
Software for HPCC Peta
ops Architectures
| A White Paper

December 18, 1996

Geo�rey C. Fox

gcf@npac.syr.edu

http://www.npac.syr.edu

Northeast Parallel Architectures Center

111 College Place

Syracuse University

Syracuse, New York 13244-4100

Abstract

We propose that Peta
ops programming requires two key components. The �rst is

research into new approaches to software and algorithms, which can handle memory hierar-

chy, latency and bandwidth, and its relation to machine and application geometric structure.

This alone will not lead to a user-friendly programming environment. Here, we suggest a so-

phisticated Web technology-based \new generation" system supporting convenient
exible

access to high-performance runtime libraries written in Fortran, C++, and Java.

Note, we only discuss a few issues|in particular, languages and overall environment.

Other critical areas, such as tools, are not discussed.

I: Peta
ops Architectures

For the purpose of this white paper, I consider the following Peta
ops class architectures in a

time frame of about 2007. We assume that individual memory chips will have a capacity of two

Gigabytes.

A: Conventional Distributed Shared Memory Silicon Architecture

1. Clock Speed, 1 GHz

2. Four eight-way parallel complex C.P.U.'s per processor chip, giving a peak 32 Giga
ops

performance per chip

3. 8,000 processing chips giving over 0.25 Peta
ops peak performance

4. 32,000 2 Gigabytes memory chips, giving 64 Terabytes of memory

1

B: Superconducting Design

1. 200 GHz superconducting C.P.U. with negligible cache and simple architecture, giving

200 Giga
ops performance (this is probably conservative)

2. Conventional memory subsystem

3. 5,000 supercomputing C.P.U.'s and the same memory as option A; giving 1 Peta
ops

performance and 64 Terabytes of memory

C: Processor in Memory PIM

1. Maybe this would need to be fair to use \previous generation" half-Gigabyte chips.

2. One divides memory real estate into processor and memory using \simple" 250,000 tran-

sistor C.P.U.'s. Each memory chip, if divided equally in area between C.P.U. and memory

could have 250 1 Giga
ops C.P.U.'s each with one Megabyte of memory.

3. 32,000 modi�ed memory chips leads to 8 Terabytes of memory, and 8 Peta
ops perfor-

mance.

Superconducting technologies machines are characterized by dramatic disparity between

C.P.U. and memory performance. The PIM architecture has good memory access for problems

where the data can be laid out geometrically in a fashion (probably two dimensional) that

matches the machine. The PIM architecture only has modest memory per CPU (which can

be increased by using less than 50% of the silicon real estate for C.P.U.) which suggests it

may need to be integrated with conventional (class A) nodes to handle sophisticated operating

system functionality. This makes PIM machines like \attached processors" but with very
exible

C.P.U.'s.

II. Programming Environments for Peta
ops Architectures

1. Overview

The issues in Peta
ops software fall into three classes: Fundamental, Engineering, Usability.

As fundamental, we view the linked combination of memory hierarchy|latency and band-

width that express themselves di�erently in the various architectures. Each architecture also has

di�erent geometric structure (variation of these parameters with data location) for these fun-

damental parameters. As applications have di�erent geometrical structure, and consequently

di�erent locality and bandwidth needs, the memory hierarchy-latency-bandwidth geometry

tradeo�s are di�erent for each application. Correspondingly, the various architectures have dif-

ferent performance characteristics on each application. PIM performs well in geometrical struc-

tured applications; \classic shared memory" on less structured dynamic non-local problems;

superconducting systems do not obviously perform well on any applications with substantial

memory bandwidth, and communication needs.

As engineering challenges, we �rst cite scaling. We term this engineering as most potential

Peta
ops applications do exhibit naturally, enough parallelism (100,000 to 1,000,000) to exploit

Peta
ops architectures. However, it requires careful architecture to produce systems that do not

2

forget about parallelism in an area (say, input-output) and so are unable to deliver the natural

parallelism. We claim that most applications are naturally massively (scaling) parallel, but not

necessarily of a hierarchical structure (that matches hierarchy of hardware). Thus, memory

hierarchy is a fundamental problem; scaling is engineering. The second obvious engineering

issue is building a software environment that is relatively complete and works reliably.

I suggest that current HPCC software has addressed \fundamental" issues quite well (ex-

pressing geometric structure with HPF and more general decompositions with MPI). However,

\engineering" issues have dominated the HPCC software with unreliable slow to appear HPF

compilers, inadequate tools, and architecture blunders, such as Sequential I/O.

Under usability issues, we put those software features that are designed to make parallel

systems easier to use. Portable software is an obvious theme and HPF, HPC++ are examples of

systems that try to be more usable than explicit message passing MPI. If you target PetaFLOPS

systems at the \marine corps" initial users, it is not clear how important usability issues are.

Broad use of Peta
ops demands usable software. So \Fundamental" software issues are those

that allow initial users by hook or by crook to implement their applications and get whatever

performance the architecture is capable of. \Engineering" issues ensure that we manage, design,

and fund Peta
ops software well enough so it robustly expresses and supports what we know.

Usability issues allow a broad range of user access to Peta
ops architectures.

If we confront the three software issues with the three prototypical architectures, the \en-

gineering" and \usability" issues are roughly independent of the chosen architecture. However,

the \fundamental" issues are extremely sensitive to the architecture as they are intrinsically

entwined with the study of what algorithms and applications run on the machine and how they

should be implemented.

2. Memory Hierarchy-Latency-Bandwidth-Geometry

Let us �rst discuss the memory hierarchy-latency-bandwidth-geometry \fundamental" issues.

I believe these are clearest for PIM architecture (in our list of three architectures) for classic

\geometric physical simulations." Most identi�ed Peta
ops applications are of this class even

though they are more dynamic and irregular than today's such problems. Here, machine and

problem structure are well matched, and conventional geometric decompositions should be

e�ective. For all architectures, it is important to study data movement in classic algorithms|

conjugate gradient, multigrid, FFT (etc.) and �nd e�cient primitives. Although irregular

dynamic problems will be technically harder to implement, I expect that study of the simpler

regular problems will reveal essential issues. Good software for Peta
ops machines will be built

around e�cient data movement primitives implemented as native runtime. HPF provides an

example of a set of primitives, but it is unlikely these will be su�cient|except possibly for the

PIM|as both HPF (and MPI) express just one level of memory hierarchy. As discussed at the

PetaSoft meeting, research is needed on how to express the memory hierarchy, and the useful

collective and point-to-point data movement and computation primitives (see Figure 1). This

research should address both geometric problems, those like convolutions (FFT) with \long-

range" structured data movement, and the presumably rather di�erent parallel database, and

Web server style applications.

An area which may have promise is extension of classic \load balancing" and data decom-

position to memory management on Peta
ops architectures. Many of the current powerful

3

Processors

Level 2
Cache

Level 1
Cache

Figure 1b. Data Movement with MultipleFigure 1a. Traditional MPI/HPF
Data Movement Model Levels of Memory Hierarchy

Figure 1:

load-balancing algorithms can naturally deal with problem and computer hierarchy from either

a computational graph (with di�erent levels of contraction) or a physical (di�erent resolution)

point of view. One may be able to base adaptive memory movement on such algorithms.

The PetaSoft meeting exposed the need for a layered software model that presented a

coherent virtual machine at of each level, but allowed user or system to \escape" into a lower

more complex layer when needed for either performance or functionality.

3. Usability and Engineering in the Peta
ops Programming Environment

We are perhaps pessimistic, but see no breakthroughs in usability. We expect that data parallel

and message passing to be dominant forms of parallelism. We suggest that the \data parallel"

approach could evolve with a di�erent emphasis. One can view HPF as the language of identical

operations on array elements|a limited concept as many parallel applications cannot be well

expressed in this fashion. Rather, we view HPF as a high-level language that, through intrinsic

functions, allows one to access a library of carefully tuned parallel algorithms. We believe this

last view of HPF is the most promising and generalizable. Thus, our suggested usability model

is through the greater use of interoperable parallel libraries. We assume that interpreted and/or

graphical interfaces, such as APL, Matlab, or even Visual basic/VJ++ is nearer to the desired

implementation than current HPF. In a layered view of the PetaSoft environment, we already

mentioned the machine view with levels of the memory hierarchy supported by data movement

software supporting \escaping" to lower levels. There is also a user's layered view described

below (see Figure 2).

a) Fully visual or scripted (interpreted) environment exhibiting domain speci�c functionality

This is optimized for user interface and only o�ers coarse grain access to capabilities in

the fashion of AVS.

b) Partially scripted level o�ering

Portable
exible programming at some performance cost

c) Traditional compiled level

O�ering a high-level language with few machine dependent features, and getting high

performance|traditionally within about a factor of two of the peak performance possible

on the particular algorithm.

4

Figure 2:

d) Traditional machine speci�c level

Rarely used by application programmers or even those building (high level) tools. Clearly,

allows user to obtain peak performance at the cost of a very inconvenient programming

environment.

Examples in di�erent domains of a) are Matlab (linear algebra, signal processing, etc.),

JavaScript (document display), AVS (coarse grain data
ow), UNIX shell, and the growing

number of Web interfaces. b) is illustrated by Java in Applet mode and Perl. c) is C, C++,

Fortran, or compiled Java on sequential machines; such languages plus message passing or HPF

on parallel machines. Looking at Peta
ops machines, we see a critical problem that there

is no natural correspondence between the hierarchy of machine levels (the virtual machine)

and the hierarchy of problem levels (the virtual problem). The machine architecture a�ects

programming levels a), b) and c). Level b) is the hardest with a key goal of designing a high-

level language with minimal machine speci�c features|the analogies of HPF described in data

parallel or MPI calls in message passing paradigm. I believe that it is unknown what the

performance degradation (the hoped for worst case factor of two) will be obtained on Peta
ops

architectures with what user \directives" to optimize either/or parallelism or memory hierarchy.

In fact, whereas it is almost certain that we can construct level a), it is not so obvious that

the traditional high-level approach, b), will deliver e�ective performance. The \fundamental"

research program outlined earlier is largely aimed at understanding possible approaches to levels

a) and b).

The highest levels, c) and d), are less sensitive to the Peta
ops architectures for several rea-

sons. A simple observation is that often software at this high level will run on a client machine,

and so by de�nition be of \conventional" architecture (of course, some \Peta
ops" architectures

are natural extrapolations of \conventional" architectures). The machines supporting levels c)

and d) would be responsible for visualization with the user coding customized Java applets

to analyze and display results computed on a Peta
ops machine. We believe such a model is

5

reasonable in general, and that implementation of levels c) and d) will be needed independent of

the Peta
ops initiative. However, there are two interesting points that link these high levels to

Peta
ops systems. Firstly the possible di�culties in designing and implementing a user friendly

powerful level b), suggests that it may be particularly important to develop levels c) and d)

into a relatively complete high-performance environment. This would access optimized libraries

written by experts using relatively machine speci�c software at levels a) and b). This growing

reliance on runtime libraries seems to me one of the few promising approaches to future HPCC

software. Note that level a) and b) are not \assemblers" and \compilers," but rather \machine

speci�c" and \largely architecture independent."

There is a second, perhaps very pessimistic, reason to link the design and implementation of

levels c) and d) with the Peta
ops initiative. Thus, to do this programming environment \right"

requires, we think, a break with the past. However, there will be a natural tendency to \evolve"

existing approaches in the commercial mainstream. Thus, we see that the Peta
ops initiative

gives the opportunity to build a \new generation" programming environment or HPCC-NG of

the type described earlier.

The success of HPCC-NG will largely depend on making good engineering designs|from

adequate funding to careful design. Our personal prejudice would be to build HPCC-NG in

terms of Web technologies|linked Web servers and clients with excellent support for Java as

both a primary programming language and as a wrapper for other languages. Although much

research and experimentation is needed to �ll in the details of a Web technology-based HPCC-

NG, enough is understood to scope out and start such an initiative. The overall framework

would be a coarse grain software integration from environment (called WebFlow by me in the

past) of which the principles are clear. We have started a community initiative to understand

the harder and, in our opinion, more profound issues associated with the use of Java as the basic

language for science and engineering simulations. However, as massive (Peta
ops!) parallelism

issues in Java will (as far as we can see now) be quite similar to those in C++ and Fortran, we

don't think that one needs to understand or even believe in Java as a computational science

language to initiate design and implementation of HPCC-NG.

III. Overview of Peta
ops Programming Environment

Let us summarize our picture. We propose a research and development program focusing on

understanding memory hierarchy-latency bandwidth and geometry issues in Peta
ops architec-

tures. This should involve Fortran, C++, Java and other languages. Considering the three

Peta
ops architectures described at the start of this white paper, we expect that the PIM

architecture to be the easiest on which to get good performance. We expect that it will be

possible with both MPI (explicit message passing) and HPF to obtain good performance at the

cost of more and more complex directives and primitives with somewhat more machine depen-

dency. Thus, we anticipate an acceptable but relatively low-level programming environment.

The research program should, of course, involve applications, algorithms, architectures, and

software.

We do not expect that this high-performance programming environment will be very attrac-

tive to the general user and suggest focusing on a sophisticated high-quality high-level ((c) and

d)) environment with both domain speci�c and general capabilities. These high-level interfaces

will access runtime libraries typically written by experts in parallel (Peta
ops) computing.

6

This approach to a more user-friendly HPCC environment will require re-engineering the

basic software infrastructure, and we proposed that a new HPCC-NG activity be initiated to

provide a new Web-based framework.

7

