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Abstract

We measure numerically the distribution of baby universes in the crumpled

phase of the dynamical triangulation model of 4d quantum gravity. The rele-

vance of the results to the issue of an exponential bound is discussed. The data

are consistent with the existence of such a bound.



One of the more promising approaches to understanding the nature of four-

dimensional quantum gravity has arisen through models based on summing classes

of simplicial manifolds - the dynamical triangulation (DT) models [1, 2]. The man-

ifold is approximated by a set of equilateral simplices whose edge lengths are taken

to constitute an invariant cuto�. Quantum uctuations of the geometry are incor-

porated by constructing a partition function which sums over all possible ways of

assembling these simplices into a piecewise linear manifold

Z (�0; �4) =
X
T (S4)

e�0N0��4N4 : (1)

Here the class of triangulations has been restricted to that of spherical topology.

The coupling �4 constitutes a bare cosmological constant conjugate to the total

number of four-simplices (volume) N4. Similarly, �0 plays the role of an inverse

Newton constant coupled to the total number of zero-simplices (nodes) N0 in the

triangulation.

Assuming that we wish to remove the edge length cuto� it is necessary to

�nd points in the parameter space of the model at which the mean volume hN4i
diverges. To see how this may happen consider expanding the grand canonical

partition function Eq. (1) as a power series in e��4 ,

Z (�0; �4) =
X
N4


 (�0; N4) e
��4N4 : (2)

The coe�cients in this expansion are the microcanonical partition functions for the

system at �xed volume N4. It is these quantities which are estimated in Monte

Carlo simulations. In two dimensions it is known rigorously that the analogous

coe�cients behave as 
(N2) � e�
c

2
N2 - that is there is an exponential bound on the

number of triangulations composed of N2 triangles provided we restrict the global

topology su�ciently1. The existence of this bound ensures that the expansion has

a �nite radius of convergence determined by the critical coupling �c2. The mean

volume can then be shown to diverge in power-like fashion as this critical coupling

is approached. This is the basis for taking the continuum limit.

In dimensions greater than two the volume dependence of 
(�0; N4) even

when restricted to the four sphere is, in principle, unknown. In a previous paper

we pointed out that the behaviour for small volume is consistent with a super-

exponential growth 
 (N4) � e�N4 logN4 [3]. This would, at least naively, render a

continuum limit impossible. Since then two other groups have examined the issue

on larger lattices and claim strong evidence for an exponential bound [4, 5]. In light

of this we have both extended our calculations to larger volumes and in addition

looked at alternative quantities such as the distribution of baby universes. The

latter is very sensitive to the volume dependence of 
(�0; N4) and might thus be

useful in resolving this issue.

1In two dimensions this restriction amounts to �xing the genus of the surface.

1



8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0
ln(V)

1.10

1.12

1.15

1.18

κ 4c (V
)

Figure 1: The critical coupling �c4(V ) together with �ts assuming power-law con-

vergence (curve) and super-exponential growth (straight line).

The usual way in which an exponential bound is observed is by looking

at the volume dependence of the quantity �c4(�0; V ) = 1
V
log 
(V; �0) which is a

numerical estimate for the e�ective critical cosmological coupling �c4 at volume V .

In Fig. 1 we plot it as a function of the logarithm of the volume to expose any

logarithmically divergent component to the critical coupling. We show both our

data (circles) together with the data published in [4, 5]. Clearly, these di�erent

simulations are in agreement within statistical errors. We then �t our data from

volumes V = 8000� 128000 using two di�erent functional forms. The straight line

represents a least square �t to a super-exponential form

�c4(V ) = �+ � log V ; (3)
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Fit � (�0) � (�0) �2=d:o:f

Power  = 0:25 1.242(3) -1.23(4) 2.4/3

Power  = 0:1 1.389(8) -0.68(2) 0.8/3

Log 0.894(8) 0.025(1) 3.1/3

Table 1: The optimal �t parameters as the data for �c4(V ) is �tted to either super-

exponential behaviour or a weak power-law convergence.

while the curve corresponds to a weak power-law convergence to an exponential

bound of the form

�c4(V ) = �0 +
�0

V 
: (4)

The �t parameters and quality of the �ts are shown in Table 1. Since there

is so little data we have chosen to do the power �t with two di�erent �xed powers

 = 0:25 and  = 0:1. Arguments for the former choice are made in [4] and

it corresponds to the curve plotted in Fig. 1. It is clear that both types of �t

can equally well describe the data. The quality of the �t with  = 0:1 appears

somewhat superior but since the log �t has �2 of order one this should not be taken

as signi�cant. In [5] a  = 0:25 �t over the same volume range was claimed to

be substantially better than the logarithm. Our data do not seem to support this

and we interpret this as simply pointing to the delicacy of deciding between similar

�ts with rather limited data. It is quite possible that many runs at intermediate

volumes would be useful to resolve this issue.

Thus while we see that an exponential bound is certainly consistent with the

existing numerical data at large volumes it is not strongly preferred over the loga-

rithmic divergence. In light of this we have turned to an analysis of other quantities

to try to settle the issue. The distribution of baby universes is one such observable

[6]. A baby universe is de�ned as a section of a d-dimensional triangulation con-

nected to the bulk only through a so-called minimal neck which consists of d + 1

(d� 1)-simplices or faces constituting a boundary of a simplex not already present

in the triangulation. In four dimensions this is a set of �ve tetrahedral faces which

make up the surface of a new simplex and divide the triangulation into two pieces.

The volume of the baby universe is de�ned to be the number of simplices in the

smaller piece.

The distribution of these baby universes can be computed by considering the

number of ways a volume V triangulation can be built from a baby of volume B and

a mother of size V � B by attaching the baby to the mother at some point. This

gluing operation is e�ected by identifying one simplex in the baby with another on

the mother. Thus the distribution takes the form
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P (B) =
(V �B) 
(�0; V �B) B 
(�0; B)


(�0; V )
: (5)

Strictly speaking the factors 
(�0; B) should be replaced with one point functions

but we shall ignore this unimportant technicality here. The important thing to

notice is that any exponential factor in 
 cancels out in this formula and P (B) only

depends on sub-leading corrections - that is it is maximally sensitive to the �nite

volume corrections to coe�cients 
(�0; V ).

With this in mind we have measured the distribution P (B) numerically in the

crumpled phase of the model when �0 = 0. The true volume of the triangulation

space is most easily estimated here since all triangulations contribute with equal

weight to the partition sum. Indeed we do not believe it is safe to try to estimate

the behaviour of 
(�0; V ) from simulations at large �0. At such node couplings

the dominant triangulations correspond to branched polymers whose mean node

number varies linearly with volume. Such con�gurations are known to possess an

exponential bound. The crumpled con�gurations which predominate at small �0 in

contrast have mean node numbers scaling as some fractional power of the volume.

At large �0 these latter con�gurations will receive large (as V ! 1) exponential

suppression relative to the branched polymers from the node term in the action.

We have simulated the model at four di�erent volumes; 500, 1000, 4000 and

8000 simplices, using runs of length 10 million sweeps2. We will see that the mea-

sured distribution falls o� exponentially fast which necessitated such high statistics

runs. This precluded the use of signi�cantly larger lattice volumes in this study. Us-

ing our previous parameterizations of the �nite volume corrections to 
(V ) we have

attempted to �t the data with functional forms corresponding to either logarithmic

divergence or weak power law convergence

logP (B) = a+ � ((B + �) log (B + �) + (V �B + �) log (V � B + �)) ; (6)

logP (B) = a0 + �0
�
(B + �)1� + (V �B + �)1�

�
: (7)

The constant � is inserted as a phenomenological parameter to reect sub-leading

�nite size corrections and a and a0 reect an ambiguity in overall normalization.

In practice we have removed the largest contribution to the latter by dividing the

measured number of baby universes by the volume V .

Figure 2 shows the distributions together with a series of curves resulting

from least-square �ts assuming the logarithmic scenario Eq. (6). The �t to the

largest volume yields a = �2:92(3), � = +0:056(1) and � = �7(1) with �2 = 9:6=6

(per d.o.f.). Fits to the other volumes give consistent results. Notice that we have

�tted baby universes with size B = 4 (n+ 1) only (n integer). Baby universes of

size B = 4 (n � 1) lie on a curve which while yielding consistent �ts for � is shifted

by a constant with respect to the �rst. This e�ect has been observed before [7] and

2One sweep corresponds to V attempted elementary local moves.
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Figure 2: logP (B) vs B with a logarithmic �t.

is presumably the result of �nite size e�ects. We �t only for B > 10 and truncate

due to poor statistics at B > 50.

Figure 3 shows the same data now �tted according to the power scenario

Eq. (7). The best �t in this case yields a0 = �0:2(15), �0 = �1:38(5) and � = 3(2)

with �2 = 6:3=6 assuming  = 0:25 as before. At face value then it remains hard

to di�erentiate between the two situations. However, notice that the extracted

value of � = 0:056(1) from the log �t is more than twice its estimated value from

the �ts for the e�ective critical coupling � = 0:025(1) (Table 1). In contrast the

estimate for �0 = �1:38(5) from the power �t is quite close to its value estimated

earlier �0 = �1:23(4). The relative proximity of the two estimates is particularly

impressive considering that one is derived from the behaviour of baby universes with

size less than 8000 simplices while the other is extracted from the critical coupling at

volumes much greater than 8000. Furthermore, it is clear that the power �t would
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Figure 3: logP (B) vs B with a power �t assuming  = 0:25.

still hold good if we set � = a0 = 0 so that such a �t (with a truly minimal number

of parameters) would do much better than the logarithm.

Additional information can be obtained by looking at the mean number of

nodes per unit volume. It is easy to see that this quantity is related to the critical

coupling through (see eg [8])

�
N0

V

�
=

@�c4 (V; �0)

@�0
: (8)

Thus �nite volume corrections to the e�ective critical coupling result in similar �nite

volume corrections to hN0=V i. In Fig. 4 we show this quantity on a log-log scale

together with a least-square power �t. While the �2 of such a �t is terrible, showing

that such a simple parameterization is insu�cient to describe the data in detail, the

�t shows that a small power-law correction is again rather well able to account for
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Figure 4: Mean node number per unit volume with �t assuming a weak power

convergence.

the overall structure of the �nite volume corrections3. Notice that any coe�cient of

a logarithmic piece in �c4 (V; �0) will not contribute since it cannot depend on �0.

In conclusion, we have presented numerical results which, although not de�ni-

tive, are very consistent with the existence of an exponential bound in the dynamical

triangulation model of 4d quantum gravity. The evidence for this comes both from

�ts to the volume dependence of the critical coupling, an analysis of the baby uni-

verse distribution in the crumpled phase and the scaling of the mean node number.

Although individually these quantities are not very conclusive, it is remarkable how

consistent results are obtained if we assume a weak power convergence. Clearly, it

is important to strengthen these conclusions both by simulating intermediate lat-

3The �t yields  = 0:26.
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tice volumes and perhaps via a high statistics simulation at say volume V = 16000

directed at probing further into the tail of the baby universe distribution.

The calculations reported here were supported, in part, by grants NSF PHY-

9503371, PHY-9200148 and from research funds provided by Syracuse University.
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