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In this report we address a class of problems consisting of highly structured compu-

tations on data sets that are described by hierarchical data structures. These are often

represented as tree structures to optimize data storage requirements and perform e�cient

queries for data access. Speci�cally, applications that are dynamic and perform many iter-

ations on data are of interest to us, since the requirements for data evolve over time and

require modifying data structures incrementally. The computational relationship between

the subdomains is known only at runtime, and may change between computation phases.

Parallelization of such applications requires e�cient distributed data management and has

received some attention recently. We study the computational structure of a few irregu-

lar applications falling in this category. This helps us to evaluate data structures and the

address issues of data partitioning, load balancing and communication requirements for

these applications. Most recent e�orts have been application speci�c and solutions are not

portable across applications or parallel computing platforms. In this research we wish to

characterize requirements for primitives and runtime software support needed to parallelize

irregular applications.

A study of the computational structure of applications allows us to identify requirements

for parallelization across a broad spectrum. Each application uses a tree data structure to

organize data for e�cient construction, manipulation and querying of related data. We

enumerate algorithms that are used for solving these applications and discuss their paral-

lelization. We present an outline of primitives that are needed to parallelize such applica-

tions. These can be used to provide language support by high performance languages to

parallelize hierarchical applications.



Chapter 1

Introduction

Most previous research on coarse-grained MIMD machines has concentrated on paralleliz-

ing scienti�c High-level languages like Fortran-D [FHK+92], Vienna-Fortran [ZC92] which

support parallel operations on uniform arrays. E�cient parallelizations of dynamic and ir-

regular problems have received much attention only recently. Runtime support for irregular

structures is available in PARTI [CFH+92]. These approaches take advantage of static data

accesses and communication patterns. They provide little in terms of e�cient solutions for

dynamically changing data distribution and communication patterns.

We study a class of problems that consists of highly structured computations on sets

of subdomains that are coupled hierarchically. The computational relationship between

the subdomain is known only at runtime, and may change between computation phases.

Parallelization of these applications on distributed memory machines require exploitation

of the hierarchical nature both for data distribution, computational load balance as well as

maintaining locality to reduce communication overheads. The following applications have

been investigated: N-body simulation, Molecular Dynamics, Hierarchical Radiosity, Vol-

ume Rendering and Ray Tracing in Computer Graphics, Adaptive meshes, and Databases.

These applications are usually e�ciently represented and manipulated by using sparse data

structures such as graphs, trees, and lists in sequential algorithms to reduce data storage

sizes as well as to gain asymptotic performance for manipulation and retrieval of data.

The communication networks and software available on coarse-grained machines make

local accesses at least an order of magnitude faster then nonlocal accesses. This is further

accentuated by high latency costs of communication software on distributed-memory ma-

chines. E�ective parallelization of these applications on coarse-grained MIMD machines

requires careful attention for the following reasons:

� The amount of work done by the parallel algorithm should be within a small constant

factor of the amount of work done by the sequential algorithm, since the number of

processors used in practice is limited to from ten to a thousand. Parallel algorithms,

which may be theoretically optimal, have limited use if the constants involved are

large.

� The o�-processor accesses generated by these applications are highly unstructured

and may have many hot spots.

1
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� For many applications, the data structures used have inherent locality of access and/or

change incrementally. Exploitation of this information is necessary for e�cient use of

the various levels of memory hierarchy present in these architectures (register, caches,

local accesses, nonlocal accesses, etc.). This requires fast methods for partitioning,

repartitioning, replication, and migration of data.

� Static scheduling, dynamic scheduling, and load balancing are required to reduce

processor idle time, and synchronization is required to achieve program correctness.

Our goal is to study the scalability of these applications on coarse-grained machines in

a relatively architecture-independent fashion. We discuss the structure of the applications

listed above in detail and present the data partitioning, communication and load balancing

primitives that are required for their e�cient parallelization.

The motivation for this work is from the recent e�orts on parallelizing N-body appli-

cations on parallel machines, and extending their use to applications in other areas. Most

implementations have been very speci�c to the problem and most often architecture de-

pendent. The various phases in the implementation of the algorithm require immaculate

control on the computation and communication functions. Our goal here is to develop

an architecture independent infrastructure for parallelization of treecodes and apply it to

challenging visualization applications such as ray-traced volume rendering [Lev90a], Ray

Tracing and Hierarchical Radiosity [Aup93], Spatial databases, Molecular Dynamics and

Adaptive Meshes. Singh [Sin93] discusses the parallelization needs of some graphics appli-

cations on a shared memory machine and elaborates the di�culties of parallelization on

distributed memory machines.

1.1 Distributed-Memory Machines

A distributed-memory machine consists of a set of processors linked by interconnection

networks. Each processor has its own memory that is directly accessible only by itself.

Data exchange and global operations among processors are accomplished through message

passing or appropriate hardware support [KGGK94, FJL+88].

The parallel-processing literature abounds with parallel algorithms designed for proces-

sors connected through special interconnection networks such as hypercubes, meshes, rings,

or toroids. Available commercial architectures (IBM SP series, CM-5, nCUBE, and Intel

Paragon) have subsets of the following properties:

1. Distance. With new routing techniques such as wormhole routing and randomized

routing (as seen on the CM-5) [Lei85, KGGK94, DL87, NK93], the distance between

communicating processors is less of a determining factor on the amount of time re-

quired for communication.

2. Latency. The start-up time for sending a message is an order of magnitude more than

the cost of transmitting a few bytes of information. The latency of nonlocal access can

be signi�cantly reduced by using active messages [vECGS92, BK94, BR95]. Further,

hardware support for accessing data from nonlocal memory (or moving pages into

local memory) can provide a reduction in the e�ective latency [ea89, LLG+90, AA91].
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3. Node Contention. A node can receive only one message (or a limited number of

messages) at a time.

4. Link Contention. If two message paths have common links, the time required for

their transmission may be a�ected. This e�ect is limited due to the use of virtual

channels and because link bandwidth is much larger than node-interface bandwidths.

Theoretical models typically assume only one virtual channel per link.

5. Cross Section Bandwidth. For machines which have an underlying mesh architecture

(like Intel Paragon), the cross-section bandwidth may become a bottleneck.

Hardware support for cache coherence in machines (e.g., DASH, KSR) can signi�cantly

reduce programmers' e�orts to maintain coherence of replicated data, and context switch-

ing can allow for multiple threads at low overheads [AA91]. We would concentrate on

machine models without hardware support for shared memory and multi-threading. How-

ever, most of the techniques developed are of general applicability. One of our goals is to

develop architecture-independent primitives that can be implemented on a wide variety of

distributed-memory machines.

The speci�c interconnection network for which primitives would initially be developed

for, assume that it can support arbitrary permutations (i.e., at a given time each node can

send and receive one message from an arbitrary processor). This two-level memory model

distinguishes elements needed for computation as being local or nonlocal to a processor.

The logP [CKP+93] model and the postal model [BNK92] are theoretical models, based

on the above philosophy, for coarse-grained machines. Due to larger link bandwidths, as

compared to node interface bandwidths, many networks have behavior close to this model

(e.g., the IBM SP Series and the CM-5). Later speci�c networks such as hypercubes and

meshes would be studied. A large number of commercial and research architectures use

these interconnection networks.

1.2 Model of Parallel Computation

Coarse Grained Machines (CGMs) consist of a set of processors (tens to a few thousand)

connected through an interconnection network. The memory is physically distributed across

the processors. Interaction between processors is either through message passing or through

a shared address space. Popular interconnection topologies are buses (SGI Challenge), 2D

meshes (Paragon, Delta), 3D meshes (Cray T3D), hypercubes (nCUBE), fat tree (CM5)

and hierarchical networks (cedar, DASH).

CGMs have cut-through routed networks which will be used for modeling the commu-

nication cost of our algorithms. For a lightly loaded network, a message of size m travers-

ing d hops of a cut-through (CT) routed network incurs a communication delay given by

Tcomm = ts+ thd+ twm, where ts represents the handshaking costs, th represents the signal

propagation and switching delays and tw represents the inverse bandwidth of the commu-

nication network. The startup time ts is often large, and can be several hundred machine

cycles or more. The per-word transfer time tw is determined by the link bandwidth. tw
is often higher (an order to two orders of magnitude is typical) than tc, the time to do a

unit computation on data available in the cache. The per-hop component thd can often be
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subsumed into the startup time ts without signi�cant loss of accuracy. This is because the

diameter of the network, which is the maximum of the distance between any pair of pro-

cessors, is relatively small for most practical sized machines, and th also tends to be small.

The above expressions adequately model communication time for lightly loaded networks.

However, as the network becomes more congested, the �nite network capacity becomes a

bottleneck. Multiple messages attempting to traverse a particular link on the network are

serialized. A good measure of the capacity of the network is its cross-section bandwidth

(also referred to as the bisection width). For p processors, the bisection width is p
2
, 2
p
p,

and 1 for a hypercube, wraparound mesh and for a shared bus respectively.

Our analysis will be done for the following interconnection networks: hypercubes and two

dimensional meshes. The analysis for permutation networks and hypercubes is the same in

most cases. These cover nearly all commercially available machines. A permutation network

is one for which almost all of the permutations (each processor sending and receiving only

one message of equal size) can be completed in nearly the same time (e.g. CM-5 and IBM

SP Series).

Parallelization of applications requires distributing some or all of the data structures

among the processors. Each processor needs to access all the non-local data required for

its local computation. This generates aggregate or collective communication structures.

Several algorithms have been described in the literature for these primitives and are part of

standard textbooks [FJL+88, KGGK94]. The use of collective communication provides a

level of architecture independence in the algorithm design. It also allows for precise analysis

of an algorithm by replacing the cost of the primitive for the targeted architecture.

In the following, we describe some important parallel primitives that are repeatedly used

in our algorithms and implementations. For commonly used primitives, we simply state the

operation involved. The analysis of the running time is omitted and the interested reader

is referred to [KGGK94]. For other primitives, a more detailed explanation is provided.

Table 1 describes the collective communication routines used in the development of our

algorithms and their time requirements on cut-through routed hypercubes and meshes. In

what follows, p refers to the number of processors.

1. Broadcast. In a Broadcast operation, one processor has a message of size m to be

broadcast to all other processors.

2. Combine. Given a vector of size m on each processor and a binary associative

operation, the Combine operation computes a resultant vector of size m and stores it

on every processor. The ith element of the resultant vector is the result of combining

the ith element of the vectors stored on all the processors using the binary associative

operation.

3. Parallel Pre�x. Suppose that x0; x1; : : : ; xp�1 are p data elements with processor Pi
containing xi. Let 
 be a binary associative operation. The Parallel Pre�x operation

stores the value of x0 
 x1 
 : : :
 xi on processor Pi.

4. Gather. Given a vector of size m on each processor, the Gather operation collects

all the data and stores the resulting vector of size mp in one of the processors.
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Primitive Running time on a p processor

Hypercube Mesh

Broadcast O((ts + twm) log p) O((ts + twm) log p+ th
p
p)

Combine O((ts + twm) log p) O((ts + twm) log p+ th
p
p)

Parallel Pre�x O((ts + tw) log p) O((ts + tw) log p+ th
p
p)

Gather O(ts log p+ twmp) O(ts log p+ twmp+ th
p
p)

Global Concatenate O(ts log p+ twmp) O(ts log p+ twmp+ th
p
p)

All-to-All Communication O((ts + twm)p+ thp log p) O((ts + twmp)
p
p)

Transportation Primitive O(tsp+ twr + thp log p) O((ts + twr)
p
p)

Order Maintaining O(tsp+ tw(smax + rmax) + thp log p O((ts + tw(smax + rmax))
p
p+ th

p
p)

Data Movement

Non-order Maintaining O(tsp+ tw(smax + rmax) + thp log p) O((ts + tw(smax + rmax))
p
p+ th

p
p)

Data Movement

Table 1.1: Running times of various parallel primitives on cut-through routed hypercubes

and square meshes with p processors.

5. Global Concatenate. This is the same as Gather except that the collected data

should be stored on all the processors.

6. All-to-All Communication. In this operation each processor sends a distinct mes-

sage of size m to every processor.

7. Transportation Primitive. It performs many-to-many personalized communication

with possibly high variance in message size. Let r be the maximum of outgoing

or incoming tra�c at any processor The transportation primitive breaks down the

communication into two all-to-all communication phases where all the messages sent

by any particular processor have uniform message sizes [RSA95]. If r � p2, the

running time of this operation is equal to two all-to-all communication operations

with a maximum message size of O( rp).

8. Order Maintaining Data Movement. Consider the following data movement

problem, an abstraction of the data movement patterns that we encounter in subtask

redistribution. Initially, processor Pi contains two integers si and ri, and has si
elements of data such that

Pp�1
i=0 si =

Pp�1
i=0 ri. Let smax = max

p�1
i=0 si and rmax =

max
p�1
i=0 ri. The objective is to redistribute the data such that processor Pi contains ri

elements. Suppose that each processor has its set of elements stored in an array. We

can view the
Pp�1

i=0 si elements as if they are globally sorted based on processor and

array indices. For any i < j, any element in processor Pi appears earlier in this sorted

order than any element in processor Pj . In the order maintaining data movement

problem, this global order should be preserved after the distribution of the data.

The algorithm �rst performs a Parallel Pre�x operation on the si's to �nd the position
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of the elements each processor contains in the global order. Another parallel pre�x

operation on the ri's determines the position in the global order of the elements needed

by each processor. Using the results of the parallel pre�x operations, each processor

can �gure out the processors to which it should send data and the amount of data

to send to each processor. Similarly, each processor can �gure out the amount of

data it should receive, if any, from each processor. The communication is performed

using the transportation primitive. The maximum number of elements sent out by

any processor is smax. The maximum number of elements received by any processor

is rmax.

9. Non-Order Maintaining Data Movement. The order maintaining data move-

ment algorithm may generate much more communication than necessary if preserving

the global order of elements is not necessary. For example, consider the case where

ri = si for 1 � i < p� 1 and r0 = s0+1 and rp�1 = sp�1� 1. The optimal strategy is

to transfer the one extra element from Pp�1 to P0. However, this algorithm transfers

one element from Pi to Pi�1 for every 1 � i < p� 1, generating (p� 1) messages.

For data movements where preserving the order of data is not important, the following

modi�cation is done to the algorithm: Every processor retains minfsi; rig of its orig-
inal elements. If si > ri, the processor has (si � ri) elements in excess and is labeled

a source. Otherwise, the processor needs (ri� si) elements and is labeled a sink. The

excessive elements in the source processors and the number of elements needed by the

sink processors are ranked separately using two Parallel Pre�x operations. The data

is transferred from sources to sinks using a strategy similar to the order maintaining

data movement algorithm.

The maximum number of outgoing elements at any processor ismax
p�1
i=0 (si�ri), which

can be as high as smax. The maximum number of incoming elements at any processor

is max
p�1
i=0 (ri � si), which can be as high as rmax. Therefore, the worst-case running

time of this operation is identical to the order maintaining data movement opera-

tion. Nevertheless, the non-order maintaining data movement algorithm is expected

to perform better in practice.

1.3 Software System Requirements

The software requirements for hierarchical applications can be divided into Architecture

dependent and Architecture independent activities. Current distributed memory machines

are available in di�erent con�gurations with varying interconnection networks. Message

passing routines are typically architecture dependent and provided by the vendor. Global

communication operations built using the basic communication primitives send and receive

are also implemented by the machine vendor.

Hierarchical applications deal with treecodes and require basic tree manipulation rou-

tines. Queries on the tree data structure need to be performed to access and modify data

structures. A library of routines providing primitives for tree construction and providing

operations on the distributed data structure is needed. Load balancing aspects for the tree

should be addressed at di�erent levels by Global tree and Local tree management routines.
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Queries will extensively use data structure movement, which in most cases will be subtrees

and will need encoding on the sender side for transmission. The receiver will decode the

data to reconstruct the subtree. This high level data movement will use the low level data

movement provided by the machine, using global communication whenever appropriate.

The main objective is to build an architecture independent software system for hier-

archical applications and we would like to keep the architecture dependent part as small

as possible. Communication libraries like PVM and MPI provide a layer of architecture

independence and can be used.

Figure 1.1 highlights the software system that is needed for the applications discussed

in this paper.

1.4 Organization of the report

Chapter 2 presents a survey of hierarchical applications and discusses issues in their paral-

lelization on distributed memory parallel computers. This identi�es the common structure

of these applications, amenable to the divide and conquer paradigm. Quadtrees, k-d trees,

R-trees and its variants are identi�ed as spatial data structures that e�ciently represent

and manipulate data in these applications. For balanced construction of these structures,

median �nding, and more generally selection, is an important operation. Chapter 3 presents

parallel algorithms for selection on distributed memory machines. Chapter 4 presents al-

gorithms for parallel construction of k-d trees (multidimensional binary search trees). We

have analyzed these algorithms and optimized communication for them by reducing the

data movement at each stage. Concatenated parallelism describes this method and is pre-

sented in Chapter 5. Chapter 6 presents the common spatial queries that are required for

applications surveyed in this report. Primitives for language and run-time support are pre-

sented in Chapter 7. Finally Chapter 8 presents our conclusions and looks into the future

for this research.
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Architecture

Independent

Distributed Memory Machine

APPLICATIONS

Architecture

Dependent

Data Movement Routines

( Point Location, Neighbor Finding, Rectangle intersection with tree, Tree Transformations )

Basic Tree Operations and Queries

Active MessagesSend/Receive Communication

(N-body simulation, Molecular Dynamics, Volume Rendering, Radiosity, Adaptive Meshes, Image Compression)

Local Tree Management

Local insertions, deletions and balancing

Sender Encoding        Message  Transfer        Receiver Decoding

Data Structure Movement Routines

Put/Get

(Broadcast, Global concatenate, Many-to-many PC etc.)

( TMC CM-5,  IBM SP-2, Intel Touchstone Delta, Intel Paragon, Cray T3D, Network of Workstations )

Figure 1.1: Software system for hierarchical applications



Chapter 2

A Survey of Hierarchical

Applications

2.1 N-body methods

Computational methods to track the motions of bodies that interact with each other have

been subjects of study for a long time in the areas of astrophysics, semiconductor device

simulation, molecular dynamics and plasma physics. The N-body problem computes the

state (position and velocity) ofN bodies at a given time t > 0, given an initial state at t = 0.

The most common approach is to iteratively calculate the solution by calculating all forces

over a sequence of small time steps. Within each timestep the instantaneous acceleration is

approximated by the instantaneous acceleration at the beginning of the time step, which is

done by directly summing the force induced by each of the other N�1 bodies. This method
is conceptually simple and vectorizes well but its �(N2) arithmetic complexity rules it out

for large-scale simulations involving millions of bodies.

Many physical systems exhibit a large range of scales in their information requirements,

in both space and time. A point in physical domain requires progressively less information

at a lesser frequency from parts of the domain that are farther away from it. Applying this

fundamental insight Appel [App85] and Barnes and Hut [BH86] were the �rst to propose

faster N-Body algorithms. Appel's method requires O(N) steps but has a bigger constant

attached to it, whereas the Barnes-Hut method is O(NlogN) and is used in practice. N-

body simulations using adaptive tree data structures are referred to as treecodes. Parallel

implementation of the Barnes-Hut method has been fairly recent and is reported in Salmon

and Warren [WS92, WS93].

In an astrophysical N-body simulation, force interactions between celestial bodies are

calculated according to the laws of Newtonian physics. Accelerations induce by forces due

to the other N � 1 bodies are calculated as

d2~xi
dt2

=
P

j 6=i ~aij =
P

j 6=i�Gmj
~dij

jdijj3
; ~dij = ~xi � ~xj :

This formulation leads to a O(N2) algorithm. Several approximate methods have been

used to reduce the overall time and allow larger simulations to be done. The approximation

that reduces the interactions using treecodes is stated as [WS92]

9
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P
j
Gmj

~dij
jdijj3

� GM ~di;cm
d3i;cm

+ :::

where ~di;cm = ~xi � ~xcm is the vector from ~xi to the center-of-mass of the particles that

are summed in the left hand side in the above expression. Quadropole, octopole and further

terms in the multipole expansion can be included for better approximations.

In the Fast Multipole Method (FMM) presented by Greengard and Rokhlin [GR87]

particles are organized into cells and then cell-cell interactions are computed prior to the

force calculation step. Once this has been determined, the force on a single particle can be

obtained in a time independent of N, resulting in a O(N) scaling. The interactions here are

more complex and the hidden constants in the notation are not very clear. Each cluster is

characterized by a multipole expansion computed by traversing the tree in an upward phase.

This is followed by a downward phase to combine multipole expansions and to propagate

them to the leaves. At the end of the downward phase each leaf has data to compute

the force induced by bodies in the far �eld, which is the area outside of this leaf and its

neighbors.

The Barnes-Hut algorithm begins by constructing a tree, inserting the bodies into the

cluster hierarchy one at a time. First an octree partition of the three-dimensional box (a

region in space) is computed enclosing the set of bodies. The partition is computed recur-

sively by dividing the original box into eight octants of equal volume until each undivided

box contains exactly one body. Figure 2.1 is an example of recursive partition in two dimen-

sions, the corresponding quadtree, which is called the Barnes-Hut (BH) tree. Alternatively,

a k-d tree can be constructed to store the bodies. This is a binary tree in which elements

are partitioned into two partitions, alternating the dimension to choose an element as a

partitioner at each level. To minimize the number of interactions, each body computes in-

teractions with the largest clusters for which the approximation can be applied. The bodies

are added to the tree one at a time. The ith body is added into the BH-tree with i - 1

bodies, the newly inserted body descending down the tree until it reaches a box of which it

is the sole occupant. If the body reaches a leaf, the leaf is subdivided until each of the two

bodies is in its own box.

Each internal node of the BH-tree represents a cluster. Once the BH-tree has been

built, the centers-of-mass of the internal nodes are computed by traversing the tree bottom-

up. Once that is done, each cluster represents the bodies in its region for interaction. For

computing accelerations each body traverses the tree in depth-�rst manner starting at the

root. For any internal node su�ciently far away, the e�ect of the subtree on the body is

approximated by a two-body interaction between the body and a point mass located at the

center-of-mass of the tree node. The tree traversal continues, but the subtree is bypassed.

When the traversal reaches a leaf, a direct two body interaction is computed. The set of

nodes which contribute to the acceleration on a body are called the essential nodes for

the body. Each body has a distinct set of essential nodes which changes with time. Two

important criterion help in approximating the force �elds. Firstly, for a body far away

from the cluster, the e�ect of the cluster can be approximated by its center of mass rather

than by each individual interaction with each body in the cluster. Secondly, the depth-

�rst traversal ensures that each body interacts only with the largest clusters for which the

approximation is valid. Once accelerations on each body are known, the new positions and

velocities are computed. The entire process is repeated for the desired number of time steps.
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The Barnes-Hut algorithm is shown in Figure 2.3.

For any particle p the force can be approximated by starting at the root cell of the tree.

Let l is the length of the cell currently being processed and D the distance of p from the

cell's center-of-mass. If l / D < �, where � is a �xed accuracy parameter � 1, then the

interaction between this cell and p is included in the total being accumulated. Otherwise,

the cell is resolved into eight subcells for an octree, and two for a k-d tree, each one being

recursively examined.

.
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Figure 2.1: Creation of a quadtree as BH-tree

.

. .

.

..

.

.

.

. .

.

..

.

.

.

. .

.

..

.

.

.

. .

.

..

.

.

X = 40

X = 72

Y = 65

Y = 35

X = 15 X = 65

X = 25

X

Y

0 100

100

X

YY

X

65 35

65 72

X XX

2515

40

Figure 2.2: Creation of a k-d tree as BH-tree.

In this paper, we limit ourselves to the Barnes-Hut algorithm due to its popularity as

well as its hierarchical nature. We provide a brief summary of the di�erent issues required

for its parallelization on distributed memory machines with and without hardware support

for shared memory.
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For each time step:

Step 1. Build the BH-tree.

Step 2. Compute centers-of-mass bottom-up.

For each body

Step 3. Start a depth-�rst traversal of the tree, truncating the

search at a internal node where the approximation is applicable.

Step 4. Update the contribution of the node to the acceleration of the body

Step 5. Update the velocity and position of each body.

Figure 2.3: Barnes-Hut Algorithm

2.1.1 Parallelization on Shared memory machines

A parallel implementation of the Barnes-Hut algorithm on the DASH [LLG+90], a cache

coherent shared memory multiprocessor shared memory machine, has been reported in

[Sin93] . The data partitioning is done using costzones [Sin93] or by using Orthogonal

Recursive Bisection (ORB). The data is globally shared among the processors in shared

memory. The tree construction is parallelized by letting processors insert their particles

into the shared tree concurrently. Whenever a processor has to modify the tree, either by

putting a particle in a cell or by subdividing a cell, it must �rst obtain a lock on that cell

to ensure that no other processor tries to modify it at the same time. As the number of

processors increase, the overhead of executing these locks and unlocks becomes substantial.

The ORB partition allocates every processor contiguous partition of space. This e�ectively

divides the tree into distinct sections and assign a processor to each section, which means

that there is little contention for locks after the �rst few levels of the tree are built, since

processors will construct their own disjoint sections without much interference. Much of

the contention is due to many processors simultaneously trying to update the upper levels

of the tree.

In another approach outlined in [Sin93], every processor builds its own version of the

tree using only its own particles. These individual trees are then merged together into a

single tree used in the rest of the computation. The number of times a processor has to

obtain a lock on the global tree goes down as entire subtrees are usually merged into the

global tree. There is a tradeo� when merging entire subtrees, since not much concurrency

is available in the merging phase. However, results in [Sin93] show that this method out-

performs the previous one. This is essentially the approach one would take on a distributed

memory machine, by building local trees and then getting a global representation by com-

bining them appropriately to store global information. The tree building and center-of-mass

computation phases require both interprocessor communication and synchronization. The

force calculation for a particle requires the communication of position and mass information

from other particles and cells, but this is not modi�ed during the force calculation phase.

Forces on di�erent particles can be computed in parallel without synchronization. Each

processor will read the data it needs from the global tree, a single copy of which is shared

among all processors. The work for a particle in the update phase is entirely local to that

particle and requires neither communication nor synchronization.
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2.1.2 Parallel Implementation on Distributed Memory Machines

On a distributed memory machine the data is distributed across the memory of processors.

A data distribution that gives more or less equal work to all processors in desirable to ob-

tain higher e�ciencies. The work metric used in the N-body simulation is the calculation

of forces for each body. Hence, just the count of the number of bodies on a processor is not

enough, their distribution in space also needs to be taken into account. This determines the

force calculations that will be performed for each body and ideally we would like that to be

perfectly load balanced. During the computation phase if data for force calculation is not

available locally it must be fetched from the processor that has it. Data should be assigned

to processors such that most data for computation should be available locally. Typically

communication for fetching o�-processor data is much more expensive than a local read.

Data partitioning must preserve data locality to reduce communication requirements. An

inappropriate data mapping can increase communication costs and degrade overall perfor-

mance by adding to the overhead. A good partitioning would take both load balancing and

data locality into account.

A distinguishing feature of the BH-tree is that it evolves continuously due to ongoing

computation. It is a dynamic data structure and data must dynamically be updated to

adapt to the evolving system. A static data mapping may not distribute data evenly

after a period of time. The data mapping can either be done again at each time step or

adjusted incrementally to re
ect the changes in the system. Also, as bodies move and the

distribution of bodies in space changes, the work associated with calculating forces can also

change leading to di�erential load on processors. The mapping of bodies to processors must

be adjusted to ensure load balance. Thus the BH-tree is adaptive to dynamic and irregular

distribution of bodies. Also, the movement of bodies requires dynamic data mapping and

distributed data management.

Since the BH-tree is distributed there is a need for o�-processor data during computa-

tion. The data mapping can change from one step to another, the communication pattern

for such data will also change, making it irregular and dynamic. A static data pattern

cannot be calculated for optimizing communication for that pattern. It is unpredictable

at compile time and hard to optimize. So �nding a good communication schedule at the

�rst iteration to be reused at later times does not work. A high-performance code can be

developed by addressing the following issues

� Mapping of the BH-tree to processors must change adaptively as the simulation pro-

ceeds.

� E�cient fetching and update of the locally-essential tree for each body.

� Provision for load balancing to take into account the work each body performs rather

than the number of bodies on each processor.

In the following subsections, we describe the important approaches for data partitioning,

tree construction, accessing non local data and tree traversals studied in the literature. See

Table 2.1 for a summary.
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For each time step:

Step 1. Partition the bodies to processors using a k-d tree

On each processor : Step 2. Obtain the locally essential tree for this proces-

sor

For each body on this processor

Step 3. Start a depth-�rst traversal of the tree at the root, truncating the

search at a internal node where the approximation is applicable.

Step 4. Update the contribution of the node to the acceleration of the body

5. Update the velocity and position of each body belonging to this processor.

Figure 2.4: Parallel implementation of N-body algorithm using adaptive trees

Phase Implementation

1. Tree Construction Distributed Adaptive Trees (Warren and Salmon 1992)

Hashed Octree (HOT) (Warren and Salmon 1993)

Octree in shared memory (Singh, Hennessey and Gupta 1992)

2. Data Partitioning ORB tree for bodies. (Warren and Salmon 1992)

Spatial coordinates to keys (Warren and Salmon 1993)

Costzones (Singh, Hennessey and Gupta 1992)

3. Tree Traversal Latency hiding tree traversal (Warren and Salmon 1992)

4. Locally essential data

(Receiver-oriented) Gather essential data for force computation (Warren and Salmon 1992)

(Sender-oriented) Send essential data to processor needing it (Liu P. 1994)

5. Incremental Updates

(Sender-oriented) Incremental Tree Updates (Liu P. 1994)

Incremental updates of locally essential data (Liu P. 1994)

Table 2.1: Parallel approaches to N-body treecodes
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2.1.3 Data Partitioning

A distributed octree or a k-d tree representation is maintained on a set of processors. Each

processor owns portions of data, the amount of which is guided by the workload associated

with it. Every body, on a processor, can only see a fraction of the complete tree in a

distributed memory scenario. The distant parts are seen only at a coarse level of detail,

while the nearby sections are seen all the way down to the leaves, observing that nearby

bodies see similar trees. This means that the upper levels of the tree, have nodes that

do not contain data but contain indirection pointers to processors where the data can be

found. Data partitioning can be done using orthogonal recursive bisection (ORB), where

space is recursively divided in two, and half the processors are assigned to each domain

until there is one processor associated with each rectangular domain. A multidimensional

binary k-d tree, call it the ORB tree, can be used by alternating the dimensions of the split.

A later chapter presents algorithms for the construction of k-d trees in parallel. A copy of

the ORB tree is stored on every processor. Each internal node of the ORB tree represents

a bisector plane and the domain it bisects, and each leaf node is a processor domain.

The ORB decomposition of space among processors allocates points in space to processors.

This is useful for sender-directed communication of essential data used in relocating bodies

which cross processor boundaries and for building the global BH tree. A owner of data can

calculate which processors, if any, require its data by looking at the partitioning boundaries.

This is in contrast with receiver-directed communication, where a data request is sent out

and the appropriate processor(s) will ful�ll it. ORB preserves data locality well and the

cost of incremental load-balancing is negligible [Liu94].

The load distribution changes only slowly across iterations and the ORB can be adjusted

with minimum changes to balance the load again. The incremental update begins with

each processor computing the total number of interactions used to update the state of the

local bodies. A tree reduction yields the number of operations for the subset of processors

corresponding to each internal node. A node is overloaded if its weight exceeds the average

weight of the nodes at that level by some �xed quantity. A top-down search on ORB tree

marks those internal nodes which are not overloaded but one of their children is overloaded.

This node is called the initiator. Only the processors within the corresponding subtree

participate in balancing the load for the region of space associated with the initiator. Since

the subtrees for di�erent initiators are disjoint, the non-overlapping regions can be balanced

in parallel. The bodies of the overloaded child have to be moved to the non-overloaded child

at each step. A new bisector plane is computed so that the right amount of workload can

be shifted to the under-loaded child. This is done by determining the weight within the

old plane and any given plane to �nd the correct bisecting plane by a binary search. The

workload within the parallelepiped is computed by traversing the local BH-tree [Liu94].

Another approach of partitioning data is by mapping the bodies by converting the

locality information in terms of a one dimensional key. Each possible cell is identi�ed with

a key and by performing simple bit arithmetic on a key, keys for daughter or parent cells

are determined. The translation of keys into memory locations where cell data is stored

is achieved via hash table lookup. This scheme provides a uniform addressing mechanism

to retrieve data which is in another processor. This representation of data is called the

Hashed Octree method [WS93]. The key is de�ned as a result of a map of d 
oating point
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For each processor DO in parallel

Step 1. Construct one dimensional keys for each body interleaving its spatial coordi-

nates

Step 2. Sort the keys in an increasing order

Step 3. Divide the list onto processors weighted by the amount of work corresponding

to each body

On each processor

Step 4. Construct the tree using the bodies local to the processor.

Step 5. Make copies of branches on every processor to complete the full repre-

sentation of the tree

Step 6. Gather locally essential data needed for the bodies on this processor

For each body on the processor

Step 7. Traverse the tree representation in the local memory

Figure 2.5: Hashed Oct Tree (HOT) implementation (Warren and Salmon,1993)

numbers, body coordinates in d-dimensional space, into a single set of bits. The 
oating

point numbers are converted into integers and then bits of the d integers are interleaved

into a single key. This is identical to Morton ordering (also called Z or N ordering). This

function maps each body in the system to a unique key. A hash table is used to map the

key to the memory location holding this data. A hashing function maps the k-bit key to

the h-bit long address. Collisions in the hash table can be resolved by chaining. During

tree traversals, daughter nodes are found by shifting the parent key left by d bits and the

result is OR'ed to daughter numbers 0 to 2h � 1. The key provides immediate O(1) access

to any object of the tree. Access to data can be generalized to a global accessing scheme

implementable on a message passing architecture. By taking advantage of the properties of

mapping spatial coordinates to keys, a sorted list of one-dimensional body key coordinates

are divided into equal pieces, weighted by the amount of work corresponding to each body.

The work for each body is readily approximated by counting the number of interactions

the body was involved in on the previous timestep. Using Morton ordered decomposition

a processor domain can span one of the spatial discontinuity. Peano-Hilbert ordering can

be used for domain decomposition, which does not contain any spatial discontinuity, but is

harder to describe by body coordinates.

The data distribution described above, leads to a mapping with irregular boundaries.

Incremental modi�cation of the tree structures, the HOT tree and the locally essential tree,

becomes increasingly di�cult in such a case. Since boundaries are no longer uniform, the

movement of bodies from one partition to another cannot be ascertained purely by looking

at spatial coordinates. Hence, a sender initiated protocol is not suitable for such a scheme.
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2.1.4 Tree Construction

Once the bodies are allocated to a processor using the ORB data partitioning, the adaptive

BH-tree is constructed by building local trees on every processor using the local bodies only.

A local tree is built with respect to the entire spatial domain and not its own processor

domain. It represents the local view of the distribution of bodies within a processor domain.

The local trees might not be structurally consistent with respect to each other. Local trees

are made structurally consistent by adjusting the levels of all leaf nodes which are split by

ORB bisector planes. For a tree with N bodies, each leaf in the BH-tree can contain up

to L bodies, L << N , to adapt to the fast multipole expansion. This accelerates force

calculations by reducing the number of tree traversals, but makes level adjustment more

tricky.

Updating the BH-tree incrementally by adjusting the levels after each insertion/deletion

within the localtree is described in [Liu94]. Consider a body � in level ` of a local tree

consisting of n levels (n >= l). � may actually be in a deeper level `0 > ` in the global

tree. The level of the cell needs to be adjusted down to `0 for the owners on the path

from `0 to ` to receive contributions from �. Only bodies that are not in the correct levels

need to be adjusted. If the processor domain covers the entire leaf, consisting of atmost L

bodies, the bodies within the leaf do not require adjustment. Otherwise the leaf's domain

spans multiple processors. For each such leaf, �, de�ne covering processors CP(�) as those
processors whose domains overlap with �. The level of a body then is determined only by

its covering processors. Initially the level information of a body � contains its split leaf and

the local bodies in it. The correct level information is found by re�ning this information

further. Each body � receives level information from each member of CP(�). Then each

processor chooses the deeper leaf as the new level.

Once level adjustment is done, each processor computes the center-of-mass and multipole

moments of its local tree. Next, each processor sends its contribution to an internal node

to the owner of the node. The transmitted nodes are combined by the receiving processors

completing the construction of the global BH-tree. At this stage each processor contains a

tree with nodes containing bodies it owns and some empty nodes at upper levels to identify

all the bodies on other processors. The owner of a tree node is the processor that contains

its geometric center. An owner of a node keeps track of the forces and the acceleration of

the bodies in it. This mapping function can be easily constructed by di�erent processors

consistently using the ORB tree. A local tree node has correct node information if it is

completely covered by one processor domain.

During a time step a body may move into another processor domain and has to be

moved from one local tree to another. Also, the body may remain in the same processor

but move into a new tree node. If there is no body in the leaf then the leaf has to be deleted.

If the body joins a leaf with already L bodies inside, it must be divided until no more than

L bodies are in any new leaf.

2.1.5 Accessing Locally Essential Non Local Data

The ORB has a recursive structure, consisting of log2P levels and P � 1 spatial bisectors

to divide data into P partitions. For each processor a top-down BH-tree traversal collects

the data that is needed for calculating accelerations for the bodies it owns. This is referred
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to as locally essential data, some of which might be owned by other processors. This

data can be acquired in two ways. In the �rst method, a processors sends a request for

data to the owning processor. The owners of data then ful�ll the request by sending the

requested data. This can either be demand driven, that is, essential data is requested on

a need basis during force computation, or a communication phase before the start of force

calculations can accumulate all the essential data. This scheme has the advantage that data

partitioning schemes that preserve locality, but result in uneven boundaries, can be used.

The disadvantages are that the overheads of �ne-grained communications are high, which

have been addressed by using multi-threaded tree traversals at the expense of considerable

complexity [WS93].

The second method uses a one way message transfer by doing away with requests for

data. Each processor exploits the ORB partitioning information, to calculate the processors

which require its local data as essential data. A sender-directed communication mechanism

is used in which every processor identi�es its own exportable data, and then exchanges that

data with a processor in the complimentary partition on the other side of the bisector. After

log2P exchanges every processor is in possession of its locally essential tree.

2.1.6 Tree Traversal

Tree traversals are needed in the force calculation phase. By calculating forces on bodies

in groups the cost of tree traversal can be amortized over several bodies. The key point

here being, nearby bodies on a node will see similar tree structures and will traverse similar

paths [Bar90]. A multipole acceptability criteria (MAC) is used to approximate the far-�eld

forces. This determines the depth of the tree traversals for each body or a group of bodies,

if that is the case. An additional MAC is the evaluation of the force at any point in a

processor's domain. This can be controlled by the distance from the edge of the cell to

the boundary of the rectangular domain. The positions of the bodies can be updated by

traversing the locally essential trees. Nodes which do not have global information can safely

be skipped since that cannot be essential data. There is no communication required in this

phase. By calculating accelerations on groups of bodies the vector units in machines can

be utilized e�ectively. There is a reduction in time spent in traversing the tree although

the number of calculations increase [Bar90]. A further reduction in tree traversal can be

obtained by caching essential nodes. The key observation is that the set of essential nodes

for two distinct groups close together in space are likely to have many elements in common,

so the cache can be utilized e�ectively.

A walk-list of cell nodes is maintained, which on the �rst pass contains only the root

cell. Each daughter cell of the input walk list nodes is tested against the MAC. If it passes

then the corresponding cell data is placed on the interaction list. If a daughter cell fails

the MAC, it is placed on the output walk list. After the entire input list is processed the

output walk list is copied to the walk list and the process iterates. The process continues

till there are nodes in the walk list. After this the calculations in the interaction list are

processed.

The advantage of this new method is o�set by losing the advantage of sender-directed

communication. It is di�cult for the BH node to compute the set of processors where its

data is essential. This is due to the processor domains having complicated shapes because
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For each processor DO in parallel:

Step 1. Build local BH-trees.

For every time step do:

Step 2. Construct the global BH-tree representation

Step 2a. Adjust node levels

Step 2b. Compute partial node values on local trees

Step 2c. Combine partial node values at owning processors

Step 3. Owners send essential data to other processors

Step 4. Calculate accelerations on owned bodies

Step 5. Update velocities and positions of bodies

Step 6. Update local BH-trees incrementally

If workload is not balanced

Step 7. update the ORB incrementally

Figure 2.6: A generic implementation of the N-body algorithm using incremental data

structures

partitioning is now done according to the bodies position in the BH-tree. Also, the force

computation stage is slowed down by �ne-grained communication. The startup cost for a

large number of small sized messages is high on current architectures. This is overcome by

using multiple threads to pipeline tree traversals and to update accelerations. If a body does

not obtain an essential node in its local tree it initiates the communication to get the data

and continues with the tree traversal on some other part of the BH-tree. The communication

throughput is increased by packing requests/data to/from the same processor into longer

messages, at the expense of added complexity in code.

The MAC used above is di�cult to calculate because the parallel algorithm requires iden-

ti�cation of locally essential data before the tree traversal begins. With a data-dependent

MAC it is di�cult to determine before hand which non-local cells are required before the

traversal begins. A di�erent approach that does not require building the locally essential

trees was proposed by Salmon [WS93]. It provides a mechanism to retrieve non-local data

as it is needed during the tree traversal. Calculating accelerations is the most time consum-

ing step. Building locally essential trees lets each processor obtain the data it requires for

calculating accelerations on the bodies owned by the processor.

2.1.7 Summary

We summarize the phases of computation and communication for N-body simulations and

global operations and collective communication requirements that are needed on a dis-

tributed memory MIMD machine.
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� Data partitioning: Data partitioning can be done using k-d trees or using orthogonal

recursive bisection. This ensures regular spatial boundaries which can be used for

incremental tree updates. However, ORB is not so good in preserving spatial local-

ity. The k-d tree results in some spatial locality. A space �lling approach, like the

Morton ordering or the Peano-Hilbert ordering provides good data locality properties.

They lead to uneven processor boundaries and incremental aspects become hard to

implement.

� Tree construction: A l-d tree or an octree is employed to apply the multipole ap-

proximations for force calculations. A globally consistent tree is maintained by each

processor for the bodies it owns, and pointers to locate bodies that are owned by

other processors. A many-to-many communication phase is needed to make this tree

structurally consistent.

� Incremental tree updates: As the simulation proceeds and the new positions of bodies

are evaluated, the partitioning and the BH-tree need to be updated to re
ect the

changes. This may involve movement of bodies across processor boundaries. In one

case a tree needs delete a body and in the other an insert operation is needed. The BH-

tree needs to be kept balanced for e�cient tree traversals. The ORB tree partitions

also need to be adjusted incrementally, otherwise the ORB tree would need to be

constructed from scratch at every iteration.

� Gathering essential data: As the BH-tree is traversed top-down, bodies in some nodes

are not available in the local memory. If such a case arises, the body data needs to be

fetched from the appropriate processor, information of which is available at the node.

This can either be done during the force calculation phase or in a pre-fetching phase,

where all data is gathered beforehand and plugged appropriately in the local BH-tree.

However, if the MAC is data-dependent, as in the case of [WS93], then essential data

cannot be ascertained before force calculations begin. This phase requires several

many-to-many communication steps.

� Tree walking: A node is opened if it fails the MAC criteria. Then each of the daughter

cells is traversed recursively. This process starts from the root of the tree. It is

interrupted when a node is reached which does not have data in local memory, but

has indirection indices to data in other processors. Multiple threads have been used

to overlap tree walking with communication delays [WS93].

� Load balancing: This issue can be addressed by adjusting the partitioners incremen-

tally. Otherwise, the data partition tree needs to be constructed from scratch at every

iteration. Some amount of load-imbalance can be tolerated depending on the cost of

such an operation. Space �lling curves can be remapped to maintain load balance.

� Queries: Region queries asking for points in a region speci�ed by low and high coordi-

nates in all dimensions ([x1; x2]�[y1; y2]�[z1; z2] in 3D) are needed to �nd particles for
interaction. Locally essential data can be gathered on a processor with an appropriate

query.
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2.2 Molecular Dynamics

Molecular Dynamics is a widely used technique for the studying liquids, solids, complex

molecular systems in Chemistry, Biology, Statistical Physics and Materials Science. Molec-

ular Dynamics simulates the local and global motion of atoms, molecules or some larger

unit, by integrating Newtonian equations for a system of N particles. It is a computation-

ally intensive problem and parallel computers have been used to simulate larger and more

realistic systems.

Let us consider a system with N particles represented by a collection of positions and ve-

locities ~x1; ~x2; :::; ~xN and ~v1; ~v2; :::; ~vN respectively. Let rij be the distance between particle

i and particle j. The total energy of the system is given by E =
P

i

P
j U(rij), where U(rij)

denotes the inter-particle potential between particles i and j. Lennard-Jones potential is

the most widely used potential in modeling liquid behavior, and is given by the equation

U(rij) = 4�[( �
rij
)12 � ( �

rij
)6],

where � is the length at which the potential crosses zero and � de�nes the energy

scale. A cuto� distance rc can be de�ned beyond which the potential is very small and

can be taken to be e�ectively zero. The force is given by the gradient of the potential,
~Fij = �rU(rij) and Fij = �Fji. From the forces the acceleration is calculated by using the

equation ~aij =
Fij
m ~rij . By integrating the equations of motion , the new set of coordinates

and velocities can be found for time t + �t from the values at time t.

The computational tasks in molecular dynamics are to �nd the interacting neighbors of

a particle (particles at a distance � rc), compute the forces and integrate the equations of

motion and this cycle continues for the period of the simulation.

In a system of N particles, each particle interacts with 4
3
�rc

3� particles, where rc is

the cuto� distance and � is the average particle density. For each particle, a search for

neighbors within a distance of rc is done which takes O(N2) time. A widely used technique

is to divide the space into cells or rectangular domains and search for interacting particles

in the neighboring cells. this reduces the complexity of neighbor searching to O(N), which

can further be reduced by constructing Verlet neighbor tables and using the neighborhood

information over several iterations. The use of cell method also reduces the complexity of

constructing the Verlet neighbor table from O(N2) to O(N). For a rapidly decaying poten-

tial, like the Lennard-Jones, the interactions greater than a distance rc do not contribute

and can be ignored. This reduces the search such that for a particle i the search would

be done in the neighborhood @i = j j jri � rjj < rc. The physical domain is divided into

rectangular domains, called cells, of size � rc so that the search can be restricted to the

neighboring cells. Figure 2.7 describes the molecular dynamics algorithm.

N-body methods have been applied to molecular dynamics by using a hierarchical spatial

octree to represent data. A list of interacting neighbors is maintained for each particle. This

method is called the Verlet neighbor table method and a list of interacting pairs for which

the interaction forces have to be computed is used to save computation. The overhead of

constructing the table is signi�cant and should be amortized by making use of the table

foe several time steps. The table can be reused if no pair of particles originally apart at a

distance rs comes closer than rc, where rs = rc + �s, �s being a safety distance. The table

can be constructed by using a \cell" method in O(N) time for N particles.
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n update := Counter for updating verlet tables.

Step 1. Initialize particles and geometry.

For each processor DO in parallel:

for iter = 1 to max iter

Step 2. If (iter % n update == 0) Build Verlet tables.

Step 3. (Communication) Send and receive neighboring particles.

Step 4. (Force Computation) Compute forces between particles.

Step 5. (Integration) Integrate equations of motions to obtain new positions and

velocities of particles.

Figure 2.7: Molecular dynamics algorithm

2.2.1 Parallelization on distributed memory machines

CHARMM [BH92] is a programwhich calculates empirical energy functions to model macro-

molecular systems. Data decomposition and force decomposition methods are employed

for parallelization of CHARMM, a molecular dynamics software, on MIMD machines in

[HDS92]. Table 2.2 summarizes the di�erent parallelization approaches to molecular dy-

namics.

Approach Target Architecture Description

SPasM (1994)(Los Alamos) TMC CM-5/Cray T3D Parallel Cell Method

Parallel Verlet Table (1994) TMC CM-5 Builds and uses Verlet neighbor tables for particles

(Boston Univ. and TMC) in the neighborhood.

Hwang, Das and Saltz (1993) MIMD DMPCs Data parallel implementation of CHARMM using a library of

(Univ. of Maryland) irregular communication runtime primitives using both data

decomposition and force decomposition.

Plimpton (1995) MIMD DMPCs Atom decomposition, force decomposition and spatial

(Sandia Labs) decomposition for short range molecular dynamics.

Table 2.2: Di�erent approaches for parallel molecular dynamics

A regular force decomposition algorithm partitions atoms evenly over processors. How-

ever, the non-bonded interaction list is distributed unevenly and results in severe load

imbalance. The nature of force interactions is irregular and hence any parallelization needs

to take that in account. A hierarchical nature is embedded in the way force computations

are performed. Bonded interactions occur only between atoms in close proximity to each

other and non-bonded interactions are excluded beyond a certain cuto� range. To preserve

locality and reduce communication it is reasonable to assign atoms that are close to each

other on the same processor. A k-d tree can be constructed to distribute the atoms to pro-

cessors to maintain spatial locality. The amount of computation associated with an atom
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depends on the number of atoms with which it interacts.

A parallel cell method and a parallel verlet neighbor table method is described in [ea95].

In these implementations, processors must synchronize after the completion of the dis-

tributed force calculation before any processor can begin the update of the particle coordi-

nates. This requiresthe loads to be uniformly balanced to reduce processor idle-time. Force

calculations can proceed without synchronization on a MIMD platform. For calculating

forces, each pair of interacting particles must have their mutual force calculated by bring-

ing together the particles on a single CPU. This is similar to building the locally-essential

trees in the N-body methods. Each processor is mapped a rectangular volume of space

using either a k-d tree or an ORB tree. Particles in the cells of this region are allocated

to processors. Each particle is owned by some processor, which is responsible for its force

calculations. The particles at the boundary region of the processor may be needed by the

neighboring processors. An extended space can be de�ned for each processor (as shown in

Figure 2.8). Once the neighbor table is constructed for an iteration, a time step consists of

a communication step, a force computation step and an integration of the equations of mo-

tion. The communication step is for the particles at the node boundaries to be sent to the

neighboring processors. Another communication step is needed for updating the neighbor

table to re
ect the movement of particles.

Extended Volume

Cell range

cutoff

Cell -Processor Layout

Figure 2.8: Cell processor layout showing the extended volume for particle interactions

2.2.2 Summary

The issues in parallelization of this application for our framework of hierarchical applications

are summarized in this section.

� Data Partitioning: Equal work should be allocated to all processors. The measure

of work is the number of interactions by all the particles on a processor. Particles

or cells can be mapped to processors. The amount of work per cell is distribution

dependent and hence data partitioning is an important issue to maintain load balance.

A balanced k-d tree constructed on the atoms leads to a balanced partitioning. This

structure needs to be maintained in parallel as atoms change positions due to forces

acting on them.
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� Tree construction: A k-d tree can be constructed by using orthogonal recursive bisec-

tion, which can be traversed to calculate forces on the atoms allocated to a processor.

Particles are spatially distributed and we need to create the neighbor interaction list,

which can be done by tree traversals. Since the interactions are limited to neighbor-

ing cells, the tree traversals will be localized in a region, to access parent and sibling

nodes.

� Incremental Updates: The neighbor table needs to be updated as particles change

position as the simulation progresses. Particles are deleted from and inserted into the

appropriate partitions. Doing this incrementally is more e�cient than constructing

the neighbor list from scratch.

� Queries: The queries are of the type where a neighbor list for all particles at a distance

rc need to be identi�ed. These queries are spherical and can be approximated by

using a rectangular range query, leading to some duplicated e�ort. Communication

is generated to acquire the appropriate data, which might have a irregular pattern.

Collective communication can be utilized to optimize data access requests.

2.3 Volume Rendering

Volume rendering is a technique to visualize three dimensional volume data by projecting

it onto a two dimensional plane. It is used in diverse �elds like medical imaging, modeling

physical phenomenon and molecular structures. Most of these require generating multiple

views of the volumes at di�erent orientations from the viewer. Due to requirements for it to

perform in real-time, parallel algorithms have been proposed and implemented to accelerate

volume rendering.

Volume is visualized by sampled scalar or vector �elds of three spatial dimensions with-

out �tting geometric primitives to the data. Images are generated by computing 2-D pro-

jections of volume, where the color and opacity at each point (called a volume element or

voxel) are derived from data using some local operators. Since all voxels participate in the

generation of each image, rendering time grows linearly with the size of the data set. The

principal advantages of these techniques over others are their superior image quality and

the ability to generate images without explicitly de�ning surface geometry. This gives the

images a degree of visual realism.

Rays are cast from every pixel in the image plane into the volume and the data is

resampled at regular intervals along each ray. At each sample point, the eight data values

are trilinearly interpolated to provide a value and gradient that corresponds to the sample's

location. Interpolation is necessary since the volume slice samplings may not coincide with

the point the ray is driven through. This value is then classi�ed to give equivalent color and

opacity values. The color is shaded by calculating the dot product of the local gradient with

each light source which is composited to the ray. Data volumes with contiguous subregions

of voxels classi�ed as having zero opacity values do not contribute to the �nal image and

their resampling is unnecessary.

The algorithm described in [Lev88] assumes a scalar-valued array forming a cube that

is N voxels on a side. Voxels are indexed by a vector i = (i; j; k) where i; j; k = 1; :::; N ,
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and the value of voxel i is denoted by f(i). Using local operators, a scalar or vector color

C(i) and an opacity �(i) are derived for each voxel. Parallel rays are then traced into the

data from an observer position. It is assumed that the image is a square measuring P

pixels on a side and that one ray is cast per pixel. Pixels, and hence, rays are indexed

by a vector u = (u; v) where u; v = 1; :::; P . For each ray, a vector of colors and opacities

is computed by resampling the data at W evenly spaced locations along the ray and by

trilinearly interpolating from the colors and opacities in the eight voxels surrounding each

sample location. Samples are indexed by a vector U = (u; v; w) where (u; v) identi�es the

ray and w = 1; :::;W corresponds to the distance along the ray with w = 1 being closest

to the eye. The color and opacity of sample U are denoted C(U) and �(U), respectively.

Finally, a fully opaque background is draped behind the dataset, and the resampled colors

and opacities are composited with each other and with the background to yield a color

for the ray. This color is denoted by C(u). Working front to back color and opacity are

composited at each sample location under the ray. Speci�cally, the color Cout(u;U) and

opacity �out(u;U) of ray u after processing sample U are related to the color Cz(u;U) and

opacity �in(u;U) of the ray before processing the sample and color C(U) and opacity �(U)

of the sample by the transparency formula

Cout(u;U)�out(u;U) = Cin(u;U)�in(u;U) + C(U)�(U)(1� �in(u;U))

and

�out(u;U) = �in(u;U) + �(U)(1� �in(u;U))

Many datasets contain coherent regions of empty voxels. A voxel is de�ned as empty

if its opacity is zero. These do not change the opacity of the ray and need not be ren-

dered. An optimization to improve performance is to ignore empty voxels while rendering.

Methods for encoding coherence in volume data include octree hierarchical spatial enumer-

ation, polygonal representation of bounding surfaces and octree representation of bounding

surfaces. The second optimization is based on the observation that, once a ray has struck

an opaque object or has progressed a su�cient distance through a semitransparent object,

opacity accumulates to a level where the color of the ray stabilizes and ray tracing can be

terminated. Adaptive termination is implemented by stopping each ray when its opacity

reaches a user-selected threshold level.

In this section we will concentrate on methods that use hierarchical spatial enumeration.

An octree is used to represent voxel data which helps in skipping empty regions of the data

set by appropriate tree traversals[Lev90a]. For a dataset measuring N voxels on a side where

N = 2M +1 for some integer M , the hierarchical spatial enumeration can be represented by

a pyramid ofM+1 binary volumes. Volumes in this pyramid are indexed by a level number

m where m = 0; ::::;M , and the volume at level m is denoted by Vm. Volume V0 measures

N � 1 cells to a side, volume V1 measures (N � 1)=2 cells on a side, and so on upto volume

Vm which is a single cell. Cells are indexed by a level number m and a vector i = (i,j,k)

where i; j; k = 1; ::::; N � 1, and the value contained in cell i on level m is denoted Vm(i).

The ray-tracing, resampling and compositing steps now use this pyramidal data structure.

For each ray, the point where the ray enters the single cell at the top level is calculated.

The pyramid is then traversed in the following manner: After entering a cell, its value is

tested. If it contains a zero, we advance along the ray to the next cell on the same level.

If the parent of the new cell di�ers from the parent of the old cell, we move up to the

parent of the new cell. This is done since if the parent of the new cell is unoccupied we can
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Figure 2.9: Overview of volume-rendering algorithm

advance the ray further on the next iteration than if we had remained at the lower level. If,

however, the cell being tested contains a one, we move down one level, entering whichever

cell encloses our current location. At the lowest level, samples are drawn at evenly spaced

locations along that portion of the ray falling within the cell, resample the data at these

sample locations, and composite the resulting color and opacity into the color an opacity of

the ray.

Adaptive termination of ray tracing is done by quickly identifying the last sample loca-

tion along a ray that signi�cantly changes the color of the ray i.e if Cout(u;U)�Cin(u;U) >

�, for some small � > 0. Since �in(u;U) increases monotonically along the ray, no signi�cant

color change occurs beyond the point where �out(u;U) �rst exceeds 1� �. Higher value of

� reduce rendering time, while lower values reduce image artifacts.

An algorithm in which image quality is adaptively re�ned over time is presented in

[Lev90b]. An initial image is generated by casting a uniform but sparse grid of rays into

the volume data, less than one ray per pixel, and interpolating between resulting colors

and resampling at the display resolution. Subsequent images are generated by alternately

casting more rays and interpolating. Rays are distributed according to measures of local

image complexity. Recursive subdivision based on color di�erences is used to concentrate

these rays in regions of high image complexity, and recursive bi-linear interpolation is used

to form images from the resulting non-uniform array of colors.

Figure 2.11 shows in two dimensions how a typical ray might traverse a hierarchical

enumeration. The level-zero cell corresponding to each nonempty voxel is denoted by a

shaded box. The largest empty cell enclosing each empty voxel is denoted by an unshaded

box. The sequence of points where the ray enters the next cell at the same level is denoted

by circular dots. In regions containing many nonempty level-zero cells, the spacing between

these dots is close to the spacing between voxels. These points are not evenly spaced on

the ray. If the data is resampled at nonuniformly spaced points, a noise component may

be added to the resulting image. To avoid this, a set of evenly spaced sample locations is

superimposed, shown as dividing lines in Figure 2.11, and limit to resampling the data at
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these locations.

Recently a shear-warped algorithm has been reported in [LL94]. It is currently acknowl-

edged to be the fastest sequential volume rendering algorithm. It is a modi�cation of the

object space technique discussed above. Considering a N �N pixel viewing plane and an

N�N�N voxel dataset, we observe that �(N2) rays are driven through the N slices of the

volume (the volume is N slices of N �N voxels). A total of N3 interpolations and k �N3

resampling weights are computed for each iteration, where k is the number of weights that

need to be computed for each iteration. Shear-warp method reduces the resampling cal-

culations to N , by shearing the volume such that each ray can be assumed perpendicular

to the slices. Each slice can then be translated and resampled using weights which are

invariant across the slices. However, this generates an intermediate image which then needs

to be warped to produce the �nal image. For each pixel in the �nal image, the four nearest

neighbors in the intermediate image are located and the �nal value of the pixel is inter-

polated from the color value of these neighbors. This requires �(N2) computation. Using

early ray termination, skipping runs of transparent voxels by using run-length encodings,

this technique has been improved further.

Level 0

containing 4 X 4 X 4 cells

Voxel(5,5,5)

Voxel(1,1,1)Cell (1,1,1)

on level 0

Cell i = (i,j,k)

level m

mhaving value V   (i)

Level 2 
containing 1 cell 

Figure 2.10: Hierarchical enumeration of object space for N = 5

2.3.1 Parallelization on Shared Memory Machines

An implementation of ray traced parallel volume rendering using the single address space

distributed memory has been done on the Stanford DASH [NL92]. The data volume is

partitioned and distributed to the local memories of the multiprocessor nodes. The image

space is statically divided and allocated in equal areas to the processors. Rays are cast

by each processor from the subimages that they are responsible for. Voxels required at

the resampling points along each ray are accessed directly if available in local memory, or

are fetched from the remote nodes where they reside. Dynamic load balancing is realized

by allowing idle processors to grab images from others that still have work to do. The

algorithm uses an octree representation, adaptive image sampling and early ray termination
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Figure 2.11: Ray tracing of hierarchical enumeration

as optimizations. The performance of the algorithm depends on data coherence. Adjacent

rays traversing through the same volume will tend to access the same voxel. Communication

overheads will diminish at each processor if this fact is utilized in the algorithm. Though

good cache performance is realized in [NL92], no analysis is presented for expecting such

behavior. We do not discuss other e�orts on shared memory machines, since our primary

focus is on distributed memory machines.

2.3.2 Parallelization on Distributed Memory Machines

Parallel data distributed volume rendering was �rst done on an NCUBE by Montani et al.,

dividing the volume in slices along one dimension of the volume and using a static load

balancing scheme to redistribute the data among processors [MPS92]. Processing nodes are

organized as clusters and the image space is partitioned as to assign a subset of pixels to

each cluster. A hybrid strategy to ray tracing parallelization is applied, using ray-data
ow

within an image partitioning approach.

A ray tracing volume renderer that samples data volumes decomposed and distributed

over the local memories of the parallel nodes is implemented by Karia [Kar89]. Every

node renders and creates a partial image of the projection of each of the subvolumes it

holds. Subsequently, all nodes communicate and composite their partial images in a divide

and conquer way to generate the �nal image. The rendering stage, which requires the

bulk of the computation, does not require any communication. Communication is only

required in the �nal compositing stage. Prior to rendering every processor classi�es the data

stored locally by mapping each voxel's value to its respective color and opacity. After data

distribution, certain processors may hold subvolumes that are empty, and avoid rendering

them altogether. This creates an imbalance among the nodes in the amount of useful

rendering being done for the volume.

Green and Paddon [GP90] have discussed methods of exploiting coherence of references
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to entries in the object space which use a combination of dynamic and static caching tech-

niques. A frequency distribution of object usage is determined by measuring the frequency

of reference of objects while processing di�erent rays. They have advocated the use of a

software cache on a processor to exploit the locality of reference that arises from consecutive

memory references to similar addresses in main memory.

The colors and opacities computed at each sampling point along a ray are composited

using the over operator. For any two sample points Si and Sj , whose colors and opacities

are respectively [ci; �i] and [cj ; �j], their composition using the over operator is de�ned as

Si over Sj = Si + (1� �i)Sj
The over operator is associative [MPHK93]. Hence, its application to any sequence of

samples Si:::Sn may be grouped arbitrarily as follows

(S1 over S2:::Si)

over (Si+1 over Si+2:::Sj)

over ...

over (Sk+1 over Sk+2:::Sn)

Table 2.3 summarizes the various approaches that have been reported in the literature

for volume rendering on distributed memory machines.

Approach Target Architecture Description

Montani et al. (1992) nCUBE Hybrid image partitioning - ray data
ow approach. Processing nodes

organized as a set of clusters. Image space is partitioned,

Volume data is replicated on each cluster. Static load balancing is used

for distributing data.

Nieh (1992) Stanford DASH Data interleaved among processor memories. Image partitioned into

contiguous blocks for assignment to processors. Task Stealing is used for

dynamic load balancing.

Schr�oder & Stoll (1992) CM-2 Data parallel SIMD implementation, rays proceed in lock step

Vezina et al. (1992) MP-1 Also SIMD with volume transposition to localize data access

Ma, Painter et al. (1993) CM-5 Static input data partitioning into subvolumes using a k-D tree

Processing nodes perform local raytracing of their subvolume concurrently.

Karia (1994) Fujitsu AP1000 Data is decomposed into subvolumes and rendered locally on each processor

Scattered decomposition is used for load balancing.

Table 2.3: Di�erent approaches on parallel volume rendering

2.3.3 Data Partitioning and Coherence Issues

Parallelization strategies for volume rendering have two goals. Each processor needs to

be assigned equal load and any mapping of data to processors needs to maintain locality.

The former helps to reduce processor idle time and the latter helps in keeping overheads of

communication low. These are referred to as load balancing and maintaining data locality,

two often con
icting goals. We discuss each of these to motivate the approach we have

taken to analyze requirements for each of the two goals.
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Strategies used for data partitioning are classi�ed as follows.

Image Space Partitioning The pixels of an image are distributed across processors.

Each processor traces rays for the pixels assigned to it. The volume data is replicated

on each processor. Portions of the image from each processor are then combined to

yield the �nal images. This method achieves near linear speedup but is not feasible if

the object data set is larger than the available memory on each node.

Object Space Partitioning The volume data is partitioned and distributed among pro-

cessors. Each processor traces each ray in the local partition only. Each non-resolved

ray is transmitted to the next processor for further tracing. Once each ray has �nished,

the �nal composited values are collected to form the �nal image.

Object Data
ow A partition of the image is assigned to each processor, which locally

traces and resolves each assigned ray. Volume data is partitioned among nodes too.

Non-resolved rays will be sent to appropriate processors for tracing and the \owner"

of the ray will get the �nished result back.

Image/Object Partitioning The volume data is partitioned among processors. The im-

age data is also partitioned among processors. Each processor is responsible to trace

rays from pixels assigned to it. Pixels may be traced in the local volume data that is

in the processors memory or it might fetch data that it needs from other processors.

Communication costs are typically higher than computation costs on most real machines.

To keep communication costs down, various forms of data locality need to be exploited.

There are three kinds of coherence in images which we discuss next.

Image Coherence Image coherence is the property that adjacent pixels of an image are

illuminated in a similar way. Portions of the image are similar in nearby areas, and

this fact can be exploited when allocating pixels to processors. Nearby pixels go to

same processors. This coherence exists in two dimensions. Exploiting this property for

load balancing is not as straight forward. In an irregular image, where some portions

are bright and some are dark, the work done in compositing a ray can vary a lot. Any

load distribution strategy should take that into account.

Object Coherence Adjacent rays will travel similar portions of the object. This is the

essential idea of object coherence. In hierarchical volume representations, ray in-

tersections with the octree can be optimized for adjacent rays (explained in a later

section). This helps in reducing communication costs for essential volume data on

processors for ray tracing by allowing reuse of o�processor data. The data can be

incrementally modi�ed as the previous data can usually be reused. Another kind of

coherence is available as the rays traverse the slices of the volume. The volume data

gradually changes as the ray traverses through each slice. From one slice to another

slice coherence is present as seen in Figure 2.12.

Frame Coherence Consecutive frames in a multiframe sequence are quite similar. Figure

2.12 shows frame coherence for the brain dataset. This fact is used in the dynamic

load balancing strategy that we have proposed in [GR95]. Workload information from

previous frame can be used to predict the load characteristics of the current frame.
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Figure 2.12: Frame 1: Ray work pro�le for brainsmall and Frame 2 at a 5o rotation - Each

pixel shows the computation work of a scanline. Scanlines for a slice progress from left to

right on the horizontal axis. Slices of a frame are top to bottom on the vertical axis.

Data partitioning for the image space needs to provide image coherence. By proceeding

scanline by scanline within a slice, scanline coherence is exploited. To preserve this, image

partitioning is done by dividing the scanlines to processors, keeping the load balanced. A

record of the load on each processor is kept which is used to partition scanlines in the

next frame. The �rst frame is load-balanced by looking at the load of scanlines of each

slice on the processor. This strategy works well with a replicated object. For distributed

volume, data partitioning the image and the volume are complimentary. Allocation of rays

to processors needs to be guided by the volume data that is assigned to a processor. Two

dimensional locality needs to be exploited for maximum reuse of data on processors to keep

the communication costs low.

Each ray intersects the tree starting at the root. Tree traversal is done to �nd the

smallest cell with a uniform color (white or black) that the ray intersects in a slice. The

size of the cell determines the number of rays that are covered by this traversal. There is no

need for additional tree traversals for these rays for the slice. This is done for each scanline

in a slice. Rays in the scanline then pass through each slice accumulating opacities as they

traverse the volume.

2.3.4 Summary

In this section we present the requirements for maintaining hierarchical data structures for

volume rendering of multiple scenes of a 3D volume.

� Data Partitioning: Pixels from the resulting 2D view frame are distributed to pro-

cessors, such that the work on each processor is balanced. This cannot be ensured

by allocating equal number of pixels, since pixels have di�erent work associated with
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Figure 2.13: Ray intersections with volume (a) Viewing plane is aligned with the XY plane
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them. A measure of work of rays being traced through pixels is maintained to esti-

mate the workload on a processor. Work is represented by resampling, translation,

tree traversal and compositing for the ray �red through a pixel. Scanline coherence

can be preserved by allocating contiguous rows of scanlines to processors. The num-

ber of scanlines per processor would be data dependent and can either be adjusted

between slices or between frames. See [GR95] for details.

� Tree Construction: The object data is represented by an octree. In parallel imple-

mentations, a distributed tree needs to be maintained to distribute data across the

available processors, considering that each processor has memory only addressable by

it. A k-d tree can be maintained to organize spatial volume data into partitions. A

local tree can be built from the data a processor owns.

� Locally essential data: Each processor �res rays into the volume through the pixels

it owns. Since the volume data is distributed, rays might need to fetch o�processor

volume data for compositing calculations. It can be determined by each processor

independently which processor requires the data it owns, depending on the orientation

of the view plane. A sender-oriented protocol can be used to supply each processor

with the data it needs for intersection and compositing calculations.

� Incremental updates: For rendering multiple sequences, with a change in the viewing

angle, the rays �red from the pixels of each processor will intersect di�erent parts of

the volume data. Owing to object coherence and small angle changes in contiguous

frames, most of the o�processor data can be reused. The tree can be incrementally

modi�ed for each frame, instead of fetching all the data from scratch. Figure 2.13

shows the incremental data region when the view angle is changed by a small amount.

� Tree traversals: Intersection of rays with voxel data at the appropriate level by skip-

ping the empty regions is achieved by a traversing the tree from the top and �nding
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the cell node with a homogeneous color. Intersection calculations are done at the

highest level so that unncessary calculations can be saved.

� Queries: Region queries need to be supported to gather o�-processor voxels for com-

position of a portion of the volume through which the rays pass. Given a region in the

image space, a volume is returned, whose voxels are required for image composition.

2.4 Adaptive Meshes

Many large physical systems can be modeled and represented by partial di�erential equa-

tions. Multigrid methods have been used to �nd solutions to these equations. A continuous

domain can be discretized by overlaying a grid on top of it. The new discretized domain

is now de�ned by the grid points. The grid points de�ne a mesh. The characteristics of

the solution guide the structure of the starting grid. In many problems, portions of the

domain where high resolution is desired are localized. These allow the use of adaptive mesh

re�nement techniques, which allow a �ner solution in more interesting areas of the problem

domain and coarser solutions in areas of lesser interest. This can be considered as a mul-

tilevel method, where new levels are created by subdividing the mesh at the existing level.

Subdivision is adaptive and is controlled by an error estimate. The lower the error toler-

ance for a speci�c subdomain, the �ner is the mesh at a deeper level of the grid hierarchy.

Adaptive mesh re�nement can be considered as a hierarchical tree representation of grids

with each level, except the root, representing a uniform subdivision of the parent grid. The

root represents the starting mesh with the initial grid points.

The Berger-Oliger adaptive mesh re�nement scheme [BO84] is popularly accepted for

the formulation of adaptive �nite di�erence (AFD) methods. An adaptive grid hierarchy

can be represented as a directed acyclic graph (DAG), where each node of the graph repre-

sents a component grid. The root corresponds to the base grid and the levels of the DAG

correspond to the re�nement in the grid hierarchy, nodes at the same level comprising of the

component grids at the same level of re�nement. A node can be denoted as Gl
n, 0 � l < L,

L being the lowest level in the hierarchy, and 0 � n < 2l. The adaptive grid hierarchy is

shown in Figure 2.14. The grid spacing at a level l is an integral multiple of the grid spacing

at level l + 1. Also, component grids at the same level must be locally uniform with space

and time resolutions. The AFD integration algorithm de�nes the order of operations on the

grid hierarchies and is composed of the time integration, error estimation and regridding

and inter-grid operations components. All component grids at a level l + 1 must be inte-

grated to the current time T before integration begins for level l at time T + �t. Regions

needing re�nement are 
agged based on the error estimate and a re�ned grid is generated

wherever the error estimate is greater than required. Inter-grid operations are needed for

the following:

� Initialization of the re�ned component grids by using the interior values of an inter-

secting component grid at same level or by prolongating values from the underlying

coarser component grid.

� Updating underlying coarse component grids using values on a nested �ner grid inte-

grated to the same time T . This can be done by using the same values (injection) or
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an appropriate interpolation.

� Averaging any overlapping component grids at any level to update the coarser com-

ponent grids underlying the overlap region.
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Figure 2.14: (a) Grid re�nement and (b) associated grid hierarchy

The hierarchical structure of adaptive mesh re�nement technique can be modeled as the

generic tree-structured computation we are addressing in this paper. Inter-grid operations

can be viewed as operations on tree nodes.

2.4.1 Parallelization on distributed memory machines

A parallel implementation of the adaptive mesh re�nement method will require operations

on the hierarchy of grids which include, creation of the grid, grid partitioning among proces-

sors, communication among grids at one level and communication between grids at di�erent

levels. This allows us to primarily exploit data-parallelism by partitioning the grids across

processors and task-parallelism expressed as independent updates to component grids and

integration across levels in the grid hierarchy. The re�nement at a particular level is not

known a priori and hence can di�er across the processors. This can lead to imbalance in

the amount of work allocated to each processor. Hence dynamic load balancing is needed

at runtime to distribute the work evenly among the processors.

A distributed DAG of grids has to be maintained across the processors. This is updated

when grids are re�ned at each level. Communication is generated for inter level grid updates

since every processor needs to keep a global view of the grid hierarchy. Prolongation de�ned

from a coarser grid to a nested �ner grid, and restrictions de�ned from a �ner grid to it's

parent grid, generate irregular communication of scatter/gather nature. Generally, a �ner

grid is distributed over a larger number of processors than a coarser grid, since the former

has more grid points and hence more work associated with it. Intra-grid interactions may

result in near-neighbor communication. This can be overlapped with computation if the

interior-to-boundary ratio is large. Communication patterns are random when component
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grids are clustered or during grid redistribution. The grid decomposition scheme is critical

to the e�ective parallelization of AFD methods. A composite distribution scheme can limit

the cost of irregular communication for inter-grid updates by mapping the overlapping grids

at di�erent levels to the same processor. Locality maintaining mappings like the space �lling

curves de�ne a mapping from a d-dimensional space to a linear ordering. Especially, Morton

ordering and Peano Hilbert ordering are useful in partitioning space to preserve locality.

Data partitioning can be performed by splitting the one-dimensional list appropriately.

Redistribution can also be done by readjusting the points of the split. Grid partitioning

among processors can be done in one of the following ways [PB95]:

� Individual grid partitioning: Each grid at every level is partitioned across processors.

This generates communication pattern in which many processors may communicate

with one processor generating a bottleneck. This happens when a �ne grid needs

to update its underlying coarse grid. Moreover, inter-level parallelism is not expo-

lited since the grids at di�erent levels are allocated to the same processor and their

integration is sequential.

� Comprehensive partitioning: The work total across all the grids at all levels is dis-

tributed across processors. This distribution does not exploit the parallelism available

in the problem since it will leave some processors idle while performing update calcu-

lations.

� Independent level partitioning: Each level of the grid hierarchy is partitioned inde-

pendently. This scheme expolits the parallelism across grids at the same level, but

generates irregular communication that if not scheduled appropriately may cause a

bottleneck.

The fast adaptive composite grid method (FAC) [MQ89] is a multilevel scheme that

nominally uses global and local uniform grids for adaptive solution of partial di�erential

equations. It provides parallelism by producing several independent re�nement regions.

Asynchronous version of FAC (AFAC) allows for processing of the re�nement levels in

a parallel mode. Using multigrid as the individual grid solver, FAC has been applied

to a variety of 
uid 
ow problems, including incompressible Navier-Stokes equations, in

both two and three dimensions. The local grids add computational load irregularly to

processors. Load balancing is thus required to implement AFAC e�ciently on distributed

memory machines. The independence of the various re�nement levels in the AFAC process

allows the assignments of computational tasks to processors to be made level by level. This

simpli�es the load balancing, since the levels can be ordered in a list and the partition

of such a list is inherently one-dimensional. The relationship between the levels of the

composite grid is expressed in a tree of arbitrary branching factor at each vertex. Each grid

exists as a data structure at one node of this tree. The composite grid tree is replicated

in each node. In the case of a change to the composite grid (adding, deleting or moving

a grid), the change is communicated globally to all processors so that the representation

of the composite grid in each processor is consistent. Storage of the matrix values uses a

one-dimensional array of pointers to row values. These rows are allocated and deallocated

dynamically, allowing the partitioned matrices to be repartitioned without recopying the

entire matrix.
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Edelsohn [Ede93] has discussed the motivation of using the hierarchical approach for

adaptive subdivision of meshes.

2.4.2 Summary

� Data Partitioning: Space �lling curves can be used to partition the grid hierarchy

across the processors. By maintaining appropriate data structures, repartitioning

during load balancing can also be achieved.

� Tree Construction: Grid hierarchy represented as a distributed DAG is a hierarchical

representation with an arbitrary degree at each node. A distributed tree structure

with the appropriate �elds is constructed as the base grid.

� Incremental updates: The grid hierarchy is dynamic and hence needs to be updated

at each level. Indexing by code of the space �lling curve can be used to move data

appropriately.

� Tree traversals: Inter-grid and intra-grid updates need to go up or down in the grid

hierarchy. This can be modeled as tree traversals on the nodes which basically are

coarser or �ner grids at di�erent levels of the tree.

2.5 Databases

Applications that rely on spatial databases can be found in CAD, VLSI, robotics, Geograph-

ical information systems, Online Analytical Processing (OLAP) and a host of other areas.

Lately, the challenges have been posed because these databases have grown in size and spa-

tial representations to represent such data for compact storage and e�cient querying have

become issues. The use of hierarchical data structures in spatial databases enables focus

of computational resources to regions of interest in the data set. They are attractive due

to their compact representation and facilitate search and update operations. Spatial data

usually made of di�erent data types such as regions, points, lines, polygons and volumes

can be represented by hierarchical data structures. Some queries on these data structures

are described in a later chapter.

2.5.1 Spatial Indexing

Spatial occupancy methods, known as bucketing methods, decompose the space from which

data is drawn into regions called buckets. There are several methods to achieve bucketing.

One approach uses the minimum bounding rectangle to group objects into hierarchies and

then store them in another structure such as the B-tree. This is the R-tree method [Gut84].

The R-tree and its variants are designed to organize a collection of arbitrary spatial objects

(e.g. 2D rectangles) by representing them as d-dimensional rectangles. The objects are

represented by the smallest aligned rectangle representing them. Each node in the tree

corresponds to the smallest d-dimensional rectangle that encloses its son nodes. Leaf nodes

contain pointers to the actual objects in the database. A R-tree or a R+-tree of order

(m;M) has the property that each node in the tree, except the root, contains between
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m � dM
2
e and M entries. The root node has atleast two entries unless it is a leaf node.

Bounding rectangles corresponding to di�erent nodes may overlap. Also, an object may be

spatially contained in several nodes, yet it is associated with only one node. A spatial query

can visit several nodes to �nd the existence of an object.

Often the nodes correspond to disk pages and the parameters de�ning the tree can be

chosen to minimize the number of nodes visited during the spatial query.

The decomposition of space into disjoint cells can be achieved by constructing a R+-

tree. To determine the area covered by a particular object, all cells that it occupies need to

be retrieved. Deletion is also expensive, but it is not a very frequent operation. A related

drawback is that a query to determine all objects in a given region, retrieves many of the

objects more than once. Method such as the R+-tree and the cell tree have data-dependent

decompositions which is their drawback. In contrast, the uniform grid and the quad-tree

method are data-independent and also lead to disjoint decompositions.

The uniform grid is ideal for uniformly distributed data, while quad-tree based ap-

proaches are suited for arbitrarily distributed data. Both these structures are amenable

to set-theoretic operations, like composition, on data they represent. Quad-tree methods,

however, are sensitive to the placement of data with respect to the decomposition lines of

the space, which a�ects the storage costs and the amount of decomposition that takes place.

Region data can either be represented by its boundary or its interior. Using the interior

representation as an image array, there is an interest in reducing the image array by ag-

gregating similar pixels. A region quadtree is based on successive subdivision of the image

array into four equal-sized quadrants. If the given array does not contain entirely of 1s or

0s, it is subdivided into quadrants until homogeneous blocks are obtained. The root node

corresponds to the entire array. Each son represents a quadrant. Octrees can be used to

represent volume data similarly.

Rectangles are often used to approximate other objects in an image for which they

serve as the minimum rectilinear enclosing object. Bounding rectangles can be used in

cartographic applications to approximate objects like lakes, forests etc. The approximation

gives an idea of the object, and the exact object boundary is retrieved as a re�nement step.

Rectangles are also used in VLSI design rule checking as a model of chip components for

analysis of their proper placement. The size of the collection is quite large here and the

sizes of the rectangles are several orders of magnitude smaller than the space they are drawn

from.

There are several data structures that are used to represent spatial data. Their choice

depends on the nature of the data, whether it is point, line, polygon or region data, and the

queries that can be e�ciently answered on them. Table 2.4 summarizes the data structures

proposed for di�erent data types.

2.5.2 Parallelization

Performance of spatial operations in a data parallel environment using hierarchical data

structures has been described in [HS94]. The spatial operations require a signi�cant amount

of computation to make the use of parallelism attractive. Data structure creation, polygo-

nization and spatial joins are some of these. The algorithms presented are main memory

resident.
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Data Spatial data structure

1. Point PR quadtree, k-d tree

2. Line R-tree, R+-tree, R�-tree, PMR quadtree

3. Region Region quadtree

4. Rectangle R-tree, R+-tree, MX-CIF tree

Table 2.4: Hierarchical data structures for spatial data used in practice

Polygonization is the process of determining all closed polygons formed by a collection

of planar line segments. Spatial joins are quite common in databases. Two elements in

space are joined when the elements cover identical spaces. Data parallel algorithms using

PMR quadtree, R-tree and R+ tree are discussed in [HS94]. A data parallel PMR quadtree

for n line segments can be built in O(logn) time. A data parallel R-tree construction

operation takesO(log2) time, where each of the O(logn) subdivision stages requires O(logn)

computations, which include a constant number of scans along with two bounding box sorts.

Map intersection and a spatial range query �nd all lines in a map that are within a

distance d of any line in a second map. Polygonization is the process of determining all

closed polygons formed by a collection of planar line segments. A description of the data

parallel algorithms for the above is given in [HS94]. They report better performance of

these operations using PMR quadtrees when compared to R-trees or R+-trees. This is due

to the property of regular decomposition of space in the PMR quadtree which is not the

case for the other two. Spatial joins are e�ciently implemented without using a spatial

decomposition such as employed by the R-tree and the R+-tree. This implies that the use

of irregular and non-disjoint decompositions invoke a higher overhead when compared to

regular and disjoint decompositions.

Parallelization of data structures representing point data sets can be achieved by using

parallel algorithms for k-d tree construction and quadtree construction. Parallel algorithms

for k-d tree construction are presented in Chapter 4. Incremental aspects are not discussed

and will form part of our future work in this area.

2.5.3 Summary

The following attributes lead to our categorization of spatial databases in the class of

applications that need hierarchical data structures. These will bene�t from the run-time

support provided for hierarchical algorithms on parallel machines.

� Data Partitioning: The data to be represented is distributed among the processors

either using spatial proximity or in a round robin manner to maintain load balance.

The issues are the same as in other applications and are also guided by the queries

posed on these structures. If these issues are attached with large data sets and I/O us-

ing multiple disks, then for small queries, a small number of disks should be activated,

and for large queries a large number of disks should participate for good performance.
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� Tree Construction: E�cient algorithms for construction of trees for point, line, rect-

angle and region data are required on distributed memory parallel machines. These

data structures need to be maintained to make the implementation of queries e�cient.

In particular, k-d trees, quadtrees, PMR quadtrees, R-trees and its variants are some

of the applicable data structures.

� Queries: The raison d`etre for any database is to store data and answer queries posed

on it. The range of queries is wide and varied. Queries involving multiple parameters

are posed as queries on multidimensional data, where each parameter is seen as a

dimension. Temporal queries can be seen as queries with time as an extra dimension.

Range queries, nearest-neighbor queries, OnLine Analytical Processing (OLAP) uses

multidimensional data processing and has enjoyed spectacular growth in recent times.

Data organization on disk can be guided by spatial data structures and spatial indices

can be maintained for data access.

2.6 Hierarchical Radiosity

A more complex problem using hierarchical algorithms is that of calculating radiosity of

a scene in Computer Graphics. The radiosity of a surface is de�ned as the light energy

leaving the surface per unit area. Given a description of a scene the idea is to calculate

the radiosities of all surfaces resulting in the calculation of illumination of the scene. A

scene is a collection of large polygonal patches. These polygons are subdivided into small

enough elements that the radiosity of an element can be assumed to be uniform over its

surface. Any larger piece is termed as a patch, formed by combining elements or other

patches including the original polygon. The radiosity of an element i can be expressed

as a linear combination of all other elements j. The coe�cients in the linear combination

are the form factors between the elements. Form factor between element j and i (Fji) is

the fraction of light energy leaving element j arriving at i. This leads to a linear system

of equations which can be solved for the element radiosities once all the form factors are

known. Enforcing a energy balance at every element yields a system of equations of the

form :

Bi = Ei + �i
Pn

j=1 FijBj

where Bi is the radiosity, Ei is the emissivity, �i is the di�use re
ectance, Fij is the

form factor and n is the number of elements in the scene. This system of equations can

be e�ciently solved using iterative techniques like the Gauss-Siedel method. Its physical

implication is equivalent to each patch successively gathering light. The other alternative is

of shooting light from patches in order of their brightness. The most expensive part of the

calculation is computing form factors, given for two in�nitesimal elements by

Fij =
cos �i cos �j

�rij2
dAj

The angle �i(�j) relates to the normal vector of element i(or j) to the vector joining the

two elements.
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To take into account occlusion, di�erential form factors are accumulated only if the two

in�nitesimal elements are mutually visible. The form factor matrix is n � n, where n is

the number of elements. The order of form factor calculation is thus O(n2). Applying the

insights of the N-body problem that

1. Numerical calculations are subject to error, and therefore, the force acting on a particle

need only be calculated to within a given precision.

2. The force due to a cluster of particles at some distant point can be approximated

within a given precision, with a single term, reducing the total number of interactions.

the complexity is reduced to O(n+ k2), where k is the number of polygons.

The radiosity problem shares many similarities with the N-body problem. First there

are n(n � 1)=2 pairs of interactions in both. The magnitude of the form factor falls o� as

1=r2, same as the gravitational force.

The major di�erence between the two problems is the way the hierarchical data struc-

tures are formed. The N-body algorithm begins with n particles and clusters them in larger

and larger groups the hierarchical radiosity algorithm begins with a few large polygons and

subdivides them into smaller and smaller patches. Subdividing is based on the error of

a potential interaction which gives an automatic method for discretization of the scene.

The principle of superposition, that the potential due to cluster of particles is the sum of

the potentials of the individual particles, cannot be directly adopted because of occlusion.

Intervening opaque surfaces can block the transport of light between two other surfaces

which makes the system non-linear. Lastly, the N-body problem is based on a di�erential

equation , whereas the radiosity problem is based on an integral equation.

2.6.1 Sequential Algorithm

The input to the algorithm is a set of polygons depicting the scene. These are inserted into

a Binary Space Partitioning (BSP) tree [FAG83] to facilitate e�cient visibility computation

between pairs of patches. Every input polygon is initially given a list of other input polygons

that are potentially visible from it to enable it to compute interactions. The polygon

radiosities are computed by iterating over the steps shown in Figure 2.15.

The tree data structure used here is not a single tree but a forest of quadtrees represent-

ing individual polygons. Each polygon has its own quadtree, with the roots being leaves of

the BSP tree used for visibility testing. At every quadtree node visited in this traversal,

interactions of the patch at that node are computed with all other patches in its interaction

list. The interaction between two patches involves computing both the visibility and the

unoccluded form factor between them and multiplying the two to obtain the actual form

factor. Both of these quantities are computed approximately, introducing an error in the

computed form factor. An estimate of the error is also computed. If this is larger than

a user de�ned tolerance the patch with the larger area is subdivided to compute a more

accurate interaction. Children are created for the subdivided patch in its quadtree if they

do not already exist. If the patch being visited (say i) is subdivided, patch j is removed

from its interaction list and added to each of its children's interaction lists. If patch j is

subdivided, it is replaced by its children on patch i's interaction list. Patch i's interaction
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For every polygon quadtree

Step 1. Start at the root, computing the form factors due to all polygons on its

interaction list, subdividing it or other polygons hierarchically as necessary.

Step 2. Compute the radiosity of the polygon �rst by a downward traversal of the tree

followed by a upward sweep adding the radiosities.

Step 3. Continue till convergence is achieved.

Figure 2.15: Radiosity algorithm

list is completely processed in this manner before visiting its children in the tree traversal.

During this downward traversal, the radiosities gathered at the ancestors of patch i and at

patch i itself from other patches are accumulated and passed on to i's children. After the

traversal of a quadtree is completed, an upward pass is made through the tree to accumu-

late the area-weighted radiosities of a patch's descendants into its own radiosity. Thus the

radiosity of a patch is the sum of three quantities

1. Area-weighted radiosities of its descendants

2. The radiosity a patch gathers in its own interactions

3. The radiosity gathered by its ancestors

Parallelism is available at three stages. First, the polygons are independent of each

other and can be processed simultaneously. Second the visibility computation can proceed

in parallel. Third, the interactions computed for patches can be done in parallel. Singh

[Sin93] has discussed the parallel approaches on shared and distributed memory machines.

2.6.2 Parallel approaches on a shared memory machine

To exploit the parallelism across polygon-polygon interactions every processor needs to be

assigned an equal number of them. This can either be done statically or processes can

obtain interactions dynamically until none are left in the queue. It has been shown in

[Sin93] that the dynamic scheme works better than the static scheme. Apart from the

distance between two patches, the angle and visibility between them are also important

factors for interactions. Usual schemes that rely only on spatial distribution thus do not

su�ce. There are three primary forms of locality in the application.

1. A form of object locality can be obtained by having a processor work mostly on

interactions involving the same input polygon or its subpatches in every iteration.

2. Locality can be exploited across each patch by processing sibling patches consecutively,

using a breadth �rst traversal of the quadtree.

3. During visibility testing, using a depth �rst search, locality is exploited by ensuring

that the same subset of BSP-tree nodes is traversed by a processor in successive

visibility calculations
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Load balancing can be provided by allowing on the 
y task stealing. Each processor has

a queue of polygons on which the interaction have to be calculated. A processor can either

steal polygons from other processors and process them or steal patch-patch interactions.

The granularity of tasks is a patch and all its interactions in the �rst case and a single

patch-patch interaction in the second. If an interaction subdivides one of the patches and

thus spawns a new interaction it is placed at the end of the creating processor's queue.

2.6.3 Parallel approaches on a distributed memory machine

The local quadtrees approach lets each processor maintain local copies of all the quadtree

data that they need, modify the data locally as needed in an iteration and only communicate

the modi�cations to other interested processors at iteration boundaries. In the absence of

task stealing, the approach consists of phases of local computation punctuated by phases

of communication. Also, there is no complete logical version of the forest of quadtrees on

any one processor. Polygons are statically assigned to processors. The growing interactions

on processors might lead to load imbalance in the system. Allowing idle processors to steal

tasks from other processors can lead to load balancing.

In the global quadtrees approach a single copy of the forest of quadtrees is maintained

in distributed form over the processing nodes. Every processor holds the BSP tree and

the quadtrees assigned to it in its local memory and knows the locations of the rest of

the quadtrees through a global naming scheme. A processor can store non-local data it

references in a local cache. To maintain coherence caches can be 
ushed at iteration bound-

aries. Modi�cations to data are always communicated to the master copy. The main

disadvantages of this approach are that it requires �ne-grained communication that is not

phase-structured. It requires every reference to a quadtree datum to check whether the

datum is local, nonlocal but cached locally, or remote.

2.6.4 Summary

The complications to hierarchical radiosity arise from the dynamically changing quadtrees of

patches, since they are built as computation proceeds. These data structures are not read-

only but are actively read and written by di�erent processors in the same computational

phase during the calculation of the form factors. The following issues have to be addressed

for any viable implementation

1. Naming of patches on di�erent processors in a globally consistent manner to ease

access to data during form factoe calculations.

2. Local quadtree versus Global quadtree approach needs to be investigated for its com-

munication overhead. A level-by-level approach is proposed in this paper. Polygons

are distributed among the processors. Each processor processes upto k levels, for a

constant k, at which time the load at each processor is checked and if it falls below a

threshold, patch-patch interactions are transferred to it from processors having more

load.
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3. Task stealing has been advocated for load balancing which has not been implemented

e�ciently yet on a distributed memory machine. Coherency is complicated by move-

ment of patches between processors. We will investigate issues in handling messages

for data, control, coherence, synchronization and load balancing while performing

computation.

2.7 Image Compression

Applications using wavelet theory can use quadtree based decomposition for thier solution.

Binary data compression and image compression are areas where wavelet theory has been

widely applied. An approximation to the original image can be formed by using a wavelet

transform A discrete sequence x(n) of length N where n;N 2 Z is used to derive two

subsampled signals yh(n) and yg(n) corresponding to the low and high pass versions of the

original sequence x(n) respectively. Each of the signals is of length N=2. The signal yh(n)

is obtained by convolving the sequence x(n) with a low pass �lter h(n) and dropping every

other sample. Similarly yg(n) is obtained by using a high pass �lter g(n). The process of

decomposing the sequence x(n) into two subsequences at half resolution can be iterated on

either or both sequences. To achieve better frequency resolution at lower frequencies, the

scheme is commonly iterated on the lower band.

In the �rst stage of wavelet decomposition this scheme is applied to 2-D images by

applying the above scheme along the rows and then along the columns. The second stage

applies the same procedure for the low-pass band. To obtain further stages of wavelet

decomposition, the procedure can be applied to the low-pass band of the previous stage.

This generates a pyramidal representation of the input image. Figure 2.16 shows a subband

decomposition scheme that can be represented as a tree for computation.

Each wavelet picks up information about the image essentially at a given location and at

a given scale. For portions of an image that has more interesting features, more coe�cients

can be used and where the image is nice and smooth a fewer coe�cients can result in a good

quality approximation. Hence there is an adaptive nature to the subdivision of the image

form which makes image compression fall in the category of applications discussed so far.

The details of this method can be found in [JS94]. The Discrete Wavelet Transform (DWT)

was developed in �lter bank representations for subband coding for images and speech

signals. The work on Quadrature Mirror Filters (QMF) has beeen used to decompose and

reconstruct a signal.
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ĝ(n)
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Figure 2.16: A subband decomposition scheme to be used with the Discrete Wavelet Trans-

form.



Chapter 3

Parallel Selection Algorithms

Given a set of N elements, a total order de�ned on the elements, and a number k, the

selection problem is to �nd the kth smallest element in the given set of elements. The

problem has several applications in computer science and statistics. A special case of the

problem, often found useful, is to �nd the median of the given data. The median of N

elements is de�ned to be the element with rank dN
2
e.

Parallel selection algorithms are useful in such practical applications as dynamic distri-

bution of multidimensional data sets, parallel graph partitioning and parallel construction

of multidimensional binary search trees. Many parallel algorithms for selection have been

designed for the PRAM model and for various network models including trees, meshes,

hypercubes and recon�gurable architectures [BFMP93]. More recently, Bader et.al. [BJ95]

implement a parallel deterministic selection algorithm on several distributed memory ma-

chines. In this chapter, we consider and evaluate parallel selection algorithms for coarse-

grained distributed memory parallel computers.

3.1 Parallel Algorithms for Selection

Parallel algorithms for selection are iterative and work by reducing the number of elements

to be considered from iteration to iteration. The elements are distributed across processors

and each iteration is performed in parallel by all the processors. Let n be the number of

elements and p be the number of processors. To begin with, each processor is given dnp e
or bnpc elements. Let n

(j)
i be the number of elements in processor Pi at the beginning of

iteration j. let n(j) =
Pp�1

i=0 n
(j)
i . Let k(j) be the rank of the element we need to identify

among these n(j) elements.

3.1.1 Median of Medians Algorithm

The median of medians algorithm is a straightforward parallelization of the deterministic

sequential algorithm [BFP+72] and has recently been suggested and implemented by Bader

et. al. [BJ95] (Figure 3.1). This algorithm requires load balancing at the beginning of each

iteration.

45
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Algorithm 1 Median of Medians selection algorithm

n - Total number of elements

p - Total number of processors labeled from 0 to p� 1

Li - List of elements on processor Pi, where jLij = n

p

rank - desired rank among the total elements

l = 0 ; r = n

p
� 1

On each processor Pi

while n > p
2

Step 1. Use sequential selection to �nd median mi of list Li[l; r]

Step 2. M = Gather(mi)

Step 3. On P0

Find median of M , say MoM , and broadcast it to all processors.

Step 4. Partition Li into �MoM and > MoM to give indexi, the split index

Step 5. count = Combine(indexi, add) calculates the number of elements <MoM

Step 6. If (rank � count )

n = count ; r = indexi ; rank = count

else

n = n� count ; l = indexi ; rank = rank � count

Step 7. LoadBalance(Li; n; p)

Step 8. L = Gather(Li[l; r])

Step 9. On P0

Perform sequential selection to �nd element q of rank in L

result = Broadcast(q)

Figure 3.1: Median on Medians selection Algorithm
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At the beginning of iteration j, each processor �nds the median of its n
(j)
i = dn(j)

p
e or

bn(j)
p
c elements using the sequential deterministic algorithm. All such medians are gathered

on one processor, which then �nds the median of these medians. The median of medians is

then estimated to be the median of all the n(j) elements. The estimated median is broadcast

to all the processors. Each processor scans through its set of points and splits them into two

subsets containing elements less than or equal to and greater than the estimated median,

respectively. A Combine operation and a comparison with k(j) determines which of these

two subsets to be discarded and the value of k(j+1) needed for the next iteration.

Selecting the median of medians as the estimated median ensures that the estimated

median will have at least a guaranteed fraction of the number of elements below it and

above it. This ensures that the worst case number of iterations required is O(logn). Let

n
(j)
max = max

p�1
i=0n

(j)
i . Thus, �nding the local median and splitting the set of points into

two subsets based on the estimated median each requires O(n
(j)
max) time in the jth iteration.

The remaining work is one Gather, one Broadcast and one Combine operation. Therefore,

the worst-case running time of this algorithm is
Plogn�1

j=0 O(n
(j)
max + � log p + �p). Since

n
(j)
max = O(np), the running time is O(np logn + � log p logn+ �p logn). This is the running

time of the Median of Medians algorithm assuming load balancing but ignoring the cost of

it.

3.1.2 Bucket-Based Algorithm

The bucket-based algorithm [RCY94] attempts to reduce the worst-case running time of

the above algorithm without requiring load balance. The algorithm is shown in Figure 3.2.

As before, local medians are computed on each processor. However, the estimated median

is taken to be the weighted median of the local medians, with each median weighted by

the number of elements on the corresponding processor. This will again guarantee that a

�xed fraction of the elements is dropped from consideration every iteration. The number

of iterations of the algorithm remains O(logn).

The dominant computational work in the median of medians algorithm is the compu-

tation of the local median and scanning through the local elements to split them into two

sets based on the estimated median. In order to reduce this work which is repeated every

iteration, the bucket-based approach preprocesses the local data into log p buckets such that

for any 0 � i < j < log p, every element in bucket i is smaller than any element in bucket j.

This requires O(np log log p) time. The cost of �nding the local median reduces from O(np )

to O(log log p+ n
p log p). To split the local data into two sets based on the estimated median,

�rst identify the bucket that should contain the estimated median. Only the elements in

this bucket need to be split. Thus, this operation also requires only O(log log p + n
p log p)

time.

After preprocessing, the worst-case run time for selection is O(log log p logn+ n
p log p logn+

� log p logn+ �p logn) = O( n
p log p logn+ � log p logn+ �p logn) for n > p2 log log p. There-

fore, the worst-case run time of the bucket-based approach is O(np (log log p + logn
logp ) +

� log p logn+ �p log n) without any load balancing.
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Algorithm 2 Bucket-based selection algorithm

n - Total number of elements

p - Total number of processors labeled from 0 to p� 1

Li - List of elements on processor Pi, where jLij = n

p

C - is a constant

rank - desired rank among the total elements

l = 0 ; r = n

p
� 1

On each processor Pi

Step 0. Partition Li on Pi into log p buckets of equal size such that if r 2 bucketj, and s 2 bucketk, then

r < s if j < k

while(n > p
2)

Step 1. Find the bucket bktk containing the median element using a binary search on the

remaining buckets. This is followed by �nding the appropriate rank in bktk to �nd the median

mi. Let Ni be the number of remaining keys on Pi.

Step 2. M = Gather(mi) ; Q = Gather(Ni)

Step 3. On P0

Find the weighted median of M , say WM and broadcast it.

Step 4. Partition Li into � WM and > WM using the buckets to give indexi; the split

index

Step 5. count = Combine(indexi, add) calculates the number of elements less than WM

Step 6. If (rank � count )

n = count ; r = indexi ; rank = count

else

n = n� count ; l = indexi ; rank = rank � count

Step 7. L = Gather(Li)

Step 8. On P0

Perform sequential selection to �nd element q of rank in L

result = Broadcast(q)

Figure 3.2: Bucket-based selection algorithm
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3.1.3 Randomized Selection Algorithm

Algorithm 3 Randomized selection algorithm

n - Total number of elements

p - Total number of processors labeled from 0 to p� 1

Li - List of elements on processor Pi, where jLij = n

p

rank - desired rank among the total elements

l = 0 ; r = n

p
� 1

On each processor Pi

while(n > p
2)

Step 0. ni = r � l+ 1

Step 1. s = Pre�xSum(ni; p)

Step 2. Generate a random number nr (same on all processors) between 0 and n� 1

Step 3. On Pk where (nr 2 [s� ni; s])

mguess = Broadcast(Li [nr � (s� ni)])

Step 4. Partition Li into �mguess and > mguess to give indexi, the split index

Step 5. count = Combine(indexi, add) calculates the number of elements less than mguess

Step 6. If (rank � count )

n = count ; r = indexi ; rank = count

else

n = n � count ; l = indexi ; rank = rank � count

Step 7. L = Gather(Li[l; r])

Step 8. On P0

Perform sequential selection to �nd element q of rank in L

result = Broadcast(q)

Figure 3.3: Randomized selection algorithm

Sequentially, the randomized selection algorithm works as follows. A random element

is selected to be the estimated median. The set is split into two subsets S1 and S2 of

elements smaller than or equal to and greater than the estimated median. If jS1j >= k,

recursively �nd the element with rank k in S1. If not, recursively �nd the element with rank

(k � jS1j) in S2. This can be parallelized easily (Figure 3.3). All processors use the same

random number generator with the same seed so that they can produce identical random

numbers. Consider the behavior of the algorithm in iteration j. First, a parallel pre�x

operation is performed on the n
(j)
i 's. All processors generate a random number between 1

and n(j) to pick an element at random, which is taken to be the estimate median. From the

parallel pre�x operation, each processor can determine if it has the estimated median and

if so broadcasts it. Each processor scans through its set of points and splits them into two

subsets containing elements less than or equal to and greater than the estimated median,
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respectively. A Combine operation and a comparison with k(j) determines which of these

two subsets to be discarded and the value of k(j+1) needed for the next iteration.

It can be shown that the number of iterations is O(logn) with high probability. Let

n
(j)
max = max

p�1
i=0n

(j)
i . Thus, splitting the set of points into two subsets based on the median

requires O(n
(j)
max) time in the jth iteration. The remaining work is one Parallel Pre�x, one

Broadcast and one Combine operation. Therefore, the total expected running time of the

algorithm is
Plogn�1

j=0 O(n
(j)
max + (� + �) log p).

With load balancing and ignoring the cost of it, the running time of the algorithm reduces

to O(np + (� + �) log p logn). Even without this load balancing, assuming that the initial

data is randomly distributed, the running time is expected to be O(np + (� + �) log p logn).

3.1.4 Fast Randomized Selection Algorithm

The expected number of iterations required for the randomized median �nding algorithm

is O(logn). In this section we discuss an approach due to Rajasekharan et. al. [RCY94]

that requires only O(log logn) iterations for convergence with high probability (Figure 3.4).

Suppose we want to �nd the kth smallest element among a given set of n elements.

Sample a set S of o(n) keys at random and sort S. The element with rank m = dkjSj
n
e in

S will have an expected rank of k in the set of all points. Identify two keys l1 and l2 in

S with ranks m � � and m + � where � is a small integer such that with high probability

the rank of l1 is < k and the rank of l2 is > k in the given set of points. With this, all the

elements that are either < l1 or > l2 can be eliminated. Recursively �nd the element with

rank k � rank(l1) in the remaining (rank(l2) � rank(l1) � 1) elements. If the number of

elements is su�ciently small, they can be directly sorted to �nd the required element.

In iteration j, Processor P
(j)
i randomly selects n

(j)
i

n�

n(j)
of its n

(j)
i elements. The selected

elements are sorted using a parallel sorting algorithm. Once sorted, the processors contain-

ing the elements l
(j)
1 and l

(j)
2 broadcast them. Each processor �nds the number of elements

less than l
(j)
1 and greater than l

(j)
2 contained by it. Using Combine operations, the ranks of

l
(j)
1 and l

(j)
2 are computed and the appropriate action of discarding elements is undertaken

by each processor. A large value of � increases the overhead due to sorting. A small value

of � increases the probability that both the selected elements (l
(j)
1 and l

(j)
2 ) lie on one side

of the element with rank k(j), thus causing an unsuccessful iteration. By experimentation,

we found a value of 0:6 to be appropriate.

Rajasekharan et. al. show that the expected number of iterations of this median �nding

algorithm is O(log log n) and that the expected number of points decreases geometrically

after each iteration. If n(j) is the number of points at the start of the jth iteration, only a

sample of o(n(j)) keys is sorted. Thus, the cost of sorting, o(n(j) logn(j)) is dominated by

the O(n(j)) work involved in scanning the points.

As in the randomized median �nding algorithm, one iteration of the median �nding

algorithm takes O(n
(j)
max+(�+�) log p) time. Assuming load balancing and ignoring the cost

of load balancing, the running time of median �nding is O(np +(� +�) log p log log n). Even

without this load balancing, the running time is expected to be O(np +(�+�) log p log logn)

for random distribution of data.
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Algorithm 4 Fast randomized selection algorithm

n - Total number of elements

p - Total number of processors labeled from 0 to p� 1

Li - List of elements on processor Pi, where jLij = n

p

rank - desired rank among the total elements

C - a constant

l = 0 ; r = n

p
� 1

On each processor Pi

while(n > p
2)

Step 0. ni = r � l+ 1

Step 1. Collect a sample Si from Li[l; r] by picking ni
n
�

n
elements at random on Pi between

l and r.

Step 2. S = ParallelSort(Si; p)

On P0

Step 3. Pick k1, k2 from S with ranks d ijSj
n
�
p
jSjlogne and d ijSj

n
+
p
jSjlogne

Step 4. Broadcast k1 and k2.The rank to be found will be in [k1, k2] with high

probability.

Step 5. Partition Li between l and r into < k1, [k1, k2] and > k2 to give counts less, middle

and high and splitters s1 and s2.

Step 6. cmid = Combine(middle, add)

Step 7. cless = Combine(less, add)

Step 8. If (rank 2 (cless; cmid])

n = cmid ; l = s1 ; r = s2 ; rank = rank � cless

else

if( rank < cless)

r = s1 ; n = cless

else

n = n� (cless+ cmid) ; l = s2 ; rank = rank � (cless+ cmid)

Step 9. L = Gather(Li[l:r])

Step 10. On P0

Perform sequential selection to �nd element q of rank in L

result = Broadcast(q)

Figure 3.4: Fast Randomized selection Algorithm
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3.2 Algorithms for load balancing

In order to ensure that the computational load on each processor is approximately the same

during every iteration of a selection algorithm, we need to dynamically redistribute the

data such that every processor has nearly equal number of elements. We have developed

and compared several algorithms for load balancing for the median �nding problems. In

the following, we describe only one of them for brevity. The rest of them are presented in

Chapter 4.

Initially, processor Pi has two integers si and ri and si elements of data such thatPp�1
i=0 si =

Pp�1
i=0 ri. Let smax = max

p�1
i=0 si and rmax = max

p�1
i=0 ri. The objective is to

redistribute the data such that processor Pi contains ri elements. Every processor retains

minfsi; rig of its original elements. If si > ri, the processor has (si� ri) elements in excess

and is labeled a source. Otherwise, the processor needs (ri � si) elements and is labeled a

sink. The excessive elements in the source processors and the number of elements needed

by the sink processors are transferred using the transportation primitive. The maximum

number of messages sent out by a processor is O(p) and the maximum number of elements

sent is (nmax � navg), where navg = bnp c.
The maximum number of elements received by a processor is navg. The worst-case

running time is O(�p+ �(nmax � navg)).

We call this algorithm non-order maintaining load balance algorithm as it does not

maintain the ordering of the data. We also considered two other load balancing algorithms:

the dimension exchange method and the global exchange method [AfAGR96b].

3.3 Implementation Results

We have implemented all the selection algorithms and the load balancing techniques on the

CM-5. To experimentally evaluate the algorithms, we have chosen the problem of �nding

the median of a given set of numbers. We ran each selection algorithm with and without any

load balancing (except for the bucket-based approach which does not use load balancing).

In the following we brie
y summarize a subset of the results. For details, the reader is

referred to [AfAGR96b].

The algorithms are run until the total number of elements falls below p2, at which point

the elements are gathered on one processor and the problem is solved by sequential selection.

This was used to provide a consistent comparison between the di�erent schemes. For each

value of the total number of elements, we have run each of the algorithms on two types of

inputs - random and sorted. We ran each experiment on �ve di�erent random sets of data

and used the average running time. Random data sets constitute close to the best case

input for the selection algorithms. The sorted input is a close to the worst-case input for

the selection algorithms.

The execution times of the four di�erent selection algorithms without using load bal-

ancing for random data (except for median of medians algorithm requiring load balancing)

with 2M numbers is shown in Figure 3.5. An immediate observation is that the randomized

algorithms are superior to the deterministic algorithms by an order of magnitude. The fac-

tor of improvement in randomized parallel selection algorithms over deterministic parallel
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Figure 3.5: Performance of selection algorithms without load balancing (except for the

median of medians algorithm for which load balancing is used) on random data sets.
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Figure 3.6: Performance of fast randomized selection algorithm using random and sorted

data sets.
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Figure 3.7: Performance of the two randomized selection algorithms on sorted data sets

using the best load balancing strategies for each algorithm

selection is due to improvements in both the sequential and parallel parts. Among the de-

terministic algorithms, the bucket-based approach consistently performed better than the

median of medians approach by about a factor of two for random data. For sorted data, the

bucket-based approach which does not use any load balancing ran only about 25% slower

than median of medians approach with load balancing [AfAGR96b].

The e�ect of the various load balancing techniques on the fast randomized algorithm is

given in Figure 3.6. The execution times are consistently better for sorted data without

using any load balancing. For the randomized selection the cost of load balancing o�set

the improvements resulting in approximately the same overall cost. Load balancing for

random data almost always had a negative e�ect on the total execution time for both the

randomized methods [AfAGR96b]. Consider the variance in the running times between

random and sorted data for both the randomized algorithms. The randomized selection

algorithm ran 2 to 2.5 times faster for random data than for sorted data [AfAGR96b].

The fast randomized selection with load balancing performs equally well on both best and

worst-case data.

In Figure 3.7, we see a comparison of the two randomized algorithms for sorted data with

the best load balancing strategies for each algorithm � no load balancing for randomized

selection and non-order maintaining load balancing for fast randomized algorithm (which

performed slightly better than other strategies). We see that, for large n, fast randomized

selection is superior. For small data sets the cost of sorting the sample o�sets the bene�ts

of reduction in number of iterations.

3.4 Conclusions

We conclude that randomized algorithms are faster by an order of magnitude. If determin-

ism is desired, the bucket-based approach is superior to the median of medians algorithm.

Of the two randomized algorithms, fast randomized selection with load balancing delivers

good performance for all types of input distributions with very little variation in the run-

ning time. The overhead of using load balancing with well-behaved data is insigni�cant.
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Any of the load balancing techniques described can be used without signi�cant variation

in the running time. Randomized selection performs well for well-behaved data. There is

a large variation in the running time between best and worst-case data. Load balancing

does not improve the performance of randomized selection irrespective of the input data

distribution.



Chapter 4

Load Balancing Algorithms

In order to ensure that the computational load on each processor is approximately the

same during every iteration of a selection algorithm, we need to dynamically redistribute

the data such that every processor has nearly equal number of elements. We present three

algorithms for performing such a load balancing. The algorithms can also be used in other

problems that require dynamic redistribution of data and where there is no restriction on

the assignment of data to processors.

We use the following notation to describe the algorithms for load balancing: Initially,

processor Pi contains ni elements. n is the total number of elements on all the processors,

i.e. n =
Pp�1

i=0 ni. Let nmax = max
p�1
i=0ni. Let navg = bnp c.

4.1 Order Maintaining Load Balance

Suppose that each processor has its set of elements stored in an array. We can view the

n elements as if they were globally sorted based on processor and array indices. For any

i < j, any element in processor Pi appears earlier in this sorted order than any element

in processor Pj . The order maintaining load balance algorithm is a parallel pre�x based

algorithm that preserves this global order of data after load balancing.

The algorithm �rst performs a Parallel Pre�x operation to �nd the position of the

elements it contains in the global order. The objective is to redistribute data such that

processor Pi contains the elements with positions navgi : : :navg(i + 1) � 1 in the global

order. Using the parallel pre�x operation, each processor can �gure out the processors to

which it should send data and the amount of data to send to each processor. Similarly, each

processor can �gure out the amount of data it should receive, if any, from each processor.

Communication is generated according to this and the data is redistributed.

In our model of computation, the running time of this algorithm only depends on the

maximum communication generated/received by a processor. The maximum number of

messages sent out by a processor is dnmax

navg
e+ 1 and the maximum number of elements sent

is nmax. The maximum number of elements received by a processor is navg . Therefore, the

running time is O(� nmax

navg
+ �nmax) [RSA95].

The order maintaining load balance algorithm may generate much more communication

than necessary. For example, consider the case where all processors have navg elements

56
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Algorithm 5 Modi�ed order maintaining load balance

n - Number of total elements

p - Total number of processors labeled from 0 to p� 1

Li - List of elements on processor Pi of size ni

On each processor Pi

Step 0. navg = dnp e ; if p < n mod p, increment navg

Step 1. M = Global Concat( ni)

for j  0 to p � 1

Step 2. diff [j] = M [j] - navg

Step 3. If diff [j] is positive Pj is labeled as a source. If diff [j] is negative Pj is

labeled as a sink.

Step 4. If Pi is a source calculate the pre�x sum of the positive diff [�] in an array p src,

else calculate the pre�x sums for sinks using negative diff [�] in p snk.

if(source[Pi])

Step 5. li = jp src[i]j � diff [i]

Step 6. ri = jp src[i]j � 1

Step 7. Calculate the range of destination processors [Pl; Pr] using a binary search

on p snk.

Step 8. while(l � r)

Send [min(ri; p snk[Pl])� li] elements to Pl and increment l

if(sink[Pi ])

Step 5. li = p snk[i]� diff [i]

Step 6. ri = p snk[i]� 1

Step 7. Calculate the range of source processors [Pl; Pr] using a binary search on

p src.

Step 8. while( l � r)

Receive [min(ri; p src[Pl])� li] elements from Pl and increment l

Figure 4.1: Modi�ed order maintaining load balance
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except that P0 has one element less and Pp�1 has one element more than navg. The optimal

strategy is to transfer the one extra element from Pp to P0. However, this algorithm transfers

one element from Pi to Pi�1 for every 1 � i < p� 1, generating (p� 1) messages.

Since preserving the order of data is not important for the selection algorithm, the

following modi�cation is done to the algorithm: Every processor retains minfni; navgg of

its original elements. If ni > navg, the processor has (ni � navg) elements in excess and

is labeled a source. Otherwise, the processor needs (navg � ni) elements and is labeled a

sink. The excessive elements in the source processors and the number of elements needed

by the sink processors are ranked separately using two Parallel Pre�x operations. The data

is transferred from sources to sinks using a strategy similar to the order maintaining load

balance algorithm. This algorithm (Figure 4.1, which we call modi�ed order maintaining

load balance algorithm (modi�ed OMLB), is implemented in [BJ95].

The maximum number of messages sent out by a processor in modi�ed OMLB is O(p)

and the maximum number of elements sent is (nmax � navg). The maximum number of

elements received by a processor is navg. The worst-case running time is O(�p+ �(nmax �
navg)).

4.2 Dimension Exchange Method

Algorithm 6 Dimension exchange method

n - Number of total elements

p - Total number of processors labeled from 0 to p� 1

Li - List of elements on processor Pi of size ni

On each processor Pi

for j  0 to log p� 1

Step 1. Pl = Pi XOR 2j

Step 2. Exchange the count of elements between Pi(ni) and Pl(nl)

Step 3. navg = dni+nl2
e

if (ni > navg)

Step 4. Send ni � navg elements from Li[navg] to processor Pl

Step 5. ni = navg

else

if ( nl > navg)

Step 4. Receive nl � navg elements from processor Pl at Li[ni]

Step 5. Increment ni by nl � navg

Figure 4.2: Dimension exchange method for load balancing

The dimension exchange method (Figure 4.2) is a load balancing technique originally

proposed for hypercubes [Cyb89][RWS88]. In each iteration of this method, processors are
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paired to balance the load locally among themselves which eventually leads to global load

balance. The algorithm runs in log p iterations. In iteration i (0 � i < log p), processors

that di�er in the ith least signi�cant bit position of their id's exchange and balance the load.

After iteration i, for any 0 � j < b p
2i
c, processors Pj2i : : :Pj2i+1�1 have the same number of

elements.

In each iteration, p
2
pairs of processors communicate in parallel. No processor commu-

nicates more than nmax

2
elements in an iteration. Therefore, the running time is O(� log p+

�nmax log p). However, since 2
j processors hold the maximum number of elements in itera-

tion j, it is likely that either nmax is small or far fewer elements than nmax

2
are communi-

cated. Therefore, the running time in practice is expected to be much better than what is

predicated by the worst-case.

4.3 Global Exchange

This algorithm is similar to the modi�ed order maintaining load balance algorithm

except that processors with large amounts of data are directly paired with processor with

small amounts of data to minimize the number of messages (Figure 4.3).

As in the modi�ed order maintaining load balance algorithm, every processor retains

minfni; navgg of its original elements. If ni > navg , the processor has (ni � navg) elements

in excess and is labeled a source. Otherwise, the processor needs (navg � ni) elements

and is labeled a sink. All the source processors are sorted in non-increasing order of the

number of excess elements each processor holds. Similarly, all the sink processors are sorted

in non-increasing order of the number of elements each processor needs. The information

on the number of excessive elements in each source processor is collected using a Global

Concatenate operation. Each processor locally ranks the excessive elements using a pre�x

operation according to the order of the processors obtained by the sorting. Another Global

Concatenate operation collects the number of elements needed by each sink processor. These

elements are then ranked locally by each processor using a pre�x operation performed using

the ordering of the sink processors obtained by sorting.

Using the results of the pre�x operation, each source processor can �nd the sink proces-

sors to which its excessive elements should be sent and the number of element that should be

sent to each such processor. The sink processors can similarly compute information on the

number of elements to be received from each source processor. The data is transferred from

sources to sinks. Since the sources containing large number of excessive elements send data

to sinks containing large number of excessive elements, this may reduce the total number

of messages sent.

In the worst-case, there may be only one processor containing all the excessive elements

and thus the total number of messages sent out by the algorithm is O(p). No processor

will send more than (nmax � navg) elements of data and the maximum number of elements

received by any processor is navg . The worst-case run time is O(�p+ �(nmax � navg)).
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Algorithm 7 Global Exchange load balance

n - Number of total elements

p - Total number of processors labeled from 0 to p� 1

Li - List of elements on processor Pi of size ni

On each processor Pi

Step 0. navg = dn
p
e ; if p < n mod p, increment navg

Step 1. M = Global Concat( ni)

for j  0 to p � 1

Step 2. diff [j] = M [j] - navg

Step 3. If diff [j] is positive Pj is labeled as a source. If diff [j] is negative Pj is

labeled as a sink.

Step 4. For k 2 [0; p�1] sort diff [k] for sources in descending order maintaining appropriate

processor indices. Also sort diff [k] for sinks in ascending order.

Step 5. If Pi is a source calculate the pre�x sum of the positive diff [�] in an array p src,

else calculate the pre�x sums for sinks using negative diff [�] in p snk.

Step 6. If Pi is a source calculate the pre�x sum of the positive diff [�] in an array p src,

else calculate the pre�x sums for sinks using negative diff [�] in p snk.

if(source[Pi])

Step 7. li = jp src[i]j � diff [i]

Step 8. ri = jp src[i]j � 1

Step 9. Calculate the range of destination processors [Pl; Pr] using a binary search

on p snk.

Step 10. while(l � r)

Send [min(ri; p snk[Pl])� li] elements to Pl and increment l

if(sink[Pi ])

Step 7. li = p snk[i]� diff [i]

Step 8. ri = p snk[i]� 1

Step 9. Calculate the range of source processors [Pl; Pr] using a binary search on

p src.

Step 10. while( l � r)

Receive [min(ri; p src[Pl])� li] elements from Pl and increment l

Figure 4.3: Global exchange method for load balancing



Chapter 5

Constructing Multidimensional

Binary Search Trees

Consider a set of n points in k dimensional space. Let d1; d2; : : : ; dk denote the k dimensions.

A k-d tree [Ben75] on the points is constructed as follows: The root of the tree corresponds

to the set of all points. Choose a dimension dl, and �nd the median coordinate of all the

points along dimension dl. We can partition the points into two approximately equal sized

sets - one set containing all the points whose coordinates along dimension dl are less than

or equal to this median and a second set containing all the remaining points. The two

subpartitions are represented by the children of the root node. The tree is built recursively

until each leaf corresponds to one point. In homogeneous trees, internal nodes are used to

store the median points. Non-homogeneous trees store points only at the leaves.

Several applications require partial construction of k-d trees. In parallel graph parti-

tioning, we are interested in creating p partitions to distribute the graph to p processors,

requiring the construction of only the �rst log p levels of the k-d tree. In hierarchical ap-

plications like the n-body simulation, clustering of physically proximate objects is essential

and the k-d tree o�ers such a clustering scheme. In databases, records can be treated as

points in an appropriate space by mapping each key to a coordinate and the resulting point

set can be organized using a k-d tree. In constructing the tree, a node is partitioned only

if all its records do not �t in one disk sector.

In this chapter, we focus on e�cient parallel construction of balanced, non-homogeneous

k-d trees on coarse-grained distributed memory parallel computers. For all nodes at level i

of the tree (de�ning the root to be at level 0), we use dimension d(i mod k)+1. Other varia-

tions can be easily implemented with minor changes in our algorithms without signi�cantly

a�ecting their running time.

5.1 Local Tree Construction

5.1.1 Sort-based Method

In this method, we maintain k arrays A1; A2; : : : ; Ak. Initially, Al contains all the points

sorted according to dimension dl. Any node in the k-d tree corresponding to a partition that

is yet to be split has two pointers i and j (i < j) associated with it such that the subarray
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Al[i::j] contains the points of the partition sorted along dl. If the partition is split based on

d1, splitting the array A1[i::j] can be done in constant time as it requires just computing

the pointers of the sub-partitions. Consider splitting Al[i::j] for any other dimension dl. If

we simply scan Al[i::j] from either end and swap points when necessary (as can be done

in a median �nding method), the sorted order will be destroyed. Therefore, it is required

to go over the points twice: Once to count the number of points in the two subpartitions

and a second time to actually move the data. Counting is necessary because the number of

points less than or equal to the median need not be exactly equal to half the points.

Also, the arrays contain pointers to records and not actual records. With this, copying

a point requires only O(1) time. This method requires a preprocessing step of sorting

the n points along each of the k dimensions, taking O(kn logn) time. Constructing each

level of the k-d tree involves scanning each of the k arrays and takes O(kn) time. After

preprocessing, logm levels of the tree can be built in O(kn logm) time. In some cases, such

as when the sort-based method is used to construct the �rst log p levels of the tree, the data

may already be present in sorted order.

It is possible to reduce the O(kn) time per level to O(n) by maintaining a single copy

of the data and operating on a list of pointers for each of the k dimensions. However, this

method is not expected to perform better for small values of k such as 2 and 3, which cover

many practical applications such as graph partitioning and hierarchical methods.

5.1.2 Median-based Method

In this approach, a partition is represented by an unordered set of points and the median is

explicitly computed in order to split the partition (see Figure 5.3) We have tested various

median �nding algorithms and found that the randomized algorithm of Floyd et. al. [FR75]

results in the best performance. The algorithm works by picking a random element of the set,

partitioning the set based on this element, throwing away the partition not containing the

desired element and repeatedly performing the same procedure on the partition containing

the desired element. The worst-case run time is O(n2) but the expected run time is only

O(n). The expected number of iterations is O(logn). A di�erent approach can be used

to reduce the expected number of iterations to O(log log n) [RCY94]. We found that the

parallel versions of these twomethods have comparable running times, but Floyd's algorithm

fares better sequentially [AfAGR96c].

Note that the very process of computing the median of a partition splits the partition

into two subpartitions. In constructing level i of the local tree, we have to compute 2i

medians, each on a partition containing n
2i

points. Since the total number of points in

all partitions at any level of the local tree is n, building each level takes O(n) time. The

required logm levels can be built in O(n logm) time.

5.1.3 Bucket-based Method

The bucket-based method is a hybrid approach combining the median-based and sort-based

methods. It starts with inducing partial order on the data which is re�ned further only as

it is needed.

Sample a set of n� points (0 < � < 1) and sort them according to dimension d1. This take

O(n) time. Using the sorted sample, divide the range containing the points into b ranges,
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Method Tree construction up to logm levels

Preprocessing Median Data

(X) Finding(c) Movement (s)

Median-based - O(n logm) O(n logm)

Sort-based O(kn log n) O(m) O(kn logm)

Bucket-based O(kn log b) O(n
b

m
1=k

�1

21=k�1
) O(kn logm)

Table 5.1: Computation time for local tree construction.

called buckets. After de�ning the buckets, �nd the bucket that should contain each of the

n points. This can be accomplished using binary search in O(log b) time. The n points

are now distributed among the b buckets and the expected number of points in a bucket is

O(n
b ) with high probability (assuming b is o( n

logn)). The same procedure is repeated for all

dimensions, for a total preprocessing cost of O(kn log b).

At any stage of the algorithm, we have a partition and k arrays storing the points of

the partition partially sorted into buckets using their coordinates along each dimension.

Without loss of generality, assume that the partition should be split along d1. The bucket

containing the median is easily identi�ed in time logarithmic in the number of buckets.

Finding the median translates to �nding the element with the appropriate rank in the

bucket containing the median. To split the partition, we need to compute the partially

sorted arrays corresponding to the subpartitions. This is accomplished along d1 by merely

splitting the bucket containing the median into two buckets. To create the arrays along

any other dimension dl, each bucket in the partially sorted array along dl is split into two

buckets. All the buckets with points having a smaller coordinate along d1 than the median

are grouped into one subpartition and the rest of buckets are grouped into the second

subpartition.

When a partition is split into two subpartitions, the number of points in the partition

is split into half. The number of buckets remains approximately the same (except that one

bucket may be split into two) along the dimension which is used to split the partition. Along

all other dimensions, the number of buckets increases by a factor of two. At a stage when

level i of the tree is to be built, there are 2i partitions and �(b2i(k�1)=k) buckets. Thus,

building level i of the tree requires solving 2i median �nding problems each working on a

bucket of expected size O( n
b2i(k�1)=k ). This time is dominated by the O(kn) time to split the

buckets along k� 1 dimensions. Since the constant associated with median �nding is high,

this method has the advantage that it performs median �nding on smaller sized data. The

asymptotic complexity for building logm levels is O(kn logm).

5.1.4 Experimental Results

The computation time required for local tree construction, as summarized in Table 5.1,

can be decomposed into di�erent parts: the time required for preprocessing (X), the cost

of �nding the median at every level (c), the data movement time to decompose arrays into

subarrays based on the median (s). The sorting and bucket-based methods are required
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to have stable order property. This means that the relative ordering of data has to be

preserved during the data movement. resulting in a higher value for s. Data has to be

moved for k� 1 lists in the sort-based and bucket-based strategies as compared to a single

list in the median-based strategy. There is an overhead r attached with maintenance and

processing of sublists, which double at every level. This overhead is the smallest for sorting,

slightly larger for median-method and highest for bucketing since the cost for bucketing

grows exponentially with the increase in number of levels.

An important practical aspect of median �nding is that the data movement step and

median �nding step can be combined resulting in a small overall constant (one of the reasons

quicksort has been shown to work well in practice). We limit our experimental results to

the two-dimensional case because the results we obtained are such that conclusions about

higher dimensional point sets can be drawn.
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Figure 5.1: Local tree construction for random distribution of data of sizes 8K, 32K and

128K

A comparison of sort-based method and the bucket-based methods shows that bucket-

based strategy has a lower value of X , similar value of s, much larger values of r and c.

We experimented with di�erent bucket sizes for the bucketing strategy. There is a tradeo�

between r and c. The former is directly proportional to the number of buckets while the

latter is inversely proportional to the number of buckets. The e�ect of the overhead r is

per list and increases exponentially with increase in the number of levels. We found that

the values of r and c are su�ciently large that sort-based method is better than the bucket-

based method except when the number of levels is very small (less than 4). However, for

these cases, the median-based approach works better. In fact, we found that the median-

based strategy is much better than the bucket-based strategy for small levels even ignoring

the time required for bucketing.

A comparison of the median and sort-based methods show that the median-based strat-

egy has zero value of X , smaller value of s, a higher value of r, and much larger value of c

as seen in Table 5.1 and veri�ed by our experimental results. One would expect that the

median-based method to be better for small number of levels and sort-based strategy to be

better for larger number of levels, expecting the preprocessing cost to be amortized over

several levels. A comparison of these methods for di�erent data sets (of size 8K, 32K and
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128K) is provided in Figure 5.1. These results show that median-based method is better

than the sort-based method except when the number of levels is close to logN . For larger

levels the increase due to higher c becomes signi�cant for the median-based method. These

results also show that when data is already sorted, the sort-based method has a better time

than the median-based method.

Median-based strategy is the best unless the number of levels is close to logN or if the

data is already available sorted, for which the sort-based strategy is the best. For larger

values of k (k � 3) using a median-based strategy would be comparable or better than

the other strategies unless preprocessing information used for sorting method is already

available.

5.2 Parallel Tree Construction for log p levels

5.2.1 Sort-based Method

This algorithm is shown in Table 5.2. We preprocess the data by sorting it along each

dimension using parallel sample sort [SS92] to create k sorted arrays. The total time

required for sorting is O(Np logN + p log2 p + tsp + tw(
N
p + p2) + thp log p) on a hypercube

and O(Np logN + p log2 p + ts
p
p + tw(

Np
p + p2) + th

p
p) on a mesh. For large values of

N (N � O(tsp
2 + twp

3)), the running time is O(Np logN + tw
N
P ) on a hypercube and

O(N
p logN + tw(

Np
p)) on a mesh.

Without loss of generality, assume that the initial partition should be split along dimen-

sion d1. The processor containing the median coordinate along d1 broadcasts it to all the

processors. We want to split the partition and assign the resulting subpartitions to the ap-

propriate processors. Assigning a subpartition amounts to computing the sorted arrays for

the subpartition. This is already true along d1. For any other dimension dl, each processor

scans through its part of the array sorted by dl and splits it into two subarrays depending

upon the coordinate along d1. The subpartitions are moved using order maintaining data

movement.

Consider the time required for building the �rst log p levels of the tree: At level i

of the tree, we are dealing with 2i partitions containing N
2i

points each. A partition is

represented by k sorted arrays distributed evenly on p
2i
processors. Splitting the local arrays

and preparing the data for communication requires O((k� 1)kNp ) time. The required data

movement must be done using Order maintaining data movement because the sorted order

of the data must be preserved.

Given sorted data, the time required to build the �rst log p levels of the tree on a

hypercube is
Plog p�1

i=0 O(k(k�1)Np + ts
p
2i
+ twk(k�1)Np + th

p
2i
log p

2i
) = O(k(k�1)Np log p+

tsp+ twk(k� 1)Np log p+ thp log p). The corresponding time on a mesh is
Plog p�1

i=0 O(k(k�
1)Np + ts

q
p
2i
+ twk(k � 1)Np

q
p
2i
+ th

q
p
2i
) = O(k(k � 1)Np log p + ts

p
p + twk(k � 1) Npp +

th
p
p). For large values of N (N � O(tsp

2 + twp
3)) the running time of the algorithm is

O(k(k � 1)tw
N
p logN) on a hypercube and O(k(k � 1)tw(

Np
p)) on a mesh.

As in the sequential sort-based method, it is possible to reduce the computational cost

at every level from O(kn) to O(n). However, the method requires dereferencing pointers to
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Algorithm 8 Tree Construction using sorting

n - Total number of elements

p - Total number of processors labeled from 0 to p� 1

Lx; Ly - Two lists of points (x; y) on Pi

m - Number of levels of the k-d tree to be constructed (m � log p)

dj = x; dk = y; ni = n;

Initialize the processor pool to contain p processors.

Step 0. Use sample sort to sort Lx in x dimension and Ly in y dimension across all the p processors

for l  1 to log p levels

Step 1. The middle processor in the processor pool picks the last element from Ldj as the

median q, in dimension dj. Broadcast q to all processors in the processor pool.

Step 2. Consider the processors in the processor pool as two halves.

Step 3. Move all points of Ldk � q in dimension dj to the lower half processors and all

points > q in dimension dj to the upper half processors using order maintaining

data movement.

Step 4. Switch dimension dj with dk and set the processor pool to the appropriate half of

the processors to which this processor belongs. The roles of the lists Ldj and Ldk is

reversed in the next iteration.

Step 5. Set ni to the number of points in the current processor pool.

Step 6. Construct the tree locally using LocalTreeConstruction on Lx and Ly, each list is of size ni.

LocalTreeConstruction(Ldj ; Ldk )

if(jLdj j >
n

2m
)

Step 1. Pick the middle element of Ldj in dimension dj as the median q.

Step 2. Perform an order maintaining data movement on Ldk to partition it into two halves,

one � q and another > q in dimension dj .

Step 3. Switch dimension dj with dk.

Step 4. Recursively �nd left subtree on Ldj [0;
ni

2
� 1] using LocalTreeConstruction.

Step 5. Recursively �nd right subtree on Ldj [
ni

2
; ni � 1] using LocalTreeConstruction.

Figure 5.2: Sort-based Method
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points on other processors. The resulting communication makes this method impractical

even for large values of k.

5.2.2 Median-based Method

Method Parallel tree construction up to log p levels

Preprocessing Median �nding Local processing Communication due to

(X) (c) (s) data movement(T )

Median-based - O(N
p
log p + O(kN

p
log p) O(tsp + tw(k

N

p
log p))

(ts + tw) log
2
p logN)

Sort-based O(N
p
logN + p

2 log p + O(log p) O(k(k � 1)N
p
log p) O(tsp+ tw(k(k� 1)N

p
log p))

tsp+ tw(
N

p
+ p

2))

Bucket-based O(N
p
(k+ log p)+ O(N

p
) O(k(k � 1)N

p
log p) O(tsp+ tw(k(k� 1)N

p
log p))

tsp+ tw(k
N

p
))

Table 5.2: Time for tree construction up to log p levels on p processors for di�erent strategies

on a hypercube.

We compared di�erent deterministic and randomized parallel selection algorithms for

coarse grained machines [AfAGR96c] and found that a straightforward parallelization of

Floyd's sequential algorithm results in the best performance for random data. Non-random

data can be randomized by allocating each point to a random processor and using a trans-

portation primitive to move points to appropriate processors. The cost of this randomization

is insigni�cant compared to the cost of construction of the k-d tree. This algorithm is shown

in Figure 5.3.

Let N
(j)
i be the number of elements in processor Pi at the beginning of iteration j of

the median �nding algorithm. Let N (j) =
Pp�1

i=0 N
(j)
i . Let k(j) be the rank of the desired

element. All processors use the same random number generator with the same seed to

produce identical random numbers. Consider the behavior of the algorithm in iteration j.

First, a parallel pre�x operation is performed on the N
(j)
i 's. A random number between

1 and N (j) is used to pick the estimated median. From the parallel pre�x operation,

each processor can determine if it has the estimated median and if so broadcasts it. Each

processor scans through its set of points and splits them into two subsets based on the

estimated median. A Combine operation and a comparison with k(j) determines which of

these two subsets is to be discarded and the value of k(j+1) needed for the next iteration.

Let N
(j)
max = max

p�1
i=0N

(j)
i . Thus, splitting the set of points into two subsets based on the

median requires O(N
(j)
max) time in the jth iteration. For random data, it can be shown that

the number of remaining points left after each iteration are mapped equally among all the

processors with high probability (i.e. the maximum is close to mean) unless the number of

remaining points is very small. Thus, the total expected time spent in computation is O(Np ).

Another option is to ensure that a load balancing is done after every iteration. However,

such a load balancing always resulted in an increase in the running time [AfAGR96c].
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Algorithm 9 Tree Construction using median �nding

n - Total number of elements

p - Total number of processors labeled from 0 to p� 1

Li - List of points (x; y) on Pi

m - Number of levels of the k-d tree to be constructed (m � log p)

dj = x; dk = y; ni = n;

Initialize the processor pool to contain p processors.

for l  1 to log p levels

Step 1. Find median q of ni points in dimension dj using fast randomized median method.

This also splits Li into two portions, one � q and another > q in dimension dj

Step 2. Consider the processors in the processor pool as two halves.

Step 3. Move all points � q in dimension dj to the lower half processors and all points > q

in dimension dj to the upper half processors.

Step 4. Switch dimension dj with dk and set the processor pool to the appropriate half of

the processors to which this processor belongs.

Step 5. Set ni to the number of points in the current processor pool.

Step 6. Construct the tree locally using LocalTreeConstruction on the list Li[0; ni � 1]

LocalTreeConstruction(Li)

if(jLij > n

2m
)

Step 1. Find median of Li in dimension dj. This also splits the list into two halves, one

lesser than the median and another greater than the median.

Step 2. Switch dimension dj with dk

Step 3. Recursively �nd left subtree on Li[0;
ni

2
� 1] using LocalTreeConstruction

Step 4. Recursively �nd right subtree on Li[
ni

2
; ni � 1] using LocalTreeConstruction

Figure 5.3: Median-based Method
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The number of iterations required forN points is O(logN) with high probability. There-

fore, the expected running time of parallel median �nding, is O(N
p
+ (ts + tw) log p logN)

on the hypercube and O(N
p
+ (ts + tw) log p logN + th

p
p logN) on the mesh.

In building the �rst log p levels of the tree, the task at level i of the tree is to solve 2i

median �nding problems in parallel with each median �nding involving N
2i

points and p
2i

processors. After �nding the median of N
2i
points on p

2i
processors, all the elements less than

or equal to the median are moved to the �rst p
2i+1 processors while the other elements are

move to the next p
2i+1 processors. The maximum number of elements sent out or received by

any processor is N
p . We assume that this data movement results in a random distribution of

the two lists to the two subsets of processors. This can be ensured by randomly permuting

the data without increasing the asymptotic complexity. Even if pointers are used for local

computation instead of records, the records have to be communicated when data is moved

across processors.

Building the �rst log p levels of the tree on the hypercube requires
Plogp�1

i=0 O(N
2i
= p
2i
+

(ts + tw) log
p
2i
log N

2i
+ kNp + ts

p
2i
+ tw

kN
p + th

p
2i
log p

2i
) = O(kNp log p+ ts(p+ log2 p logN) +

tw(k
N
p log p+log2 p logN)+thp log p) time. The time required on the mesh is

Plog p�1
i=0 O(N

2i
= p
2i
+

(ts+ tw) log
p
2i
log N

2i
+ th

q
p
2i
log N

2i
+kNp +(ts+ tw

kN
p )
q

p
2i
+ th

q
p
2i
) = O(kNp log p+ ts(

p
p+

log2 p logN) + tw(
kNp
p + log2 p logN) + th

p
p logN).

For large values of N (N � O(tsp
2+ twp

3)), the total time required by the algorithm is

O(ktw
N
p logN) for the hypercube and O(ktw(

Np
p)) on the mesh. Thus, the data movement

time dominates.

5.2.3 Bucket-based Method

This algorithm is shown in Figure 5.4 and Figure 5.5. We �rst create the required

bucketing using p processors and construct the �rst log p levels of the tree in parallel as

before. Bucketing along a dimension, say d1, can be computed as follows: Select a total

of n� points (0 < � < 1) and sort them along d1. Using the sorted sample, divide the

range containing the points into p intervals called buckets. Using a global concatenate

operation, the p intervals are stored on each processor. Each processor scans through its
N
p points and for each point determines the bucket it belongs to in O(Np log p) time. The

points are thus split into p lists, one for each bucket. All the lists belonging to bucket

i are moved to processor Pi using the transportation primitive. The expected number of

points per bucket is O(Np ) with high probability. Apart from the time used in sorting,

the time for bucketing is O(Np (k + log p) + tsp + tw
kN
p + thp log p) on a hypercube and

O(Np (k + log p) + ts
p
p + tw

kNp
p + th

p
p) on a mesh. Clearly, this dominates the time for

sorting as only a sample of size n� is sorted.

Consider building the �rst log p levels of the tree. Suppose that the �rst split is along

dimension d1. By a parallel pre�x operation, the bucket containing the median is easily

identi�ed. The median is found by �nding the element with the appropriate rank in this

bucket using the sequential selection algorithm. The median is then broadcast to all the

processors which split their buckets along all other dimensions based on the median. Using

Order maintaining data movement, the buckets are routed to the appropriate processors.



CHAPTER 5. CONSTRUCTING MULTIDIMENSIONAL BINARY SEARCH TREES70

Algorithm 10 Tree Construction using bucketing

n - Total number of elements

p - Total number of processors labeled from 0 to p� 1.

Lx; Ly - Two lists of points (x; y) on Pi

Bx;By - List of buckets for Lx and Ly on Pi.

m - Number of levels of the k-d tree to be constructed (m � log p).

dj = x; dk = y; ni = n;

Initialize the processor pool to contain p processors.

Step 0. Divide Lx into p buckets across all p processors, one bucket per processor such that if r 2 Pj

and s 2 Pk in dimension x then r < s if j < k. Similarly divide Ly into p buckets across the

processors using the y dimension.

for l  1 to log p levels

Step 1. Perform a global concatenate on the bucket boundaries of Bdj
in the processor pool

and perform a local pre�x sum to calculate the bucket boundaries.

Step 2. Each processors identi�es the median containing bucket bktm among the buckets

on the processor pool and the processor it is on. This can be achieved by a binary

search.

Step 3. The processor containing the median bucket performs a selection of the appropriate

rank in bktm, using randomized selection to calculate median q in dimension dj. q

is broadcast to each processor in the processor pool.

Step 4. Each processor divides the buckets in Ldk into � q (lower buckets) and > q ( higher

buckets) in dimension dj. The number of buckets on each processor doubles in this

phase.

Step 5. Consider the processors in the processor pool as two halves.

Step 6. Move all points of Ldk in lower buckets to the lower half processors and all points

in the higher buckets to the upper half processors using order maintaining data

movement and maintaining the bucket ordering.

Step 7. Switch dimension dj with dk and set the processor pool to the appropriate half of

the processors to which this processor belongs. The roles of the lists Ldj and Ldk

is reversed in the next iteration.

Step 8. Set ni to the number of points in the current processor pool.

Step 9. Construct the tree locally using LocalTreeConstruction on Lx with buckets Bx and Ly with

buckets By. Each list is of size ni.

Figure 5.4: Bucket-based Method
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LocalTreeConstruction(Ldj ; Bdj
; Ldk ;Bdk

)

if(jLdj j >
n

2m
)

Step 1. Use Ldj and �nd the bucket containing the median, bktm, in Bdj
, by a binary search

on the pre�x sum of the bucket indices.

Step 2. Find the median q using randomized selection on bktm.

Step 3. Partition the buckets in Ldk into � q and > q in dimension dj.

Step 4. Perform an order maintaining data movement on Ldk to move the lower buckets to

the lower half of the list and the upper buckets to the upper half. Update appropriate

bucket boundaries.

Step 5. Switch dimension dj with dk.

Step 6. Recursively �nd left subtree on Ldj [0;
ni

2
� 1] using LocalTreeConstruction.

Step 7. Recursively �nd right subtree on Ldj [
ni

2
; ni � 1] using LocalTreeConstruction.

Figure 5.5: Bucket-based method - Local tree construction

Since the bucket size is smaller than the number of elements in a processor, the time for

locating the median in the bucket is dominated by the time for splitting the buckets along

each dimension. The �rst log p levels of the tree can be built in
Plogp�1

i=0 O(k(k � 1)Np +

ts
p
2i
+ twk(k � 1)Np + th

p
2i
log p

2i
) = O(k(k� 1)Np log p+ tsp+ twk(k � 1)Np log p+ thp log p)

time on a hypercube and
Plog p�1

i=0 O(k(k�1)Np + ts

q
p
2i
+ twk(k�1) Npp+ th

q
p
2i
) = O(k(k�

1)Np log p+ ts
p
p+ twk(k � 1) Np

p
log p+ th

p
p) time on a mesh.

5.2.4 Experimental Results
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Figure 5.6: Tree construction to log p levels for p = 32, 64 and 128 using random distribution

of data

In this section, we compare the three algorithms experimentally using implementations on

the CM-5 for which most of the analysis presented for the hypercube is applicable. The
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execution time is decomposed into several parts as summarized in Table 5.2 (the th term

is insigni�cant in the overall communication time and is ignored): the time required for

preprocessing (X), the cost of �nding the median at every level (c), the local processing time

to rearrange data based on the median (s) and the communication due to data movement

(T ). The data movement cost for k � 1 arrays is expected to be higher for the bucket

and sort-based methods as they require preserving the order of the data as opposed to

a non-order maintaining data movement for only one array in the median-based method.

Overhead cost r is associated with maintaining and processing sublists at every level on a

per list basis and grows exponentially with the increase in number of levels.

Once again, we limit our experimental results to the two-dimensional case as it proved

to be su�cient to draw conclusions for higher dimensional problems. A comparison of sort-

based and median-based approaches show that the former has higher values of X , s and T ,

and a smaller value of r. For small values of N
p , median-based method is not expected to

parallelize well as the communication cost in c dominates, which increases with increase in

p. However, for small p, the median-based method performs well when it o�sets the large

value ofX in the sort-based method. For large values of N
p , one would expect median �nding

to parallelize reasonably well. The communication cost in median �nding is signi�cantly

lower than T , required for both strategies. The value of T is smaller for the median-based

approach as compared to the sort-based approach since it does non-order maintaining data

movement. One would expect median-based method to perform better, except for very

large values of p.

A comparison of bucket-based and median �nding approaches show that the former has

larger values of X , s, r and T . For small values of N
p , we would expect median-based

method to perform worse than the bucket-based approach which has small communication

overhead for median �nding unless p is small. A small p would keep c low for median-based

method but X will still be large for the bucket-based method. For large values of N
p , c

in median �nding should not dominate the overall cost and should be signi�cantly lower

than T , required for both strategies at every level. Bucket-based method requires order

maintaining data movement and hence has a higher T than the median-based method.

Hence, one would expect the median-based method to be better than the bucket-based

method, except for a very large p.

Bucket-based method has lower values for X and c when compared to the sort-based

method. Hence, the bucket-based method would work better when the di�erence in prepro-

cessing time is larger than the total time for median �nding. The cost of the latter decreases

at every level (as the bucket sizes decrease with increase in number of levels).

Figure 5.6 presents experimental results for k-d tree construction up to log p levels

for di�erent values of N
p . These show that the bucket-based method is always better than

the sort-based method. The median-based method is the best approach for large values of
N
p (greater than 8K per processor) while the bucket-based approach is the best for small

values of N
p (less than 4K). The improvements of each of these methods over the other are

substantial for these ranges. For larger values of k it is expected that the time requirements

of the bucket-based strategy would grow faster than the median-based strategy due to

overheads in the lists and bucket management.

We emphasize that the above conclusions are drawn for the randomized median-based

method. The constants involved in a deterministic algorithm for median �nding may make
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sort-based and bucket-based methods better for small values of k and for a wide range of
N
p
.

5.3 Global Tree Construction

The parallel tree construction can be decomposed into two parts: constructing the tree

till log p levels followed by local tree construction. Potentially a di�erent strategy can be

used for the two parts, resulting in nine possible combinations. Based on the discussion in

the previous two sections, the following are the only viable options: sort-based approach

followed by sort-based approach (G1), median-based approach followed by sort-based (G2),

median-based approach followed by median-based approach (G3), bucket-based approach

followed by median-based approach (G4), and bucket-based approach followed by sorting

each of the buckets, followed by sort-based approach (G5).

These �ve approaches are compared for di�erent number of levels (log p to logN) for

di�erent number of processors (8, 32, 128) for di�erent values of N
p (4K and 128K) (see

Figure 5.7). These results show that for large values of N
p , strategy G3 is the best unless

the number of levels are close to logN for which G2 may be preferable. For small values of
N
p , the strategy G4 is preferable. If the number of levels are close to logN , G1 and G5 are

the best.

For larger k, we would expect that one of the median or bucket-based strategies should

be used to construct the tree till log p levels. This would depend on the value of N
p and the

target architecture. The bucket-based strategy would be better for small values of N
p and

k. The local tree construction should use median-based strategy. Using the above approach

results in software which will be close to the best for nearly all values of the parameters.

5.4 Reducing the Data Movement

The algorithms described for parallel construction of the �rst log p levels of the tree re-

quire massive data movement using transportation primitive at every level. This can be

signi�cantly reduced by using a di�erent approach.

Consider the median-based method. Initially, all the N points belong to one partition

and are distributed uniformly on all p processors. After �nding the median, the local

data is divided into two subarrays (typically of unequal size), each belonging to one of

the subpartitions. Instead of moving the data such that each subpartition is assigned to a

di�erent subset of processors, one can assume that these subpartitions are divided among

all the processors. A median can be found for each of the subpartitions in parallel by

combining the communication and computation for both. Because each processor always

has a total of N
p points, computational load is perfectly balanced among all the processors.

This approach is repeatedly applied until the number of subpartitions is equal to p. At this

stage, the data is distributed among the processors such that each processor has all the

points of one of the p subpartitions and local trees are constructed.

Suppose that i levels of the tree are already constructed. At this stage, there are 2i

subpartitions, each divided among all the processors. It is desired to �nd the medians
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Figure 5.7: Global tree construction for random distribution of data of size N
p = 4K, 128K

on p= 8, 32, 128. On the X-axis level i represents the tree is built to i levels ( a tree having

2i leaves)
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for all the subpartitions together. A parallel pre�x operation is performed for each of the

subpartitions to number the points in each processor belonging to a subpartition. All the

2i parallel pre�x operations can be combined together. By generating appropriate random

numbers, each processor determines if it has the estimated median of each subpartition.

A processor updates the corresponding entry in an array of size 2i if it has guessed the

median for the ith subpartition, otherwise it stores a 0. By a combine operation on this

array using the `+' operation, the required medians are stored on each processor. Using

the 2i estimated medians, all processors together reduce the size of the subpartitions under

consideration. The iterations are repeated until the total size of all the subpartitions falls

below a constant. At this stage, all the subpartitions can be gathered in one processor and

the required medians can be found.

The cost of this algorithm in constructing level i+ 1 of the tree from level i is O(Np +

ts log p logN + tw2
i log p logN) on a hypercube and O(Np + ts log p logN + tw2

i log p logN +

th
p
p logN) on a mesh. Constructing the �rst log p levels of the tree on a hypercube

requires
Plogp�1

i=0 O(Np + ts log p logN + tw2
i log p logN) time plus O(kNp + tsp + tw

kN
p +

thp log p) time for the �nal data movement. Thus, the run time is O(Np (log p+ k) + ts(p+

log2 p logN) + tw(
kN
p + p log p logN) + thp log p). The corresponding time on the mesh is

Plogp�1
i=0 O(Np + ts log p logN + tw2

i log p logN + th
p
p logN) + O(kNp + ts

p
p + tw

kNp
p ) =

O(Np (log p+ k) + ts(
p
p+ log2 p logN) + tw(

kNp
p + p log p logN) + th

p
p log p logN).

For both hypercubes and meshes, the computational cost reduces from kN
p log p to N

p (k+

log p). This is the cost involved in local computations plus the cost in copying the records to

arrays for data movement. For hypercubes (or permutation networks), the amount of data

transferred reduces by a factor of log p from kN
p log p to kN

p . However, the data transferred

improves only by a small constant factor on the mesh. A similar strategy can be used to

reduce the data movement for sort-based and bucket-based methods.
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Figure 5.8: Tree construction time using median-based method followed by median-based

method (G3) on random data

5.4.1 Experimental Results

We limited ourselves to applying this strategy to the median-based approach only. Figure

5.9 gives a comparison of the two approaches (with and without data movement) for di�erent

values of N
p for log p levels of parallel tree construction. These results show that using the

new strategy gives signi�cant improvements due to lower data movement.
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The median-based method with reduced data movement potentially reduces the data

movement cost by a factor of logP . Since the data movement cost is proportional to the size

of the records, the e�ect of extra overhead due to communication in the new method reduces

signi�cantly for higher dimensional data. Thus, the new strategy should give improved

performance in higher dimensions.

4K 8K 16K 32K 64K 128K 256K 512K
N/p

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

Ti
m

e 
(in

 se
co

nd
s)

p = 32

Median (with data movement)
Median(without data movement)

4K 8K 16K 32K 64K 128K 256K 512K
N/p

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

Ti
m

e 
(in

 se
co

nd
s)

p = 64

Median (with data movement)
Median(without data movement)

4K 8K 16K 32K 64K 128K 256K 512K
N/p

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

22.0

24.0

Ti
m

e 
(in

 se
co

nd
s)

p = 128

Median (with data movement)
Median(without data movement)

Figure 5.9: Comparison of the two approaches for log p levels for di�erent values of N
p
.

5.5 Conclusions

In this paper, we have looked at various strategies for parallel construction of multidimen-

sional binary search trees. Traditionally, a sort-based strategy is advocated for sequential

construction [PS85] or parallel construction [Ble90] of complete k-d trees. For two dimen-

sional point sets, we found that the the median-based strategy is the fastest for large values

of N
p , unless the number of levels is very close to logN . In such a case, using the median-

based approach up to log p levels followed by using a sort-based approach locally performed

better. For small values of N
p , using the bucket-based approach up to log p levels followed

by using a median-based approach locally is the best except when the tree is built almost

completely. In such a case, using the bucket-based method followed by using sort-based

method locally outperformed a complete sort-based strategy except when the number of

processors is very small.

It is interesting to note that a complete sort-based approach did not perform better even

if the tree is built completely. The median-based approach also exhibits good scaling as

can be seen by the run-time analysis and experimental results. This is true mainly because

of the performance of randomized median �nding on randomly distributed data sets. For

arbitrary data sets, a randomization step can be performed without much additional cost.

We found that deterministic median �nding algorithms are slower by an order of magnitude

and their use would lead to entirely di�erent conclusions. Bucket-based strategy is useful for

applications such as graph partitioning when the number of points per processor is small.

For data in k dimensions, the preprocessing cost and the cost of tree construction per

level of sort-based and bucket-based methods increases proportional to k. The median-based

method remains una�ected in this regard. While the data movement time in median-based

methods increases proportional to k, it increases proportional to k(k� 1) in other methods.
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Thus, based on the dismal performance of sort-based and bucket-based methods for k = 2,

we conclude that the median-based method is superior for k � 3.

Our experiments with comparing median �nding with data movement at every stage

and median �nding with reduced data movement associate well with the idea of task versus

data parallelism. For this, we showed that utilizing task parallelism leads to worse results

as compared to \concatenated" data parallelism for large granularities. Often, problems

amenable to the divide and conquer paradigm are solved in parallel by mapping the corre-

sponding divide and conquer tree using task parallelism. Our technique can be e�ectively

utilized to solve such problems e�ciently, especially when the task sizes are non-uniform.

We are currently exploring this strategy.

Random distribution of data has potential advantages in a number of applications.

We feel that data-parallel languages such as High Performance Fortran should provide

constructs for random distribution to facilitate coding such applications.

A generalized version of the problem we have considered in this paper is the construction

of weighted multidimensional binary search trees. In this case, each point has a weight

associated with it and a partition is split based on the weighted median. Therefore, the

number of points in the subpartitions at level i of the tree can be very non-uniform. In

such a case, our method with reduced data movement is clearly superior since it keeps the

number of points on each processor balanced throughout the construction of the tree.

If a perfectly balanced k-d tree is not required, a random sampling based approach can

be used to reduce the overall cost signi�cantly. Choose a small random sample of all the

points. Construct the tree for this random sample using one of the methods described in

the paper up to a �xed number of levels. Assign the remaining points to one of the leafs

based on the \sample" tree. Each leaf node can be constructed recursively using the same

strategy.



Chapter 6

Concatenated Parallelism

6.1 Introduction

Scheduling a number of tasks on a parallel machine to minimize the running time for the

completion of all the tasks is a well-studied problem in parallel computing. In the most

general case, the tasks can be of varying sizes and each task itself can be solved in parallel.

Two basic types of parallelism can be exploited: Scheduling of independent tasks to di�erent

groups of processors such that the tasks can be solved simultaneously in parallel is called

Task Parallelism. Solving each individual task in parallel using all the processors and solving

the tasks one after the other is called Data Parallelism. Of course, it is possible to use a

combination of these strategies for optimal scheduling, and such a strategy is referred to as

Mixed Parallelism. Several researchers have worked on exploiting mixed parallelism, both

in theory [BB90, FST92, LT94, TWY92] and in practice [CDY95, Cha91, RSB94, SSOG93].

In a number of problems, all the tasks may not be known in advance but may be

generated dynamically as existing tasks are processed. This is the case with problems

whose e�cient solutions use the divide and conquer strategy. The execution of an instance

of such a problem can be represented by a divide and conquer tree. Each internal node of

the tree corresponds to a task. After performing some computation, the task is split (divide

step) into several subtasks which are represented by the children of the node. The subtasks

are solved recursively and the solutions may need to be combined to �nd the solution for

the task (merge step).

Several important issues arise in parallelizing such applications using task and data

parallelism. Suppose that a task is currently distributed on a group of processors. After

performing the work required to divide the task into subtasks in parallel, several options

exist for the solution of the subtasks. In the task parallelism approach, the processors are

divided into subgroups, perhaps according to the size of the subtasks, and the subtasks

are moved to their respective subgroups of processors and solved independently. This re-

quires movement of data to the appropriate processor subgroup. In the data parallelism

approach, the subtasks are solved one after another using all the processors. Unfortunately,

each subtask may not be uniformly spread across the processors even though the parent

task is. Hence, data parallelism may lead to severe load imbalance. Also, the practical

e�ciency of a parallel algorithm often decreases with increase in the number of processors.

78
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If the time required to divide the subtasks is signi�cantly higher than the cost of redis-

tribution, communication time due to allocation of the subtasks can be ignored. Such an

assumption is often made in the literature [CDY95]. Unfortunately, it is not valid for several

important problems, which include quicksort, quickhull, construction of quad/octrees and

multidimensional binary search trees.

In this chapter, we propose a new strategy called Concatenated Parallelism for e�cient

solution of problems resulting in divide and conquer trees. The basis idea is to solve all

the subtasks together using all the processors. Even though the distribution of each sub-

task is non-uniform, this scheme does not lead to load imbalance (as in data parallelism)

because the sum of the sizes of the subtasks allocated to each processor is uniform. This

scheme also eliminates the communication due to data movement in the intermediate steps,

the drawback of task parallelism. The strategy is particularly useful when the sizes of the

subtasks may be non-uniform. The only disadvantage of concatenated parallelism is that

communication in solving the subtasks involves all the processors as opposed to increas-

ingly smaller subsets as in task parallelism. However, we can often considerably reduce

this expense by spooling the communication required for all the subtasks. Such a strategy

signi�cantly reduces the communication cost because set up times for communication are

typically higher than transmission costs by two orders of magnitude. We use the concate-

nated parallelism strategy until enough subtasks are generated to map them uniformly to

individual processors. At this stage, one redistribution is performed followed by sequentially

solving the subtasks.

Our focus in this chapter is in designing strategies that have practical e�ciency on par-

allel computers. Therefore, we use coarse-grained distributed memory parallel computers

as our models of parallel computation as most existing parallel computers belong to this

category. A coarse-grained parallel computer consists of several relatively powerful pro-

cessors connected by an interconnection network. Instead of making speci�c assumptions

about the network connecting processors, we describe our algorithms in terms of some basic

communication primitives. The running time of our algorithms on a speci�c interconnec-

tion network can be easily derived by substituting the running times of the communication

primitives. We provide such an analysis for hypercubes and meshes.

6.2 Concatenated Parallelism

A generic divide and conquer algorithm divides a given task into a number of subtasks which

are solved recursively until the size of the subtasks is small enough to be solved directly.

Consider a task of size N on p processors, initially distributed such that each processor has
N
p elements. Without loss of generality, assume that both N and p are powers of 2. For

convenience of presentation, assume that a task of size S is divided into two subtasks S1
and S2. We are considering problems with jS1j+ jS2j � jSj, where jSj denotes the size of S.
At stage i (0 � i < logN) of the subdivision, 2i subtasks are created. Our technique can be

extended to problems in which the number of subtasks is more than two or the sum of the

sizes of the subtasks is larger than the size of the parent task (e.g. binary space partitions).

There are two conventional approaches to solving a given number of tasks in paral-

lel: Task parallelism and Data parallelism. We describe each of them below and provide

a comparison with Concatenated parallelism that we propose in this chapter. The bene�t
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of concatenated parallelism, as will be clear from the discussion below, comes from elim-

inating repeated redistributions of subtasks and providing load balancing. Concatenated

Parallelism is decidedly superior to Task Parallelism only when the time required to divide

a task is linear in the size of the task or close to linear. However, this restriction is valid

for a large variety of practical and useful problems.

In task parallel execution, a di�erent group of processors is allocated for each task and

all the tasks are executed in parallel. A task parallel divide and conquer algorithm divides

the initial task S, using all the p processors. After the subdivision of S into two subtasks S1
and S2, each of these will be allocated to a di�erent subgroup of processors. Two allocation

schemes are possible: either the processors are divided into two equal sized subgroups, or

processor subdivision is proportional to the sizes of S1 and S2. The choice depends on

topological considerations for a given architecture. This process is repeated recursively

until there are p subtasks, one on each processor. A sequential algorithm is now used to

solve the subtasks.

P2P1 P3 P4 P5 P6 P7P0

Redistribution at this stage

Level 2

Level 1

Level 0

Level 3

Figure 6.1: Illustration of Concatenated parallelism for p = 8.

When a task S of size N is divided into two subtasks S1 and S2, each processor will

have some data of both the subtasks. Moving the subtasks to di�erent processor groups

causes redistribution of data, which can be performed using the Transportation Primitive

outlined in Section 2. Because the total amount of data on each processor is O(Np ), such a

redistribution cost is proportional to N on both hypercubes and meshes. If the sequential

cost of dividing the task S is O(N�) for some � > 1, this cost dominates the cost of

redistribution. In this case, strategies to reduce redistribution cost will not be e�ective. If

� = 1, the cost of redistribution can no longer be ignored. Also, the constant involved in

the redistribution cost (which requires communication) is typically larger than the constant

in the subdivision cost (in which the dominant term is usually due to computation) by

an order of magnitude. Due to this reason, the communication cost cannot be ignored in



CHAPTER 6. CONCATENATED PARALLELISM 81

practice for some small values of � greater than 1. Tasks where the subdivision cost is like

O(N logN) can potentially bene�t by reducing the redistribution cost for practical values

of N .

A data parallel algorithm solves one task after another in parallel using all p processors.

A task S is subdivided into two and kept locally. Given tasks S1; S2; : : :S2i distributed

on p processors, after i subdivisions, the tasks are further subdivided one after another.

Each processor has a portion of each of the subtasks. There are two drawbacks to this

approach: The distribution of each subtask across processors may not be uniform. This

creates problems due to load imbalance. Also, since the sizes of the subtasks keep decreasing,

the \grain-size" of the computation (size of the problem on one processor) keeps reducing.

Because unit communication is more expensive than unit computation by two to three

orders of magnitude, there is a threshold grain-size below which the communication overhead

severely limits any bene�ts due to parallelization.

In concatenated parallelism, all problems are solved together using all the p processors.

A task is divided into subtasks on each processor and subtasks are kept locally. A processor

contains portions of each of the 2i subtasks at the ith level, as shown in Figure 6.1. All

k (1 � k � 2i) subtasks are solved together in parallel using all the p processors. This

process of dividing a task into subtasks is repeated until a stage is reached where enough

subtasks have been created to be distributed to individual processors and solved sequentially.

The �rst such stage is reached at the log pth level. At this stage there are p subtasks,

distributed across all the processors. A redistribution step can gather a subtask on each

processor. This works well when subdivision of tasks leads to balanced subtasks. However,

when dealing with unbalanced tasks, this can lead to grave load imbalance. This can be

recti�ed by using concatenated parallelism further, continuing to divide the tasks beyond

log p levels. This helps to achieve a better load balance as relatively �ne-grained tasks are

being gathered for allocation to processors. Apart from load balancing considerations, the

level at which concatenated parallelism should be stopped and redistribution done depends

on the comparative cost of task subdivision versus task redistribution. A later section

describes redistribution strategies and criteria for applying redistribution. The framework

for Concatenated Parallelism is illustrated in Figure 6.2.

At every stage, a processor works with N
p elements even though they might belong to

di�erent subtasks. This is an important feature of the algorithm because it guarantees load

balance at every stage even though individual subtasks are not balanced. Another view of

the Concatenated Parallelism is that the grain-size is always N
p and never decreases irre-

spective of how small the individual subtasks are. Divide and conquer algorithms resulting

in unbalanced or randomized subdivisions especially bene�t from this algorithm.

We distinguish between three di�erent types of divide and conquer trees: deterministic

balanced trees, deterministic unbalanced trees and randomized trees. A generic divide

and conquer algorithm for Task Parallelism is modeled by the recurrence relation which

can be written as T (N; p) = max fT (x; b�pc); T (N � x; d(1� �)p)eg + f(N; p) + g(N; p),

where � is a factor governing processor allocation, f(N; p) is the computation cost and

g(N; p) is the communication cost in dividing a task of size N on p processors. A generic

recurrence relation for Data Parallelism is T (N; p) = T (x; p) + T (N � x; p) + f(N; p) +

g(N; p). In Concatenated parallelism all tasks at each stage are solved together spooling

the communication, unlike the case of Data Parallelism, where tasks are solved one after
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Algorithm 11 Concatenated parallel algorithm

N : Total size of the task.

p : Total number of processors labeled from 0 to p� 1.

f(s; p) : Computation work for a task of size sp distributed on p processors.

g(s; p) : Communication required along with performing f(s; p).

h(s; p) : Redistribution cost for tasks with total size s on p processors.

Qj : size of the task j, 1 � j � 2k, at stage k. Initially k=0 and jQ1j = N .

x : 1 � x < N , a task of size N splits into subproblems of size x and N � x.

K : A value for jQjj below which partitioning will stop.

done = false

while(! done)

while (
P

j g(Qj; p) < h(
P

j Qj ; p) and maxj jQj j > K)

Step 1. Split each of the j tasks into two subtasks by appropriate

subdivision of Qj on all the processors. Increment k by 1.

/*Redistribution phase */

If maxj jQj j < K then

Step 2. Redistribute the task Qj , 1 � j � 2k to individual processors.

Step 3. done = true

else

Step 4. Redistribute the problems Qj , 1 � j � 2k to processor pools

of size P
2m

for a maximum m, 1 � m � logP such that
P

j g(Qj;
p
2m

) < h(
P

j Qj ;
p
2m

).

Step 5. Set p to p
2m

.

Step 6. If (m == log P ) done = true.

Figure 6.2: Concatenated parallel algorithm
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another. As discussed previously, we only consider problems for which f(N; p) = O(Np ).

g(N; p) is chosen to be O((ts + tw) log p) in our analysis on both hypercubes and meshes,

because the communication required for subdividing a task typically requires a combination

of Parallel Pre�x, Combine and Broadcast operations for many applications. Of course,

given a particular problem, analysis speci�c to that problem can always be performed.

In a deterministic balanced divide and conquer algorithm, problems are split into two

halves, and therefore x is N
2
. In the other two categories, x has no guaranteed size. In

deterministic unbalanced trees, x can be any integer from 1 to N . However, the value of x

is completely determined by the input and two runs on the same input will give the same

value of x. In randomized trees, x can take any value from 1 to N with some probability

associated with each possible value. Two runs on the same input may lead to two di�erent

values of x. In studying Task Parallelism, we either allocate half the processors to each

subproblem in which case � will be set to 1
2
, or allocate processors proportional to the

subtask sizes in which case � will be set to x
N .

At a stage i, in Concatenated Parallelism, each of the 2i subtasks need to be divided

into two subtasks. This requires communication between processors which can be spooled

together. Since a processor contains portions of all tasks, it might need to broadcast data for

a subtask. Di�erent processors might end up broadcasting elements for di�erent subtasks.

To avoid 2i broadcasts, we adopt the following strategy for spooling communication: Each

processor has an array of size 2i corresponding to the 2i subtasks, with all elements initialized

to zero. If a processor has the element to broadcast for a subtask, it �lls the corresponding

element of the array with that element. By doing a Combine operation on this array using

the `+' operation, the required elements for all subtasks are stored on each processor.

Our goal is to analyze Concatenated Parallelism and compare it with both Task Paral-

lelism and Data Parallelism. One can easily show that Data Parallelism always performs

worse than Concatenated Parallelism irrespective of the nature of the tree, size of the prob-

lem or number of processors. Consider a case when the divide and conquer tree is evaluated

up to i levels and let the 2i subtasks be S1; S2; : : :S2i . Let Sj
k refer to the portion of the

jth subtask on the kth processor, 0 � k < p and 1 � i � 2i. Let Tdp denote the computa-

tion time to divide all these subtasks into further subtasks. Since tasks are performed in

sequence and each subsequent task is solved on all p processors, the computation time for

subtask j is maxp�1k=0jSjkj. The time for all the 2i tasks is
P2i

j=1max
p�1
k=0jSjkj. It is easily

seen that Tdp � O(Np ). The equality is obtained when subtasks are uniformly distributed

among the processors. In Concatenated Parallelism, the computation time is O(Np ). Also,

in Concatenated Parallelism, the time spent in necessary communication for subdividing

the subtasks is always smaller than communication time spent in Data Parallelism. This

is because communication for all the subtasks is spooled together and this saves expen-

sive set-up costs in individual communications. One can easily see that even when the

sequential cost of subdividing a task of size N is any general function of N (not necessarily

linear), Concatenated Parallelism always provides at least as good a load balance as Data

Parallelism (maxp�1k=0

P2i

j=1 (jSjkj)
� � P2i

j=1max
p�1
k=0 (jSjk j)

�
). Therefore, we limit our the-

oretical and experimental comparisons to comparing Concatenated Parallelism with Task

Parallelism only.
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The following sections present each of the three categories of divide and conquer algo-

rithms. For each category, we analyze Concatenated Parallelism and Task Parallelism with

the assumption that f(N; p) = O(Np ) and g(N; p) = O((ts + tw) log p). A di�erent g(N; p)

can be analyzed for a problem if the need arises. This is done in a later section for construc-

tion of multidimensional binary search trees, where this function is O((ts + tw) log p logN).

Example applications follow each category and performance results on the CM-5 are pro-

vided to supplement the analysis.

6.3 Deterministic Balanced Parallel Divide and Conquer

Deterministic balanced divide and conquer algorithms result in the subdivision of a task of

size N into two subtasks of size N
2
, at each stage. Thus after i iterations, each of the 2i

subtasks will have size N
2i
. Every processor contains portions of each subtask. A balanced

divide and conquer algorithm results in p perfectly balanced tasks after log p iterations.

An appropriate criteria is used for redistributing the p subtasks to individual processors.

At a stage i,
P2i

k=0 f(
N
2i
; p) is the computation cost to achieve the subdivision of all tasks.

Communication is combined for all the tasks. After log p steps of the subdivision, a �nal

redistribution cost h(N; p) is incurred.

The running time to create p subtasks, one for each processor, using spooling of com-

munication for deterministic balanced divide and conquer is
Plogp�1

i=0 O(2i N
2ip

+ ts log p +

tw2
i log p) on both a hypercube and a mesh. Adding h(N; p) = O(tsp + tw

N
p ) on a hyper-

cube and O(ts
p
p + tw

Np
p) on a mesh, we obtain O(Np log p + ts(p + log2p) + tw

N
p ) as the

running time on a hypercube and O(Np log p + ts(
p
p + log2p) + tw

Np
p) on a mesh, for a

deterministic balanced divide and conquer algorithm.

In a task parallel approach which divides a processor subgroup equally at each level,

there are 2i subtasks, each being distributed on processor subgroups of size p
2i

at some

level i. Each subtask has size N
2i

which needs to be solved in parallel on the processor

subgroup. We obtain the running time for this method using the recurrence relation for

Task Parallelism as
Plog p�1

i=0 O(N
2i
= p
2i
+ ts(

p
2i
+log p

2i
)+ tw(log

p
2i
+ N

p )) on a hypercube. The

redistribution cost is a part of the recurrence relation in this case. This gives the running

time as O(N
p log p+ ts(p+log2p)+ tw

N
p log p). The corresponding running time on a mesh is

Plogp�1
i=0 O(N

2i
= p
2i
+ts(

q
p
2i
+log p

2i
)+tw(log

p
2i
+N

p

q
p
2i
)) = O(Np log p+ts(

p
p+log2p)+tw

Np
p).

Note that this category yields the best case for task parallelism. However, concatenated

parallelism does better in this case since it reduces the redistribution costs from N
p log p to

N
p on a hypercube.

6.3.1 Applications - Multidimensional Binary Search trees

Construction of multidimensional binary search trees (abbreviated k-d trees) [AfAGR96a],

in which dividing a task is based on the median element of the corresponding data set, uses

a balanced divide and conquer algorithm. The root of the k-d tree corresponds to the set

of all points. Assume k dimensional data with d1; d2; : : : ; dk as the dimensions. Choose

a dimension dl and partition points into two sets, one containing points with coordinates
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less than or equal to this median along dimension dl and another containing points with

coordinates greater than the median. The two partitions are represented by the children of

the root node. The tree is built recursively until each node corresponds to a prespeci�ed

number of points.

Consider the construction of a k-d tree of N points on p processors with N
p points on

each processor initially. We use a randomized median �nding algorithm [AfAGR96c] to

calculate the median for points along dimension d1. Points are divided into two subsets, S1
and S2, using the median. S1 contains points with their d1 coordinate values less than or

equal to the median and S2 contains points having their d1 coordinate values greater than

the median. Considering the processors partitioned into two halves, task parallelism would

gather S1 on the lower half subgroup of processors and S2 on the upper half subgroup of

processors. This process is repeated recursively, changing dimensions in a cyclic manner to

�nd the median, until each processor has a subset and each processor subgroup contains a

single processor. A sequential algorithm is then applied to solve the problem locally.

Thus, for k-d tree construction, f(N; p) is the cost of parallel median �nding of N

elements on p processors plus the cost of partitioning local data into two portions, one

containing elements less than or equal to the median and another containing elements

greater than the median. g(N; p) is the associated communication cost. For this method,

f(N; p) is O(Np ) and g(N; p) is O((ts+ tw) log p logN). Using Task Parallelism, building the

�rst log p levels of the tree on a hypercube requires
Plog p�1

i=0 O(N
2i
= p
2i
+(ts+tw) log

p
2i
log N

2i
+

kN
p + ts

p
2i
+ tw

kN
p ) = O(kNp log p+ ts(p+ log2 p logN) + tw(k

N
p log p+ log2 p logN)) time.

The time required on a mesh is O(kNp log p+ ts(
p
p+ log2 p logN)+ tw(

kNp
p + log2 p logN)).

A Concatenated Parallel algorithm divides the tasks across each processor. Starting

with a single task, subdivision is applied recursively to each subset resulting in 2i subsets

after i partitions. After redistribution, a sequential algorithm is used on each processor to

construct the k-d tree locally. In this case, communication for the 2i subtasks is combined

together using the technique described in an earlier section. The cost of median �nding at

level i is O(N
p + ts log p logN + tw2

i log p logN) for a hypercube and O(Np + ts log p logN +

tw2
i log p logN) for a mesh. Median �nding is done for each partition and the data in

a partition is automatically subpartitioned into two subsets in the process. Cost of the

redistribution is O(kNp + tsp+ tw
kN
p ) on a hypercube and O(kNp + ts

p
p+ tw

kNp
p ) on a mesh.

Combining these costs, the running time for a deterministic balanced divide and conquer

algorithm using concatenated parallelism is O(Np (log p+ k) + ts(p+ log2p logN)+ tw(
kN
p +

p log p logN)) on a hypercube. The corresponding time on a mesh is O(Np (log p + k) +

ts(
p
p+ log2p logN) + tw(

kNp
p + p log p logN)).

The data movement due to redistribution reduces by a factor of log p on hypercubes

by using Concatenated Parallelism. The cost of redistribution does not reduce on the

mesh. Computation cost reduces from O(Np k log p) to O(
N
p (k+ log p)) when Concatenated

Parallelism is used. Therefore, higher dimensional data results in even better performance

by using Concatenated parallelism.

6.3.2 Experimental Results
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Figure 6.3: Comparison of Task Parallelism and Concatenated Parallelism for balanced

divide and conquer in construction of k-d trees for di�erent values of N=p.

We have implemented the construction of two dimensional binary search trees on the CM-

5. Two algorithms are compared: Task parallelism with processor groups being divided

equally into two subgroups at each stage and Concatenated parallel. Figure 6.3 presents a

comparison of the two approaches for various values of N
p for tree construction up to log p

levels. The results show that concatenated parallelism works better than task parallelism

for balanced divide and conquer only when there are a large number of points on a processor.

The gains from reducing redistribution cost can be obtained only when the data is large in

the balanced case. In the unbalanced case, as we will observe in a later section, come both

from reducing redistribution cost and providing good load balance. For higher dimensional

data, the cost of redistribution is more signi�cant since it involves a higher volume of data

to be redistributed and hence Concatenated Parallelism is expected to perform even better.

Figure 6.4 shows the component times for k-d tree construction up to log p levels with

N = 2M and 4M. The total time for tree construction is divided into computation time

and communication time for median �nding at all levels and data redistribution time. We

observe that redistribution time for Concatenated Parallelism is signi�cantly lower than for

Task Parallelism. The computation time for Concatenated Parallelism is slightly higher due

to added list management. Concatenated Parallelism involves all p processors at all stages

for communication whereas for Task Parallelism communication occurs in processor sub-

groups. Certain parallel machines (e.g CM-5) use a special network when all the processors

are participating in the communication. The cost of global communication is lower in such

a case.

6.4 Deterministic Unbalanced Parallel Divide and Conquer

Subdivision of tasks in certain divide and conquer algorithms result in subtasks of di�erent

sizes. The subdivision at each level remains unchanged for a given input and hence the

algorithms are deterministic in nature. Using Concatenated parallelism, the work associated

with the portions of subtasks on a processor may vary as a result of such subdivisions, but
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Figure 6.4: Time for tree construction up to log p levels divided into computation time for

splitting the points plus the associated communication time and cost of redistribution for

N = 2M and 4M on 8, 16, 32 and 64 processors. (TP: Task Parallel, CP: Concatenated

Parallel)

each processor still works on N
p elements. This method provides good load balancing for

unbalanced parallel divide and conquer.

The number of points belonging to a subset may be highly imbalanced. Consider a

problem of size N at some stage of the subdivision process. Suppose the problem is divided

into two subproblems of sizes c and N � c, where c is a constant. Note that this de�nition

will not subdivide a problem of size c further. This will lead to the worst-case analysis as

the problem size is reduced by a constant. There is only one task to be solved at each stage.

Concatenated Parallelism works the same as Data Parallelism in this worst case. A task is

subdivided into two tasks at each stage. Let K be the size of a task after which it would not

be subdivided. Subdivision of tasks is continued till a stage where all tasks have a size at

least K. The value of K is set appropriately so that there are at least p subtasks and these

can be allocated to processors to provide adequate load balance. A choice of K = N
p is good

because it guarantees that no processor will have more than 2N
p elements. At a level i, all the

p processors are working on a problem of sizeN�ic. Choosing values of f(N; p) asO(Np ) and
g(N; p) as O((ts+ tw) log p) the running time of a Concatenated Parallel unbalanced divide

and conquer is O(N
2

p2 )+
PdN�K

c
e�1

i=0
N�ic
p +(ts+tw) log p. Redistribution cost is O(tsp+tw

N
p )

on a hypercube and O(tsp+ tw
Np
p) on a mesh. The time for unbalanced divide and conquer

using Concatenated Parallelism is O(N
2

p + ts(p +
N�K
c log p) + tw(

N�K
c log p + N

p )) on a

hypercube and O(N
2

p + ts(p+
N�K
c log p) + tw(

N�K
c log p+ Np

p)) on a mesh.

Task Parallelism can either partition the processors into two equal subgroups and

allocate each to a subtask, or processor allocation to subgroups can be done propor-

tional to subtask sizes. Unbalanced subdivisions lead to idling of processors as some

processors have more work to do than others in the case where half of the processors

are allocated to a subgroup. The earlier the imbalance occurs while subdividing, the
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worse the performance will be because larger subgroups of processors are allocated dur-

ing the earlier levels. Assume that a problem of size N is subdivided into subprob-

lems of sizes c and N � c, represented by the following recurrence relation T (N; p) =

T (N � c; p
2
) + f(N; p) + g(N; p) + h(N; p). The redistribution cost at each level can be

bounded by an all-to-all communication using the transportation primitive. Substituting

the generic values for f(N; p) and g(N; p) de�ned earlier, we obtain a running time to create

p subtasks as
Plogp�1

i=0 (N � ic)= p
2i
+ (ts + tw) log

p
2i
+ ts

p
2i
+ tw(N � ic)= p

2i
on a hypercube

and
Plog p�1

i=0 (N � ic)= p
2i
+ (ts + tw) log

p
2i
+ ts
q

p
2i
+ tw(N � ic)=

q
p
2i
on a mesh. After log p

iterations, one processor contains a task of size O(N � c log p). The running time for deter-

ministic unbalanced divide and conquer algorithms using Task Parallelism is then O((N �
c log p)2+ ts(p+log2p)+ twN) on a hypercube and O((N�c log p)2+ ts(

p
p+log2p)+ twN)

on a mesh.

The computation cost using Task Parallelism is O((N � c log p)2). This is reduced to

O(N
2

p ) using Concatenated Parallelism. Processor partitioning proportional to subproblem

sizes for Task Parallelism would lead to allocating a processor to a subproblem of size c.

This would result in O((N � cp)2) computation, not much better than the other case of

Task Parallelism. Concatenated Parallelism provides better load balance than both kinds

of Task Parallelism. Redistribution cost is reduced from O(N) to O(Np ) on a hypercube,

and to O( Np
p) on a mesh by using Concatenated Parallelism.

Algorithms for building quadtrees and �nding the convex hull using the quickhull tech-

nique follow the unbalanced divide and conquer paradigm. We describe both these algo-

rithms below.

6.4.1 Applications - Quadtrees and QuickHull

Consider building a quadtree for a set of points S in a R � R planar space [Sam84]. Four

partitions each of size R
2
� R

2
are created using the median coordinates of the space. This

process is repeated recursively until each point in the set belongs to a separate partition. At

each stage of the subdivision the number of points belonging to each partition depends on

the input data. It can potentially lead to unbalanced partitions and hence an unbalanced

tree.

GivenN points and p processors with N
p points on each processor initially, each processor

partitions its points into four subsets, each of the subsets corresponding to points lying in

a quadrant of the given sample space. Each subset corresponds to a child node in the tree

rooted with a node representing a subspace with dimensions R �R for some m > 0. Each

of these subsets is partitioned recursively giving rise to 4i subsets after the ith stage of the

subdivision. An appropriate stage is chosen to redistribute subsets to individual processors

to be solved sequentially.

In computational geometry, algorithms for �nding the convex hull of points in space

[PS85], like QuickHull, follow the divide and conquer approach of quicksort. In this case

the subpartitions at any stage of partitioning are not guaranteed to be balanced as they

depend on the input data. It follows that, given n points, the sequential algorithm for

quickhull takes O(n2) worst case time, the average case run time being O(n logn).

The convex hull of a set S containing N points is the smallest convex set containing
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S. It is represented by a polygonal chain 1 which contains the points on the convex hull.

The Quickhull algorithm partitions S into two subsets, each of which computes a polygonal

chain whose concatenation gives the convex hull polygon. The initial partition is determined

by the line passing through l and r, the two points with the minimum and the maximum

x-coordinates. Let S(1) be the subset of the points on or above the line lr and let S(2)

be the subset of points below lr. A subset S(k) is processed in the following manner: A

point h 2 S(k) is determined such that the triangle (hlr) has the maximum area among

all the triangles (plr), p 2 S(k). h is a point on the convex hull. The next step is to

construct two lines, one directed from l to h, (lh), and another directed from h to r, (hr).

Points belonging to S(k) are tested with respect to these two lines. Clearly, points in the

triangle (lrh) are interior points and have to be discarded. Points not to the left of hr but

lying on or to the left of lh form a set S(k;1). S(k;2) is similarly formed by the points not

to the left of lh but on or to the left of hr. This process is repeated recursively on the

newly formed subsets. A parallel algorithm for quickhull will start by �nding the points

with minimum and maximum x coordinates on all processors and performing a Combine

operation to �nd the global minimum, minx;and the global maximum maxx. These two

points are on the hull as they are at extremities of the set. Each processor �nds the point

h, that gives the maximum area triangle with the line passing through minx and maxx.

Another Combine operation �nds the maximum, hmax, among all the h points. hmax is a

point on the hull. Points on the right of hmaxmaxx and to the left of minxhmax form a

subpartition. Another subpartition is de�ned for the points on the right of minxhmax but

lying to the left of hmaxmaxx. Each of these subsets is solved in parallel recursively on all p

processors, creating 2i subsets after i steps of the algorithm. An appropriate stage is chosen

for redistribution of subsets to individual processors, which apply the sequential algorithm

to each subset separately.

6.4.2 Experimental Results

We present results for the quickhull algorithm on the CM-5. A concatenated parallel quick-

hull is compared with a task parallel quickhull implementation in Figure 6.5. The convex

hull is constructed for 128K, 512K and 2M random points on 4, 8, 16, 32, 64 and 128 pro-

cessors. Concatenated parallel algorithm clearly performs much better than a task parallel

quickhull. We observe from the results that the gains of Concatenated Parallelism over

Task Parallelism are diminishing with the increase in p. A smaller value of N
p results in

lesser load imbalance for Task Parallelism, a factor where Concatenated Parallelism gains

the most. Redistribution costs are also lower and the gains from lowering this cost are also

lower. These observations are endorsed by the analysis of both the methods in the previous

section.

Similar results on experiments with building of quadtrees lead us to the conclusion that

Concatenated Parallelism parallelizes well for deterministic unbalanced divide and conquer

methods.

1A chain is a planar straight-line graph with vertex set u1; u2; : : : ; up and edge set (ui; ui+1): (1 � i �
p � 1)
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Figure 6.5: Comparison of Task Parallelism and Concatenated Parallelism for unbalanced

divide and conquer in quickhull for N = 128K, 512K and 2M random data.

6.5 Randomized Parallel Divide and Conquer

The sizes of tasks after subdivision into two subtasks can be considered as random variables

in some divide and conquer algorithms. Randomized quicksort is such an application. The

subdivision process does not guarantee balanced partitions. However, something can be

said about the expected value of the subtasks and hence about the number of iterations

required to reduce the problem size to a speci�ed level so that redistribution can be done.

In this case the subtask sizes are a random variables. For the same input we could get

di�erent subtask sizes, because the criteria for subdivision is random and each element in

the set is equally likely to be picked. In cases of unbalanced partitioning, Concatenated

Parallelism will perform better as seen in the previous section.

In a randomized divide and conquer tree, the sizes of the subtasks of a given task depend

on random choices made in the algorithm. We again limit our attention to the case where

each task divides into two subtasks and sum of the sizes of the subtasks is the same as the

size of the parent task. Suppose a task of size N is split into two subtasks. The sizes of the

subtasks are given by x and N � x, where x is a random variable that can take any value

between 1 and N . There is a probability associated with x assuming each of the allowable

values. The probability distribution is often uniform. For example in quicksort, a random

element from a given array is picked as a pivot and used to partition the array into two

subarrays.

For randomized divide and conquer trees with uniform distributions and for which the

cost of dividing a set is linear in the size of the set, a sequential analysis similar to quick-

sort shows that the expected running time is O(N logN), even though the worst-case run

time is O(N2). However, there is a severe drawback to using Task Parallelism with equal

subdivision of processors for randomized trees. Suppose that the subtask sizes when the

root of the tree is subdivided are extremely unbalanced. This does not a�ect the expected

running time of the subtasks in the sequential algorithm. However, half the processors are

committed to a small subtask in Task Parallelism and the e�ect of this allocation will have

a signi�cant e�ect on the running times of all the subtasks in the subtree of the larger

subtask.
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For uniform distributions, the expected size of a subtask at level i of the tree is N
2i
.

However, the variance in the sizes of the subtasks at level i of the tree decreases with

increase in i. When a task of size N is split into two subtasks, the variance in the sizes of

the subtasks can be shown to be O(N), of the same order as the expected size. Concatenated

Parallelism exploits this by advancing on the tree, level by level in parallel using all the

processors until a balanced distribution of the subtasks to individual processors is possible.

Since the variance decreases with levels, one can expect the performance of Concatenated

Parallelism on randomized trees with uniform distribution to be similar to its performance

on deterministic balanced trees.

6.5.1 Applications - Quicksort

Consider sorting a set S of N numbers in ascending order. Pick an element x from S and

treat it as a pivot to partition S into two subsets S1. containing elements smaller than or

equal to x, and S2, containing the remaining elements. This process is recursively applied

to S1 and S2 to get the sorted order for S.

Assume a set S containingN elements divided equally among p processors. To parallelize

quicksort on p processors assume that each processor contains N
p elements to begin with.

Pick a pivot at random from any of the p processors and broadcast it to all others. Each

processor subdivides their elements using this pivot. This process is repeated recursively

for each of the two subsets of elements. After i such subdivisions there are 2i subsets to

work with. An appropriate stage is chosen to redistribute these subsets to processors which

apply the sequential quicksort algorithm to the sets allocated on them.
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Figure 6.6: Comparison of Task Parallelism allocating half the processors to a subproblem

(A), Task Parallelism with processor allocation proportional to subproblem sizes (B) and

Concatenated Parallelism for randomized divide and conquer in quicksort for N = 128K,

512K and 2M random data.

6.5.2 Experimental Results

Figure 6.6 presents a comparison between a task parallel and a concatenated parallel im-

plementation of quicksort. We report results of experiments on sorting 128K, 512K and 2M
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random 
oating point numbers using 4, 8, 16, 32 and 64 processors. Task Parallelism with

processor allocation proportional to the problem size [Task Parallelism (B)] performs better

than Task Parallelism where half the processors are allocated to each subproblem [Task

Parallelism (A)]. Approach (A) has higher imbalance due to which local sorting becomes

a signi�cant factor since some processors might have many more elements than others.

Concatenated Parallelism has a lower running time than both the other methods. Random-

ized partitioning strategies can result in unbalanced partitions at each level leading to load

imbalance and idling of processors. Load balancing is one advantage that Concatenated

Parallelism o�ers to parallelize randomized divide and conquer methods. For Task Paral-

lelism, processor allocation proportional to subproblem sizes may not always be possible

due to topological considerations, or whenever possible may have higher overheads.

6.6 Redistribution Strategies

Subdivision of tasks into subtasks should be stopped as soon as the remaining subtasks can

be distributed to individual processors. Redistribution of subtasks to processors occurs at

a level when there are at least p subtasks and the size of each has reached a prespeci�ed

value so that they can be distributed to processors to be solved sequentially. This constant

value determines the \grain size" of the largest task that we have in a pool of tasks ready

for redistribution. Redistribution can potentially be done when the cost of subdividing a

problem is more than the cost of redistribution. Consider an example where logp
2

iterations

of the subdivision have been performed and
p
p subtasks created. If it is the case that

partitioning costs at this stage are higher than redistribution costs then the
p
p tasks can

be redistributed to subpools of processors each of size p
2m

, 0 < m � log p. However,

redistribution should only be done when each subgroup of processors can be allocated

approximately equal work.

Using N
p as the size of the largest subtask before redistribution this will ensure that

no processor gets tasks whose sizes sum up to more than 2N
p . A load balancing algorithm

is used to allocate the subtasks to processors such that each processor gets nearly equal

amount of work. There are various load balancing strategies that can be used in this case.

We describe two techniques below which are illustrated in Figure 6.7.

1. Order preserving combinations � At a stage k, when redistribution is to be

performed, order the list of 2k (0 to 2k � 1) subtasks by using their indices in the list.

The average work associated with a task on a processor should be 2mN
p ; 0 < m � log p,

for a processor pool of size p
2m

. Beginning with the leftmost task entry in the ordered

list, we can scan the task list from left to right allocating a task to a processor(pool)

until the total work allocated to a processor (pool) is no more than the average value.

However, this technique does not lead to the optimal load balance because we can only

guarantee that the total work on a processor after the redistribution will not be more

than twice the average work. This technique preserves ordering of the subproblems

which might be essential in some applications where data ordering is important.

2. Relative order combinations � An idea similar to the one used for modi�ed order
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maintaining load balance [AfAGR96c] can be used here. At stage k, the 2k subtasks

are sorted in increasing order by the work associated with them. Task allocation to

a processor is guided by two pointers, one placed at the start and another at the end

of the sorted list. Problems are combined by moving the left pointer to the right and

the right pointer to the left, allocating tasks to processors till each processor contains

at least the average work. This strategy helps in allocating tasks to processors with

total size on each processor as close to average as possible. Larger tasks are combined

with small tasks and towards the end smaller tasks are aggregated which would help

in not exceeding the average value by much. However, it destroys the ordering of the

subtasks which might be of importance in some applications. If this happens at an

intermediate level of the partitioning the ordering of tasks can be regained by another

redistribution step.
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Figure 6.7: Illustration of load balancing during redistribution of tasks (a) Order preserving

(b) Relative order combinations. Task allocation to processors is more balanced in (b).

6.7 Conclusions

We have proposed a new strategy called Concatenated Parallelism to e�ciently parallelize

applications resulting in divide and conquer trees. We compare this strategy to the two tra-

ditional approaches used in solving such problems � Task Parallelism and Data Parallelism.

Task Parallelism causes signi�cant redistribution of data at every level of the divide and

conquer tree. However, it has the advantage that subtasks are uniformly distributed and

allocated to smaller groups of processors. Data Parallelism avoids redistribution of data.

But, it causes load imbalance and solves smaller sized subtasks using all processors, thus

reducing practical e�ciency. Concatenated Parallelism attempts to combine the advantages
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of both the approaches. It avoids redistribution of data, and by combining the computation

and communication of the subtasks, avoids load imbalance and grain-size problems. The

minimum grain-size N
p , required for e�ective parallelization of an algorithm typically in-

creases with the value of p. Data Parallelism decreases the grain-size and keeps the number

of processors �xed. Concatenate Parallelism maintains the grain-size and keeps the number

of processors �xed. However, Task Parallelism maintains the grain-size and decreases the

number of processors, thus making the grain-size increasingly more e�ective. This is the

only advantage of Task Parallelism over Concatenated Parallelism.

Concatenated Parallelism always yields better results than Data Parallelism irrespective

of the nature of the divide and conquer tree. This is true irrespective of any parameter

including the number of children per node, amount of work involved in dividing a task and

the distribution of the sizes of the subtasks. It also holds true irrespective of the divide and

conquer tree being balanced, unbalanced or randomized.

Concatenated Parallelism can outperform Task Parallelism only when the cost of redis-

tribution of data is signi�cant when compared to the cost of dividing the subtasks. This

depends on such parameters as the topology of the parallel computer and the relative values

of communication set-up times and unit transmission and computation costs. Certainly, for

problems in which the cost of dividing the subtasks is linear, redistribution costs are signif-

icant and Concatenated Parallelism is bene�cial. However, this may be true for practical

values of problem sizes even when the subdivision cost is not linear but a function close to

linear. We have shown several important problems for which Concatenated Parallelism has

advantages � quicksort, quickhull, construction of quadtrees, octrees and multidimensional

binary search trees.

The advantage of Concatenated Parallelism over Task Parallelism (when such an advan-

tage exists) depends upon the nature of the divide and conquer tree. For balanced tree, the

redistribution cost is reduced by a factor of log p on a hypercube while there is no advan-

tages on a mesh. For unbalanced problems, the advantage gained depends upon the e�ect

of imbalance. In the worst case, Task Parallelism fails to provide any speedup at all while

Concatenated Parallelism always provides linear speedup. Task Parallelism is sensitive to

imbalance where as imbalance has no e�ect on Concatenated Parallelism. For randomized

divide and conquer trees, Concatenated Parallelism takes advantage of the fact that the

variance of the sizes of the subtasks at the ith level of the divide and conquer tree reduces

with increase in i. Since redistribution is performed only at the last stage, the subtask sizes

allocated to individual processors are relatively uniform. Task Parallelism is a�ected due

to high variance in subtasks sizes close to the root of the divide and conquer tree. This

can be remedied by using an allocation of processors proportional to the individual subtask

sizes but this strategy will not yield ideal results because allocation of processors can not

be fractional and allocation that does not respect the topology often leads to congestion

problems. It may also be unnatural and hard to program.

There are still several issues that remain to be investigated. There is considerable choice

in redistribution strategies for Concatenated Parallelism. Redistribution should be done as

soon as a balanced allocation to individual processors is possible, in order to extract the

full bene�ts of Concatenated Parallelism. It would be interesting to investigate provably

optimal redistribution strategies. Another interesting avenue to explore is a hybrid approach

combining Concatenated Parallelism with Task Parallelism. One strategy is to continue
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with Concatenated Parallelism until the communication cost at the next stage of subdivision

exceeds redistribution cost. At this stage, processors should be grouped into as many groups

of equal size as possible such that a fair redistribution can be done. After the redistribution,

the same strategy is recursively applied to each group. Such a strategy can potentially

obtain the full bene�ts of both Concatenated and Task parallelism by dynamically switching

between the strategies during the execution of the divide and conquer algorithm. @



Chapter 7

Queries

Several issues need to be taken into account for the choice of an appropriate data structure

when queries have to be answered on them. Some of these are summarized below:

� Which of point, polyline and polygon entities can be stored and retrieved e�ciently.

� Which search operations can be performed - exact point match, range queries, polygon

queries, nearest-neighbor queries etc.

� Is the data structure based on rectangular or non-rectangular sub-division of space,

disjoint or non disjoint, regular or irregular.

� Are geometric primitives used for divisions or are arbitrary regular divisions used.

� Are non-zero sized entities, such as lines and polygons, sometimes partitioned or not.

� Is it possible to insert, delete and update entries while the structure remains balanced

?

� Suitability of the data structure for secondary storage. Whether I/O bottleneck can

be resolved by e�cient distribution or parallel I/O can be used.

� Are geometric primitives stored inside the data structure or are they indexed ?

� What is the worst case performance for building and querying the data structure ?

average case ?

� How simple or complicated are the data structure and its algorithms.

� Is input easy or hard to generate on multiple processors ?

The need for insertion and deletion of elements in data structures leads to the choice

of either a static, half dynamic or a dynamic data structure. Static data structures are

built once for a �xed set of points. Half dynamic data structures allow for insertions and

dynamic data structures allow both insertions and deletions. The important criteria in such

a choice is for reasonable update time, amount of storage required and the query time for

the important queries for that application. The following section gives a brief description of

some sample queries that have been identi�ed in the framework for hierarchical applications

described in previous chapters.
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7.1 Sample spatial queries

We describe the sample spatial queries that are required for applications surveyed in this

report. Figure 7.1 illustrates some of these queries.

(x1,y1)

(x2,y2)

(a) (b)

r

(c)

min(x),y

x, min(y)

R

(e)

(d)

(f) (g)

Figure 7.1: (a) Range query (b) Circular region query (c) min(max) query in a range

(d) intersection query (e) rectangle containment query (f) 4-nearest neighbors query (g)

polygonization

7.1.1 Point Location

Given a set of N points in k dimensions, A = f(d1i; d2i : : : dki)j0 < i < Ng, a point location
query will be to �nd an instance of a point (d1j ; d2j ; : : :dkj). Also this can be extended to

partial match queries, where we are interested in only a subset of the k dimensions. This

involves point data structures storing the indices of the point.

7.1.2 Range Query

Given a rectangular region (p1; p2; : : :pk) � (q1; q2; : : :qk), �nd all points that lie in the

hyperspace de�ned by the domain space. This query is de�ned for point data here. This

query has extensions into di�erent data types like line, polygon etc.

7.1.3 Circular region query

Given a point (x; y) in 2D-space, �nd all the points that lie in a radius r > 0 from this

point.
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7.1.4 Minimum/Maximum in a range

Find the points with minimum(maximum) x or y coordinates in a given range (x1; x2) �
(y1; y2).

7.1.5 Rectangle intersection

Given multiple rectangular regions, �nd all the points in their intersection.

7.1.6 Rectangle containment

Given a set of rectangles and a rectangle R, �nd all the rectangles enclosed in R.

7.1.7 k-nearest neighbors

Find k nearest neighboring objects to a given object. An object can be either a point, line

or a polygon.

7.1.8 Parallelopiped region query

This is a 3D region query, where an image plane and a volume data is given. We want to

�nd out the region intersected by the rays projected through the 2D image plane into the

3D volume, possibly the image plane is at an angle � to the volume space.

7.1.9 Polygonization

Determine all closed polygons formed by a collection of planar line segments.

7.1.10 Spatial Joins

Given two data sets, an element from one may be joined with an element from the other if

they cover some part of the space that is identical.



Chapter 8

Primitives, Language and

Run-time Support

8.1 Primitives required

We describe some of the primitives needed by each of the applications we have studied. The

computational phases for any application using treecodes are as follows.

1. Creating a sparse representation, a tree, from dense representation of data.

2. Data partitioning maintaining locality of reference (static partitioning).

3. Retrieving locally essential data for computation.

4. Dynamic (and incremental) load balancing to adapt to changes in processor compu-

tation load.

5. Incremental updation of locally essential data by a processor to re
ect new interac-

tions.

8.1.1 Creating a tree

The primitive Make tree() is used to construct a global representation of data on processors.

This can construct the appropriate tree suited for the application. Each processor needs

to create a tree representation of the data it contains. This is done by Create local tree(),

which takes dense representation of data on a processor and creates a hierarchical tree by

recursive subdivision of space such that each node satis�es a particular constraint.

8.1.2 Data distribution

Data distribution over P processors has to be equitable for load balance. This is achieved

by the primitive Partition data(). Data distribution needs to ensure spatial coherence to

reduce interprocessor communication. This can be speci�ed by the type of the distribution

an application needs. Regular grid distribution and Peano-Hilbert spatial ordering are

some examples. There is a portion of the tree at higher levels with incomplete information
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about its children. This is completed in the next phase, where higher and more abstract

parts of the tree are constructed by exchanging relevant information amongst processors.

Each processor now has pointers to all the data, local pointers to the data it owns and

remote to data on other processors. Data exchanges can use the primitives Send data() and

Get data().

8.1.3 Fetch locally essential data

Each processor performs computation for the data it owns. Typical interaction calculations

require o�-processor data that is not currently in the local memory. A prefetch stage of

obtaining all o�-processor data is the gathering the locally essential data. This is done

by the primitive Build locally essential tree(). By looking at the geometry of the problem

(coordinates of bodies in N-body and voxel coordinates for a ray) each processor can �gure

out the level of interaction it needs to perform. This step enables each processor to then

go and prefetch the needed data, so that computation can proceed without hindrance from

communication.

8.1.4 Incremental updates

Incremental update of tree() changes the current tree to re
ect the new position of bodies.

Using the insight that bodies change positions gradually and not drastically from one it-

eration to another, most movement of bodies will be to adjacent nodes in the tree. Each

processor uses the array of old and new coordinates to re
ect the change in the tree. This in

turn is used to incrementally adjust the tree. Increment locally essential data() is a prim-

itive that updates the locally essential data for each processor as access pattern change

due to data assignment to processors. Using a sender oriented protocol, each processor can

calculate the data it needs to send to the receiver.

8.1.5 Load Balancing

This movement of bodies changes the load characteristics on each processor. This can

be adjusted by using the next primitive, Dynamic load balance(). Once the tree has been

adjusted for the new positions of bodies, the previous run characteristics are used to ap-

proximate the load on each processor. The primitive Peano hilbert remapping() is used to

remap the spatial distribution of rays to processors in the Volume rendering application.

8.2 Usage of primitives for Volume Rendering

In this section we discuss how the primitives de�ned above are used for Volume Rendering.

Volume rendering uses hierarchical spatial enumeration of volume to optimize ray traced

composition of each pixel. Rays are �red for each pixel that traverse the volume, compositing

opacity and color for each slice it passes through. The volume data is represented as

a pyramid of hierarchy of volumes. When a ray is traced, it traverses through larger

volumes in areas of low opacity and through smaller ones in areas of higher detail. Hence an

adaptive ray tracing optimization can be performed quite easily. The primitive Make tree()

is used to construct a sparse representation of the volume data which initially is replicated
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on all processors. Eventually a parallel distribution of the volume among processors will

introduce a parallel tree building algorithm. Rays can be distributed to processors by

using the Peano-Hilbert space �lling curve which is distributed among processors by doing

a pre�x scan. This is done in Partition data(). Clearly, portions of volume data have

to be fetched from other processors for ray interactions. A prefetch phase makes all the

data locally available. The primitive Build locally essential tree() does that for volume

rendering. The volume data does not change from one iteration to another. What may

change though, is the viewing angle. This means the ray now interacts with some additional

volume data. An incremental phase of obtaining the new essential tree can be made using

the Increment locally essential data(). Using the insight that adjacent rays will need to

interact with nearly the same volume data, and rays in subsequent frames will trace mostly

the same data (Frame coherence), the previous two steps are not very expensive. The �nal

step is to incrementally balance the load among processors when adaptive ray termination is

used. Di�erent rays travel di�erent distances in volume data and the initial partitioning may

lead to load imbalance. The primitive Peano hilbert remapping() can accomplish this by

adjusting the dividing lines in the Peano-Hilbert sequence to re
ect the new load. Adjacent

rays only need to be moved to maintain load balance.

8.3 HPF and treecodes

Three major areas of HPF are involved in the implementation of divide and conquer tree

codes, as discussed in Section 2 of [For94]. We discuss each one of them in relation with

the applications discussed in this report.

8.3.1 Enhanced Mapping

Partitioning of data becomes relevant in irregular problems. When work associated with

di�erent elements varies, naive partitioning schemes which allocate equal number of ele-

ments to processors might lead to unbalanced computational loads. Locality of data on a

processor can reduce communication across processors needed to fetch the required element.

Moreover, when dynamic data structures are to be maintained, the partitioning might re-

quire adjustment to re
ect the changes in processor work loads. Some solutions to these

problems have been proposed for irregular problems yet no comprehensive solution exists

to address all of the above. Hierarchical problems have not been addressed, except some

workarounds that are both ine�cient and unelegant.

In hierarchical applications, locality maintaining partitioning will bene�t from reduced

communication costs, as local data accesses will be �ne-grained and o�-processor data ac-

cesses will be coarse-grained. Construction of k-d trees to log p levels on p processors, using

recursion in parallel, can be seen as a partitioning scheme. ALIGN and DISTRIBUTE

directives can be used to map nodes of trees to processors in HPF. Pointer based structures

entail a lot of overhead in the run-time system to be partitioned and maintained across

processors. A Task Parallel execution, as discussed previously, needs data to be remapped

to smaller processor subsets at each step. It is not very clear how this can be done without

defeating the compiler's analysis. In the divide and conquer paradigm of hierarchical ap-

plication, redistribution also means communication in smaller processor subsets minimizing
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congestion and maximizing parallelism.

An important optimization for improving communication performance in HPF is to

break the execution into a sequence of phases. At the end of each phase, all data referenced

by a processor is communicated to that processor, so that the following computation can

occur without communication. This is akin to gathering "locally essential data".

8.3.2 Computation Control

Distribution directives allow the user to control the mapping of data elements to the mem-

ories of the underlying system. There is no support for mapping th computation to speci�c

processors. Mapping an iteration of an INDEPENDENT loop to its "best" processor might

be di�cult in presence of indirect array accesses. In such cases allowing the user to specify

the mapping of computation to processors can result in better load balance while reducing

communication costs. EXECUTE ON directive has been proposed in [For94] to specify the

mappings of INDEPENDENT DO loops, FORALL constructs and statements, and other

indexed array assignments.

8.3.3 Communication Optimization

For the applications discussed in this report it is not possible to reuse the communication

pattern from iteration to iteration. However, a communication phase at the beginning can

gather locally essential data at a processor before the execution of tree traversals. In the

construction phase the concatenated parallel approach described in Chapter 5 reduces the

communication due to data movement to a single round of communication.

8.4 Run time Support on distributed memory machines

For an e�cient execution of parallel tree code algorithms, collective communication is re-

quired at each iteration. Some of these operations are discussed in Chapter 1. Data redis-

tribution algorithms are required to partition the elements into distinct subsets such that

each subset can be allocated to a subset of processors. This requires data movement into

two distinct halves, one containing elements lower than a particular partitioning element

and one with elements higher than it. Runtime support is required for such an operation

to incorporate a redistribution directive into the language.



Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this report we have studied a class of problems that consists of highly structured computa-

tions on sets of subdomains that are coupled hierarchically. The computational relationship

between the subdomain is known only at runtime, and may change between computation

phases. Parallelization of these applications on distributed memory machines require ex-

ploitation of the hierarchical nature both for data distribution, computational load balance

as well as maintaining locality to reduce communication overheads. By studying the com-

putational structure of hierarchical applications we observe that sparse data structures like

quadtrees, k-d trees are needed for algorithms to reduce data storage sizes as well as to gain

asymptotic performance for manipulation and retrieval of data.

We have presented parallel algorithms for selection, an important operation for con-

structing balanced tree structures. Selection is used extensively in parallel construction of

balanced k-d trees. Parallel algorithms for construction of k-d trees are also investigated. We

have compared parallel techniques for data structure construction and introduced commu-

nication optimizations by reducing data movement. Concatenated Parallelism is presented

as one such technique and it is shown that for this class of problems it performs better than

task parallelism.

We have identi�ed the common spatial queries that are necessary for data access in the

computation loop of the applications described in this report. Parallel implementation of

these queries on distributed memory machines is the topic of our ongoing research. Lastly we

have touched brie
y on the issue of primitives and language support for such applications.

There are a lot of issues still to be investigated in the optimization of the queries to identify

the subset of features that should be incorporated in a high performance language. Till then

run-time support for these should be an easier alternative by providing language directives

to achieve the desired e�ect. Redistribution of data and mapping it to subset of processors

is an important scenario for divide and conquer algorithms which are the trademark of

application using spatial data structures.
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9.2 Future Work

The following are interesting areas to investigate in terms of parallel hierarchical methods.

� Application of spatial data structures to large scale databases for clustering data and

optimizing disk accesses.

� Optimization techniques for complex queries, such as those involving aggregation and

grouping.

� Techniques for supporting multidimensional queries where the data is organized into

a "data cube" consisting of a quantity of interest broken into "dimensions" that en-

capsulate interesting information.

� Optimization techniques to perform parallel I/O for large database queries.

� Investigation of external memory algorithms involving multiple processors and multi-

ple disks for spatial database queries.

� Repositories characterizing storage and management of both data and metadata -

the information about the structure of the data pose new challenges. Repositories

must maintain an evolving set of representations of the same or similar information.

Versions, snapshots of an element evolving over time, and con�gurations, versioned

collection of versions need to be maintained e�ciently in such systems.
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