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Abstract

By a sequence of numerical experiments we demonstrate that generic trian-

gulations of the D�sphere forD > 3 contain one singular (D�3)�simplex. The

mean number of elementary D�simplices sharing this simplex increases with

the volume of the triangulation according to a simple power law. The lower

dimension subsimplices associated with this (D � 3)�simplex also show a sin-

gular behaviour. Possible consequences for the DT model of four-dimensional

quantum gravity are discussed.



1 Introduction

It has been well established that two dimensional quantum gravity can be recov-

ered as the scaling limit of models of random triangulations, see for example [1].

Performing a sum over such simplicial manifolds generates the correct integral over

physically inequivalent metrics. As a natural extension of these ideas it has been

proposed that triangulations of higher dimensional manifolds can form the ba-

sis of a general regularization scheme for gravity [2]. In general, such simplicial

manifolds are constructed by gluing together D�dimensional simplices across their

(D � 1)�dimensional faces so as to form a closed triangulation with some �xed

topology. Additional manifold restrictions are commonly imposed to ensure that all

simplices consist of a set of (D + 1) distinct labels and every subsimplex is unique.

The ansatz for the partition function in general dimension D then takes the

form

Z =
X
V

e��V 
D (V ) ; (1)

where � is a bare cosmological constant conjugate to the volume or total number of

D�simplices V . The microcanonical partition function 
D (V ) is given by


D (V ) =
X
T (V )

e�S(T;�i): (2)

The sum over triangulations T is con�ned to those with volume V , with a

weight determined by a discrete action S (�i) governed by a set of couplings f�ig. In

the case of four dimensions the simplest action contains only one such coupling �0
which can be identi�ed with the bare (inverse) Newton constant. The corresponding

analog of the Einstein-Hilbert action can be taken to be the total number of vertices

N0 in the triangulation.

Current interest in this model stems from the results of numerical simulations

which have revealed a non-trivial phase structure in four dimensions. Between a

crumpled phase with large negative curvature at small �0 and an elongated, branched

polymer phase at large �0 there is evidence of a continuous phase transition. The

existence of such a non-perturbative critical point o�ers the possibility of a continuum

limit describing quantum gravity [3]. However, it would be fair to say that the nature

of this continuum theory is only just beginning to be explored.

One of the major problems impeding progress in this direction has been the

lack of any analytic methods for handling the sum over four-dimensional simplicial

geometries. The structure of the triangulation space and its implications for the

measure over simplicial geometries are unknown. In this paper we hope to make

some progress in this direction using numerical simulation to identify a class of

triangulations which dominate the microcanonical partition function 
D (V ) for

large volumes V .

This work is motivated by a recent observation that typical triangulations

in the crumpled phase of the four-dimensional model are characterized by 2 highly
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degenerate or singular vertices [4]. Singular vertices are vertices that are shared by a

large number of simplices { a number which diverges linearly with the total volume

of the triangulation.

In Section 2 we describe our conjecture for the structure of the dominant

D�dimensional triangulations together with supporting numerical results. Section

3 makes plausible why such con�gurations might be entropically favoured and uses

a simple geometrical model to explain some of the observed volume dependencies.

Section 4 contains a discussion of singular vertex dynamics and its practical impli-

cations for numerical simulations. Finally Section 5 contains a brief discussion of

possible consequences of this singular structure. Speci�cally we discuss the issue of

an exponential bound in four dimensions.

2 Structure of the Triangulation Space

Our Monte Carlo simulations employ a set of local, ergodic and topology preserving

moves1 (see for example [3, 6]). We have set the action S to zero so that the

simulations explore equally all triangulations contributing to the partition function

Eq. 2

Let us de�ne the local volume associated with an i�simplex as the number of

D�simplices containing that i�simplex. We then say that the i�simplex is singular

if its local volume diverges with the total volume V (total number of D�simplices).

Our results can then be summarized in a simple conjecture:

Conjecture 1 The function 
D (V ) is saturated as V !1 by triangulations which

contain one singular (D � 3)�simplex.

This is illustrated by Fig. 1 which shows the (normalized) distribution of

(D � 3)�simplices with a given local volume m, denoted by P (D�3) (m). The two

plots correspond to four and �ve dimensions where the singular object is a link and

a triangle respectively. The data in both cases come from simulations in which the

total volume V = 32000. Clearly, both distributions possess an isolated peak in

the tail corresponding to (D � 3)�simplices which are common to a large number

of D�simplices. Furthermore, we have observed that this peak corresponds to the

presence for each triangulation of precisely one such singular (D � 3)�simplex.

Fig. 2 shows the scaling of the mean local volume of this singular (D �

3)�simplex with the total triangulation volume, again for D = 4 and 5. We have

utilized lattices of size V = 8000 to V = 64000. For large volumes it can be seen

that these results support the notion of a power-law divergence. Furthermore, the

data is consistent with a unique, simple power growth given by the solid lines. These

correspond to a power of 2
3 . The justi�cation for the choice of this power will be

discussed in Section 3.

1For a dimension independent implementation see [5].
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Figure 1: The normalized distribution of local volumes for (D�3)�simplices in four

and �ve dimensions.

Associated with this primary (D� 3)�simplex is a cascade of other singular

simplices corresponding to all its possible subsimplices. Thus we observe precisely 
D � 2

i+ 1

!

secondary singular i�simplices, where i = 0; : : : ; (D � 4), whose local volumes di-

verge in the thermodynamic limit. Thus in four dimensions we see exactly two

singular vertices corresponding to the endpoints of the original singular link. In �ve

dimensions we have one singular triangle, three singular links corresponding to its

edges and three singular vertices. Fig. 3 illustrates this for dimensions four (a) and

�ve (b). This pattern continues in higher dimension, for example in six dimensions

the dominant triangulations have four singular vertices.

In contrast to the primary singular simplex we �nd that the mean local

volumes of these secondary singular simplices grow linearly with the volume of the

triangulation. Fig. 4 shows a plot of the mean singular vertex volume for both four

and �ve dimensions. The linear growth of the singular link volume in �ve dimensions

is shown in Fig. 5. We have observed that each triangulation is symmetric with

respect to exchange of two singular simplices of a given dimension - they have
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Figure 2: The mean local volume of the (D� 3)�simplex vs the total volume V for

four and �ve dimensions. Note that we plot the data as a function of V
2

3 .

approximately the same local volumes. On the basis of this numerical evidence we

can state another hypothesis.

Conjecture 2 While the primary singular (D�3)�simplex has a local volume which

grows as some power p � 2
3 of the total volume, the secondary singular simplices

have local volumes which grow linearly with volume.

We have also recorded the mean number of D�simplices Vns which are not

associated with any of the singular vertices. The number of these again increases

linearly with volume Vns = cns V . Since the total volume is �xed at V there is

a relationship between the local volumes !i = ci V of singular i�simplices and the

non-singular simplices cnsV . In the in�nite volume limit (where the (D�3)�simplex

does not contribute) it is straightforward to verify that the following relation holds

between the coe�cients ci.

1� cns =
D�4X
i=0

 
D � 2

i+ 1

!
(�1)i ci : (3)

In four dimensions the measured cns = 0:279(2) which is to be compared with

its value computed from the above relation, cns = 0:266(3). Given the systematic
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Figure 3: The singular structure in a) D = 4 b) D = 5. The balls correspond to

singular vertices which overlap along singular links and triangles.

errors present in these �ts we regard this as quite satisfactory agreement. Notice

that this is completely consistent with the observation that the singular link volume

increases sublinearly as V ! 1. If that were not the case the righthand side of

Eq. 3 would receive another contribution from the links. It is also satis�ed in �ve

dimensions where the measured value cns = 0:045(1) is statistically consistent with

the value estimated using this relation, cns = 0:058(6).

3 Entropy Considerations

Given these conjectures about the nature of the con�guration space, is it possible

to understand why this very special class of triangulations is entropically favored?

Why for instance are there no singular (D � 2)�simplices? In this section we give

some heuristic arguments for this, and also try to explain the nature of the observed

power-law divergence of the singular (D � 3)�simplices.

Consider the local volume associated with a particular i�simplex. It is com-

posed of a set of D�simplices each of which contains the (i+1) vertex labels of the

i�simplex in question. Take the set of vertex labels associated to these local volume

D�simplices and remove the (i+1) labels of the common i�simplex. The remaining

vertex labels then constitute a triangulation of a (D � i � 1)�sphere. This sphere

is the boundary of the dual to the simplex - a (D � i)�dimensional volume. The

volume of this sphere is just proportional to the original i�simplex local volume.

For example, in three dimensions, the dual to a link is an area element whose

boundary is a triangulation of the circle. The vertices de�ning this circle are just

those obtained from the simplices making up the local volume of the link excluding

the endpoints of the link itself. By de�nition, the link's local volume is then just

proportional to the number of vertices on the circle. This is illustrated in Fig. 6

which shows the simplices making up the local volume of a link in three dimensions,

its dual area and the associated 1�sphere - the triangulated circle.

We can now ascribe a local entropy to an i�simplex with local volume !i
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Figure 4: The mean local volume of singular vertices vs total volume V for four and

�ve dimensions.

by counting the number of ways of gluing together the !i simplices containing it.

Each of these gluings corresponds to a distinct triangulation of the associated dual

(D � i� 1)�sphere. This allows us to map the problem of counting the number of

ways of achieving a certain local volume by gluing together D�simplices into the

enumeration of all the possible triangulations of the dual (D�i�1)�sphere. Specif-

ically, the local entropy of the i�simplex with local volume !i is just determined by

the number of triangulations of the associated dual (D� i� 1)�sphere with volume

!i.

For (D � 2)�simplices the relevant sphere is S1. There is only one distinct

way of arranging the simplices in its local volume. Equivalently, there is a unique

triangulation of S1 for any local volume !D�2. Thus the local entropy of a (D �

2)�simplex does not increase as its local volume increases. It is not entropically

favoured for such a (D � 2)�simplex to acquire a large local volume. Indeed, the

number of (D�2)�simplices possessing large local volumes falls o� (approximately)

exponentially fast. This is seen in Fig. 7 which shows the (normalized) distribution

of (D�2)�simplices common to m D�simplices, denoted by P (D�2) (m). The data

corresponds to four dimensions but similar results are obtained in dimensions three
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Figure 5: The mean local volume of singular links vs total volume V for �ve dimen-

sions.

through six. Notice that the curvature density is associated to (D � 2)�simplices

and hence never receives any singular contributions.

The situation is very di�erent for (D � 3)�simplices. The local entropy

associated to such an object is again given by the number of ways of gluing together

Figure 6: The dual area and its bounding triangulated circle for a link in three

dimensions.
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Figure 7: The normalized distribution of local volumes for (D�2)�simplices in four

dimensions.

the simplices constituting its local volume. By our arguments this corresponds

exactly to the number of triangulations of the sphere S2 with area equal to the local

volume !D�3. This grows exponentially with the local volume !D�3.

Similarly, for i�simplices with i = D�4; : : : ; 0 the local entropy is determined

by the number of triangulations of the sphere SD�i�1 = S3; S4; : : : ; SD�1 containing

!i faces. This is known to increase at least as fast as exponentially with local volume

!i. Thus, in contrast to (D�2)�simplices, simplices of dimension i = 0; : : : ; (D�3)

can maximize their local entropy by acquiring large local volumes.

If we start out with some arbitrary triangulation of �xed volume and perform

a random set of local moves it is clear that individual i�simplices with i = 0; : : : ; D�

3 are unstable to growing their local volumes. We can imagine qualitatively that

individual simplices compete with each other subject to the constraint that the

topology and total number of simplices remains �xed. Is it possible to understand

why a single (D�3)�simplex will eventually dominate? While we cannot construct

a rigorous argument that this should necessarily be so the following line of reasoning

renders it, we believe, at least plausible.

Suppose we have a con�guration with some number n, not necessarily (D�2),
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potential singular vertices. If n is smaller than (D � 2) the system can increase its

entropy by acquiring more singular vertices. What stops the number n growing

arbitrarily? The entropy of each vertex increases with local volume; thus these

vertices will want to grow their local volumes as large as possible. Ultimately, this

means that the potential singular vertices will want to get as close as possible to

each other so that they can share simplices. This overlapping of local volumes will

be maximal when the potential singular vertices form the vertices of some simplex

S. The overlaps between vertex volumes are then associated with subsimplices of

the simplex S. These subsimplices too can gain entropy by becoming singular - their

local volumes acquiring a �nite fraction of all the simplices in the triangulation.

Thus the simplex S which results from the intersection of such singular sim-

plices will itself become singular. But we have seen that singular simplices of di-

mension (D � 2) and greater are not entropically favoured. Thus the degeneration

process stops when S has dimension of (D � 3) - it becomes the primary, singular

(D � 3)�simplex. Then the number of singular vertices cannot increase beyond

(D� 2). This qualitative argument is able to account for at least the local stability

of the con�gurations that are seen in the numerical simulations. It makes credible

the notion that these con�gurations are at least local maxima of the total entropy.

It is also possible to understand the origin of the power-law divergence of the

(D�3)�simplex. The dual 2�sphere associated with this simplex is the boundary of

the overlap of two 3�spheres dual to the secondary (D�4)�simplices. If we assume

that the simplices associated with these 3�spheres are uniformly distributed over

the surface of the spheres, then simple geometry allows us to compute the number

on the boundary of the overlap { the local volume !D�3.

Introduce a length scale or radius for the 3�sphere by equating the classical

volume formula for a 3�sphere with the number of D�simplices in the local volume

of a (D � 4)�simplex { !D�4 = cD�4 V . Uniform distribution of simplices implies

that the radius of the 2�sphere is linearly related to the radius of this 3�sphere.

Using this we can obtain a prediction for the volume of the 2�sphere or equivalently

the (D � 3)�simplex local volume !D�3:

!D�3 = 3�

�
cD�4

2�2

�2

3

V
2

3 : (4)

This equation predicts both the volume dependence and coe�cient cD�3 of the

singular simplex divergence (using as input the measured coe�cient cD�4). We have

already seen that a 2
3 power of the volume is very consistent with the observed scaling

of !D�3. In four dimensions, the predicted value of cD�3 = 0:661(2) which compares

very well with its value estimated from a last squares �t to the (D � 3)�simplex

data, cD�3 = 0:667(5). In �ve dimensions cD�3 = 0:437(2) from Eq. 4, while our

best (using the largest three volumes) �t estimate is cD�3 = 0:49(2).

These quantitative tests lend strong support to our basic geometrical picture.

Essentially these triangulations are formed by taking D � 2 singular vertices with
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approximately equal volumes c0V and gluing them together to form a singular (D�

3)�simplex. A large fraction of all the D�simplices have then been used to create

this special D�ball. The remainder are used to help glue faces of this D�ball

together in order to create a triangulation with the correct SD topology. In the

context of the crumpled phase of DT gravity this basic structure forms a non-

perturbative background about which small 
uctuations in triangulation occur.

4 Singular vertex dynamics

To what extent can we trust the results of these numerical experiments? Is it possible

that these con�gurations are not truly dominant but act as local stationary points

of the entropy which trap the con�gurations and e�ectively break the ergodicity of

the algorithms? We have tried to address these questions by performing a number

of tests.

Current algorithms used in Monte Carlo simulation of these models rely

on a sequence of D + 1 local moves or re-triangulations which are known to be

ergodic on the full space of triangulations T (at least for D < 5 [6]). However, to

approach the continuum limit in a regular fashion lattice simulations are restricted

to the microcanonical ensemble TV characterized by 
D (V ). Actually to allow the

elementary moves to be carried out it is necessary that the volume be allowed to


uctuate by at least +=�D. Typical simulation strategies have relaxed this restraint

still further and allowed the volume to 
uctuate about the target volume by some

amount �V > D.

Unfortunately, the ergodic properties of the algorithm when thus restricted

to a �xed volume slice TV are unknown. One simple scenario might be that the

system possesses `volume barriers' B (V ) of all sizes up to some volume dependent

limit,

B (V ) � Bmax (V ) : (5)

We might then expect a practical breakdown of ergodicity if the allowed 
uctuation

volume �V becomes less than Bmax (V ). It is possible that such an e�ect might

be important in e�ectively trapping con�gurations in the vicinity of one of these

singular triangulations. We have investigated this issue by performing simulations

with a variety of �V . In order to keep control of the systematic error associated with

the �nite volume V we have chosen to take measurements only when the volume of

the triangulation lies within some distance � of the target volume V . In practice

we have set � = 10. A breaking of ergodicity would be signaled by a dependence of

expectation values on �V .

Table 1 summarizes our results in the case of D = 4 for a volume V = 4000

(similar results have been obtained in D = 3 and at other lattice sizes). We observe

no statistically signi�cant dependence in the mean vertex number hN0i and mean

intrinsic extent hLi on �V over a wide range in �V . This is a very encouraging

and, in principle, non-trivial result. It is in agreement with earlier studies [7, 8]
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�V hLi hN0i

6 9.168(5) 226.7(2)

10 9.156(6) 226.1(7)

14 9.187(14) 226.9(7)

20 9.153(20) 226.1(7)

32 9.157(10) 226.6(3)

45 9.137(19) 226.7(8)

63 9.156(15) 226.6(8)

100 9.165(6) 226.5(1)

200 9.166(9) 226.3(4)

Table 1: The dependence of expectation values on 
uctuation parameter �V for

D = 4 and V = 4000.

which have have not shown any evidence of ergodicity breaking in four and �ve

dimensions.

However, we have observed very long autocorrelation times in both observ-

ables which can easily obscure this result if only short runs are employed. The

upper graph of Fig. 8 illustrates this with a plot of the Monte Carlo time series

for the mean extent hLi for a lattice of size V = 4000 with �V = 10. We can see

that the system makes occasional excursions to `super-crumpled' states with small

extent and remains trapped there for many tens of thousands of sweeps before it

can tunnel back. The typical timescale between such events is of order one million

sweeps!2

We have observed the same problems over wide ranges in the 
uctuation

volume �V . The frequency of such large 
uctuation events seems independent of

this parameter. The lower graph of Fig. 8 contains a plot of the two vertices with

the largest local volumes for the same Monte Carlo history. It is clear that these rare


uctuation events are associated to the appearance and disappearance of singular

vertices. For small volumes it appears that the system can sometimes have zero or

a single singular vertex - contrary to the claims made in the previous section which

state that con�gurations with two such vertices are dominant. However, that claim is

true only for V !1 and it is clear that for small volumes tunneling between distinct

free energy minima (labeled by di�ering numbers of singular vertices) can occur.

However, our simulations revealed no evidence that the tunneling time depends on

�V .

We have also observed long transient e�ects in trying to equilibrate larger

volumes. Fig. 9 illustrates a typical run for V = 8K in four dimensions. We show

both hLi and the two most singular vertices. It is clear that the system appears to

2One sweep corresponds to V attempted local moves.
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Figure 8: The MC time series for the mean intrinsic extent hLi (top) and the local

volumes associated to the two most singular vertices (bottom) for V = 4000 and

D = 4.

settle down into an equilibrium state with small 
uctuations after perhaps a few tens

of thousands of sweeps. This state contains precisely one singular vertex. However

it is clearly metastable and after a further few hundred thousand sweeps undergoes a

rapid transition to a more crumpled state possessing two singular vertices. We have

not managed to observe any subsequent reverse tunneling. This transient behaviour

has been observed for many di�erent 
uctuation volumes �V and a variety of initial

state con�gurations. Similar behaviour has also been seen in �ve and six dimensions

at small to intermediate volumes. It is also consistent with recent �ndings reported

by Hotta et al [4] who observe a relaxation to two singular vertices in four dimensions

independent of start con�guration.

In three dimensions we observe no singular vertices and no corresponding

tunneling or metastable behaviour. In this sense three dimensions appears qualita-

tively di�erent from four and higher dimensions.

To summarize this section. We have looked for evidence that the singular

states are metastable as a consequence of ergodicity breaking in the simulation

algorithm. Such a breaking would be signaled by a dependence of expectation values

on the 
uctuation parameter �V . Over a wide range of this parameter we observe
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Figure 9: The same as the previous �gure for V = 8000.

no such dependence. While we observe long autocorrelation times at small volume

associated with singular vertex dynamics, this behaviour appears to disappear for

large volume and we are led to conclude that the singular states do indeed saturate


D (V ) in the thermodynamic limit.

5 Possible consequences

Our numerical results imply that the typical triangulations as V !1 are singular

con�gurations - they consist of a set of D � 2 singular vertices assembled into a

singular (D � 3)�simplex. The local volume associated to the (D � 3)�simplex

increases as a fractional power p � 2
3 of the total volume. In contrast, the local

volume associated to its secondary subsimplices increases in proportion to the vol-

ume. We have argued in section 3 that this structure is at least a local maximum

of the entropy function for triangulations with �xed volume. The numerical results

of section 4 imply that it appears to be a global maximum. The question arises

whether this structural information can be used to cast light on a variety of other

issues in DT gravity.

Speci�cally, in four dimensions can we learn anything about the possibility

of an exponential bound in the microcanonical partition function; i.e. 
4 (V ) �
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exp�V ? Such a bound is needed to take the thermodynamic limit. A proof for

triangulated manifolds has so far eluded all e�orts (although a related proof for

metric ball coverings does exist [9]). Direct numerical estimates of 
4 (V ), while

consistent with such a bound, are unfortunately plagued with large �nite size e�ects

which require rather delicate analysis [11, 12, 13, 14].

In four dimensions the important simplicial manifolds consist of two elemen-

tary 4�balls containing the singular vertices joined along a common link. Approx-

imately two thirds of the total volume is locked up in these balls, which become

independent in the V !1 limit.

Thus the triangulation of the four-sphere contains within it two independent

3�sphere boundaries carrying a large fraction of the total volume. Provided the

number of triangulations of the 3�sphere is bounded exponentially (which is believed

to be true from previous numerical simulations [10]), the proof of the 4D bound rests

on showing that the number of ways these balls can be glued together, using the

remaining one third of the volume, is exponentially bounded. This seems to be an

easier task than to show that the triangulation space is exponentially bounded for

arbitrary triangulations. However we have not been able to prove this or its obvious

generalizations to higher dimensions.

Indeed, there is one question which we do not understand concerning this

structure. Why does the primary singular (D�3)�simplex only diverge sublinearly

with volume in contrast to the linear divergence of all lower dimension singular sim-

plices? Does this signal a di�erent volume behaviour of the entropy function for S2

as compared with Sr; r = 3; : : : or is it a simple consequence of the constraints which

are present? Further work, both analytic and numerical, is needed to understand

the consequences of this and related features of the structure presented here.
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