three, the growth of n(r;N) is bounded by the
function 3 � 2r�1. If dH = 4 this means that up to r = 9 the distribution n(r;N) cannot
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Ising model 3-state Potts model

Exponent Measured Exact Measured Exact

�=�dH 0.167(3) 1/6 0.199(4) 1/5

=�dH 0.653(8) 2/3 0.608(6) 3/5

1=�dH 0.318(12) 1/3 0.382(30) 2/5

Table 2: Comparing critical exponents, obtained using �nite sizes scaling in �c, to exact
values, for the Ising and 3-state Potts models coupled to gravity

grow fast enough to display the correct fractal structure. Only when the lattices are big

enough so that the �rst 9 steps are negligible can the dual lattice be used to extract dH .
This constraint on the growth is not present on the direct lattice, which is why that is
much better suited for extracting dH .

3.2 Coupling to matter

To see how the point-point distributions (and dH) change as we include coupling to matter
we look at both the Ising and 3-state Potts models coupled to gravity. These models are
chosen because in both cases the exact solution of the models is known2; knowing the

exact critical coupling makes the simulations much easier.

As shown in the case of pure gravity it is preferable to measure on the direct lattice
and so we have placed the spins on the vertices. In that case the critical couplings are (as

we include degenerate triangulations):

�c =
1

2
log

"
13 +

p
7

14 �
p
7

#
(Ising) and �c =

1

2
log

"
41 +

p
47

47 � 2
p
47

#
(3 � statePotts): (9)

To verify that these are indeed the correct couplings we have performed a standard �nite

size scaling analysis of some observables related to the spin models; the average magne-

tization M � N��=�dH , the magnetic susceptibility � � N=�dH , and the derivative of
Binders cumulant @BC=@� � N1=�dH The measured critical exponents are shown in Table

2, together with the exact values with which they agree very well. The main reason is,
of course, that we know �c, but also including degenerate triangulations and placing the

spins on vertices reduces �nite-size e�ects dramatically.
Now to the distribution functions. As mentioned in section 2, having the spins on

vertices allows us to measure several combinations of distributions; f1(r;N), f2(r;N),

n(r;N) and gun(r;N). We have analyzed these distributions in the same way as for pure

2The 3-state Potts model coupled to gravity has just recently been solved using matrixmodel techniques

[11]. The numerical simulations we do here verify that the solution is correct. To obtain the critical

coupling from [11] one has to do some reformulation. This leads to ��
c
= 1=2 log[(45�

p
(45))=(

p
(47)�2)]:

This is for the spins placed on triangles. To get the coupling for spins on vertices we use the duality

transformation for the q-state Potts model
�
e2�c � 1

� �
e2�

�

c
� 1
�
= q [17].
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Figure 3: Volume scaling for r0 and n(r0) for the distributions we measured for Ising
model coupled to gravity. The same scaling behavior is used to extract dH from the slope

as in the case of pure gravity, except for gun(r0). There we used n(r0) � =�dH � 1=dH ,
substituting the exact values for =�dH .

gravity. In Figs. 3a and b we show the scaling with volume of r0 and n(r0), obtained from
�tting the distributions to the functional form Eq. (8). These plots are for the Ising model
but plots for the 3-state Potts model are very similar. The extracted Hausdor� dimensions,
for n(r;N) and gun(r;N), are shown in Table 3. As for pure gravity we also scaled all the
data (for N � 1000), and for pairs of distributions, on a single curve. Resulting optimal

values of dH are listed in Table 3. The quality of the scaling is shown in Figs. 4a and b

where we show scaling plots for n(r;N) and gun(r;N) (for the Ising model). Again the
value of dH that minimizes ~�2 is used to scale the data.

In the case of the spin models we also measured the normalized spin-spin correlation
function gn(r;N). At the critical point gn(r;N) is expected to have the following behavior

gn(r;N) � e�m(N) r

r�
; (10)

were the mass gap m(N) vanishes in the in�nite volume limit. Surprisingly we have
only been able to see the exponential behavior of the spin-spin correlator, not the power

underneath it (on a log plot we have a straight line for some range of r). This we have
used to extract the mass gap for di�erent lattice sizes. As the mass gap is related to the

correlation length m = 1=�, and � is the only length scale in the system, it is reasonable

to expect that the way in which m(N) scales to zero with lattice size is related to the

Hausdor� dimension, i.e. 1=m � N1=dH . This gives another method of extracting the

Hausdor� dimension.
Looking at the data it is clear that the scaling hypothesis is just as well satis�ed as

in the case of pure gravity. What is surprising is that the extracted values of dH , with

two exceptions, are almost the same as for pure gravity. The exceptions, for both models,

are the scaling of the peak height of gun(r;N) and dH obtained from the mass gap, both
indicating larger values of dH . Why is it that we do not seem see any e�ects of the back
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Figure 4: Collapsing the data for n(r;N) and gun(r;N) on a single curve using one scaling
parameter in the case of an Ising model coupled to gravity.

reaction of matter on the fractal dimension?
A possible explanation would be that the critical region is slightly shifted away from the

in�nite volume critical coupling at the �nite volumew we simulate. This is, for example,

observed in measurements of the string susceptibility [12], where measured values of s
peak away from �c. To check this we have measured dH for the Ising model over an interval
of �. Within errors the extracted value of dH did not change over this interval.

This leaves us with the impression that the extracted values of dH are contradictory to
some extent. In the case of pure gravity we saw that the scaling of the peak height gave
better results. If we believe this we get di�erent values for dH depending on which point-

point correlator we examine. Looking at n(r;N) we get dH � 3:9 for both models, and
observe no back reaction from the matter. gun(r;N) on the other hand indicates dH > 4,
and indeed gives results that might be consistent with the values predicted in [7]. This
is supported by the scaling of the mass gap of the spin-spin correlator. We will return to

this in the discussion section.

4 Hausdor� Dimension - Analytic results

In this section we briey review the continuum and matrix model derivations of the in-

trinsic Hausdor� dimension (dH) of the surfaces generated by the coupling of 2d gravity to
matter [7, 14, 15, 6]. There are several potentially inequivalent ways to de�ne an appro-

priate measure of the fractal dimensionality of random surfaces. In the original paper of
[14] two methods were proposed. In the �rst method one determines a power-like relation

between two gauge-invariant observables with dimensions of volume (V ) and length (L)

respectively, with dH determined by V / LdH . The volume is measured by the cosmolog-

ical term and the length by the anomalous dimension of a test fermion which couples to
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Ising model 3-state Potts model

n(r;N) gun(r;N) n(r;N) gun(r;N)
dH ~�2 dH ~�2 dH ~�2 dH ~�2

(a)

500-1000 3.758(53) 2.6 3.76(12) 0.93 3.752(63) 0.68 4.01(26) 2.5
1000-2000 3.802(55) 0.77 3.75(15) 1.0 3.787(65) 0.29 4.11(18) 1.0

2000-4000 3.833(56) 1.0 3.73(12) 2.5 3.864(63) 1.0 4.04(22) 3.2

4000-8000 3.893(61) 0.88 3.69(09) 3.9 3.870(73) 0.15 4.11(19) 0.41

8000-16000 3.870(87) 0.35 3.80(10) 0.99 3.820(97) 0.58 4.14(15) 0.56

(b)

1000-16000 3.862(74) 1.4 3.851(53) 4.5 3.831(32) 2.4 3.966(64) 12.5

(c)

position 3.875(53) 3.88(19) 3.879(29) 4.141(58)
height 4.01(15) 4.36(18) 3.900(41) 4.424(35))

mass gap 4.51(20) 4.56(43)

Table 3: Extracted values of dH for the Ising and 3-state Potts models coupled to gravity.
The values are obtained in the same way as for pure gravity (Table 1).

the gravitational �eld but generates no back reaction. This yields

dH = 2

p
25 � c+

p
13 � cp

25 � c+
p
1 � c

: (11)

In the second method one considers the di�usion of a test fermion �eld and determines

dH by the short-time come-back probability p(� ) / ��dH=2. The authors were able to
determine the Hausdor� dimension in a double power series expansion in � = D � 2 and
�1
c
, where D is the classical dimensionality of the surface and c is the central charge of the

matter coupled to gravity. In [7] this second method was applied instead to a scalar �eld
{ one considers the di�usion equation for a random walk on the ensemble of 2d manifolds

determined by the Liouville action. This yields

dH = �2 �1
��1

= 2

p
25 � c+

p
49� cp

25� c+
p
1� c

; (12)

where e�1� corresponds to the cosmological constant operator, which has dimension one,
and e��1� corresponds to the Liouville dressing of the Laplacian, which requires it to be

of conformal dimension �1.
In the matrix-model/dynamical triangulation approach the transfer matrix formulation

can be used to obtain an expression for the Hausdor� dimension in the case of pure gravity

[15, 6]. One �nds dH = 4 in agreement with Eq. (12) for c = 0.

For the case of pure gravity this result can be compared with the matrix model result
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obtained in [15]. Using matrix model results it is possible to derive the expression

�(L;D) =
3

7
p
�

1

D2

�
x�5=2 +

1

2
x�3=2 +

14

3
x�1=2

�
e�x; (13)

where �(L;D) is the number of boundaries separated by geodesic distance D from a loop

of length L with one marked point, and the scaling variable x = L
D2 . Now one can consider

the quantities < Ln >=
R1
a dLLn�(L;D) where a is the lattice constant. From Eq. (13)

it can be shown that:

< L0 > ' const�D3a�3=2 + constDa�1=2 + constD0 (14)

< L1 > ' const�D3a�1=2 + constD2 (15)

< Ln > ' const�D2n (n � 2): (16)

Then, using the de�nition < L0 >/ rdH�1, one can read o� the Hausdor� dimension
dH = 4, which agrees with the continuum result and our numerical results based on
scaling arguments. This result is not universal because of the explicit lattice dependence
in < L0 >. One obtains the same result, however, from the second and higher moments

provided one assumes that < L2 > scales like the area A. The result thus appears to be
universal.

The general situation is, however, far from clear. One case where there is an obvious
discrepancy seems to be the (2; 2k � 1) series of minimal models coupled to gravity. It is
possible to extend the continuum Liouville theory analysis to these models after taking
into account the fact that these non-unitary models possess operators in the matter sector

with negative conformal dimensions. It is also possible to use the results obtained in [16]
to calculate the Hausdor� dimensions for models (with `k' even). We �nd that the results
thus obtained do not agree with each other except for the cases k = 1; 2.

The expression for the distribution of loops at a geodesic distance `D' for the (2; 2k�1)
models coupled to gravity (for even `k') was computed in [16]. They �nd that

�(L;D) ' 1

D
1

�

"
1

2�(�)
x���2(2� + 1 + x) +

x�

�(� + 1)

#
e�x; (17)

where � = k � 3=2 and 1; 2 are `k' dependent constants. Using the same arguments as

in the case of pure gravity we can compute dH = (2k � 1)=(2k � 3) + 1.
The continuum result of Kawamoto can also be extended to this case, with the di�er-

ence being that the cosmological constant is not the dressing of the identity operator but
of the operator with the lowest conformal dimension. Similarly the dressing condition for

the Laplacian is that the Liouville �eld has dimension �1��min.

Then one obtains:

�+ =
�kp
2k � 1

(18)

��1��min
=

�1p
2k � 1

�
2k + 1�

p
32k � 15

�
(19)

dH =
4k

�2k � 1 +
p
32k � 15

: (20)
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It is possible to replace the dressing of the Laplacian with the condition that the dressing

of the Laplacian involves the identity operator and not the minimal dimension operator,

in which case we obtain:

dH =
8

�2k � 1 +
q
(4k2 + 20k � 7)

: (21)

Thus for this class of models we �nd an obvious discrepancy between the matrix model

and the continuum formulations. These models are not, unfortunately, amenable to nu-

merical simulations to resolve this disagreement.

5 Discussion

We have studied a class of correlation functions de�ned along geodesic paths in the dy-
namical triangulation formulation of two-dimensional gravity. The critical nature of this
theory is revealed in the observation that these correlators satisfy a scaling property. The
origin of this scaling behavior can be attributed to the existence of a dynamically gener-
ated length scale in two-dimensional gravity. Furthermore the power relation between this

linear scale and the total volume allows us to extract a fractal dimension characterizing
the typical quantum geometry. For pure gravity we estimate dH = 3:83(5) which is close
to the analytic prediction dH = 4. Our numerical method constitutes by far the most
reliable method yet investigated for extracting this fractal (Hausdor�) dimension.

Encouraged by this result we have studied two simple spin models coupled to quantum

gravity - the q = 2 and q = 3 Potts models. As we have indicated there is are no

truly reliable analytic predictions concerning the nature of the fractal geometry for these
values of the matter central charge. The inclusion of matter �elds allows us to de�ne two
independent correlation functions which we have termed f1 and f2. The usual geometrical
correlator counting the number of sites at geodesic distance r is just the sum f1+f2 whilst

the weighted di�erence (q � 1)f1 � f2 yields the (unnormalised) spin correlator.

For both types of correlation function in either the Ising or 3-state Potts cases we see

good evidence for scaling. From the geometrical correlators the Hausdor� dimension we
extract is statistically consistent with its value for pure gravity. Taken at face value this

would seem to indicate that the backreaction of the critical spin system on the geometry

is insu�ciently strong to alter the Hausdor� dimension for these values of the central

charge. This is supported by our best overall scaling �ts to the spin correlator which yield

comparable values for dH .
However, if we use just the scaling of the peak height to estimate a value for dH the

picture is somewhat di�erent - now a shift in dH is observed to values somewhat above

four. Indeed these estimates for dH are not inconsistent with the predictions of the formula

derived in [7]. Since the peak scaling appears to su�er from smaller �nite size e�ects in

the case of pure gravity (using just this we extract dH = 4:040(98)) than other quantities

it is possible that it also a more reliable channel in which to look for signs of backreaction
in the case of spin models. These estimates for dH are also favored by examining the

12



scaling of the spin correlation length extracted from the normalised correlation function.

However without good theoretical reasons for believing in such a favored channel it is

probably more sensible to ascribe the di�erences in our estimates for dH to the presence

of rather large scaling violations at these lattice sizes.

One alternative scenario might be that the observed e�ects are due to the presence

of two linear scales; the geometrical scale and another characterizing the critical spin

correlations. Thus two fractal dimensions might be possible; one the (true) Hausdor�

dimension associated with the geometry, and another revealed only in the spin channel.

If this were so then the numerical estimates of these exponents would favor a situation in
which the spin correlation length diverged more slowly with volume than the gravitational

(geometrical) scale. This might serve as a partial explanation of the observed exponential

behavior of the (normalised) spin correlator at the critical point - unlike at space critical
models the correlation length in a dynamical lattice can never reach the typical linear size
of the lattice.

In the absence of any explicit transfer matrix type solutions for these unitary minimal
models it would seem that further high resolution numerical work will be needed to resolve
these important issues.
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