
Java and Web Technologies for Simulation and

Modelling in Computational Science and

Engineering

Geo�rey C. Fox� Wojtek Furmanskiy

Abstract

We discuss the role of Java and Web technologies for general sim-

ulation. We classify the classes of concurrency typical in problems

and analyze separately the role of Java in user interfaces, coarse grain

software integration, and detailed computational kernels. We conclude

that Java could become a major language for computational science,

as it potentially o�ers good performance, excellent user interfaces, and

the advantages of object-oriented structure.

1 Introduction

TheWorld Wide Web provides important infrastructure for scienti�c and en-

gineering computation. The distributed computing hardware of the Web has

remarkable potential compute performance|1,000 times that of the largest

supercomputer. This ratio largely reects the ratio of monetary investment

in the two �elds. Of course, the Web does not support the low latency and

high bandwidth required by most parallel simulations. However, we believe

that an attractive scienti�c computing environment can be built on top of

Web software by adding to the basic Web loosely coupled distributed com-

puting model, the necessary added functionality for computational science.

We analyze, in Section 2, the various forms of concurrency seen in applica-

tions, and then in the last three sections, discuss three major areas where

Java can be e�ectively used. We conclude that Java could well become a

dominant language in science and engineering.

�Syracuse University, Northeast Parallel Architectures Center, 111 College Place, Syra-

cuse, New York 13244, gcf@npac.syr.edu
ySyracuse University, Northeast Parallel Architectures Center, 111 College Place, Syra-

cuse, New York 13244, furm@npac.syr.edu

1

2 Concurrency in Applications

In understanding the role of the web in large-scale simulations, it is useful

to classify the various forms of concurrency in problems into four types [5].

1. Data Parallelism

This is illustrated by natural parallelism over the particles in a molecu-

lar dynamics computation; over the grid points in a partial di�erential

equation; over the random points in a Monte Carlo algorithm. In the

Web computation of the factors of RSA130 [7], we can consider the

parallelism over possible trials in the Sieve algorithm as the \data"

for data parallelism in this application. Data parallelism tends to be

\massive" because computations are typically time consuming due to

a large amount of data. Thus, data parallelism is parallelism over

what is \large" in the problem. It is not di�cult to �nd data paral-

lel problems today with parallelism measured in the millions (e.g., a

100�100�100 grid) and by the year 2007, billion-way data parallelism

can be expected.

2. Functional Parallelism

Here we are thinking of typical thread parallelism, such as the over-

lap of computation (say, decompressing an image) and communication

(fetching HTML from a server). More generally, problems typically

support overlap of I/O (disk, visualization) with computation. We

also, of course, can have multiple compute tasks executing concur-

rently. This form of parallelism is present in most problems; the units

are modest grain size (larger than a few instructions scheduled by a

compiler, smaller than an application), and typically not massively

parallel. Further, such functional parallelism is typically implemented

using a shared memory and, indeed, its existence in most problems

makes few way parallel shared memory multiprocessors very attrac-

tive.

3. Object Parallelism

We could mean many things by this, but we have in mind the type

of problems solved by discrete event simulators. These are illustrated

by military simulations where the objects are \vehicles," \weapons,"

or \humans in the loop." The well-known SIMNET or DSI (Dis-

tributed simulation Internet) have already illustrated the relevance

2

of distributed (Internet) technology for this problem class [8]. Object

descriptions are similar to data parallelism except that the fundamen-

tal units of parallelism, namely objects are quite large, corresponding

to a macroscopic description of an application. Thus, a military bat-

tle is described in terms of the units of force (tanks, soldiers) with

phenomenological interactions rather than in (unrealistic in this case)

fundamental description in terms of atomic particles or �nite element

nodes. For a typical \data parallel" problem, the fundamental units

of parallelism (grid points) are typically smaller.

4. Metaproblems

This is another functional concurrency, but now with large-grain size

components. In image processing, one often sets up an analysis sys-

tem where the pixels are processed by a set of separate �lters|each

with a di�erent convolution or image understanding algorithms. Soft-

ware systems, such as AVS and Khoros are well-known tools to sup-

port such linked modules. So a metaproblem is a set of linked prob-

lems (databases, computer programs) where each unit is essentially

a complete problem itself. Dataow (a graph specifying how prob-

lems accept data from previous steps and produce data for further

processing) is a successful paradigm for metaproblems. In manufac-

turing, one often sees metaproblems as building a complex system,

such as an aircraft, requiring linking airow, controls, manufactur-

ing process, acoustic, pricing and structural analysis simulations. It

has been estimated that designing a complete aircraft could require

some 10,000 separate programs|some complicated ones such as air-

low simulation were mentioned above, but as well there are simpler

but critical expert systems to locate inspection ports, and other life-

cycle optimization issues [3], [4]. Metaproblems have concurrency that

it typically quite modest. They di�er from the examples, in category

2 above, in that the units have larger grain size and are more self

contained. This translates into di�erent appropriate computer ar-

chitectures. Modest grain size functional parallelism (2) needs low

latency and high bandwidth communication|typically implemented

with a shared memory. Metaproblems are naturally implemented in

a distributed (Web) environment|latency is often unimportant while

needed network bandwidths are more variable.

3

3 Overview of Web and Parallel Computing Soft-

ware Issues

We can view computing (as many other enterprises) in terms of a pyramid

with widely deployed cheap systems at the bottom of the pyramid, and the

few high-performance systems as the top. There is much more computing

power in the distributed collection of consumer-oriented products|PCs,

videogames, Personal Digital Assistants, Digital Set Top boxes, etc. This

dominant dollar investment in the consumer products implies that one can

expect the bottom of the pyramid to have much better software than the

top. Software investment must be roughly proportional to market size, and

so we see PCs, workstations, and MPPs (Massively Parallel Processors)

o�ering increasing unit software price and decreasing software quality and

functionality. The Web, perhaps, o�ers now the best available software (as it

is potentially the largest market). When the PC market dominated quality

consumer software, it was hard for the parallel processing community to

take advantage of it. PCs o�er, of course, a sequential computer model, but

now the Web software targets a very rich distributed computing model. It

seems to us clear that we can, and indeed must, build MPP software with a

backbone architecture of Web software. As mentioned in the Introduction,

we can then view parallel processing as a special case of a distributed model

with stringent synchronization constraints. We view this as leading to a set

of Compute Webs, which we describe in the following sections.

This approach has the added advantage that we can build ComputeWebs

by either running Web clients or servers with synchronization/compute en-

hanced Web software, or use the latter software to provide a very attrac-

tive user environment on specialized MPPs whose low latency and high-

bandwidth communication enable critical parallel computations.

In the following, we discuss the role of Web hardware and, especially,

software for three distinct parts of computation.

1. User (client) view|problem speci�cation, visualization, computational

steering, data analysis

2. Metaproblem implemented on a distributed computer

3. Individual computationally complex components of the metaproblem

implemented on high-performance computers, which could in fact be

a distributed system itself.

4

We cover these three parts|graphical user interface, dataow for metaprob-

lems/software integration, and hardcore computation, in the next three sec-

tions.

4 WebWindows and the User View

We abstract future high-performance computing environments into four lay-

ers detailed below [9].

a) Fully visual or scripted (interpreted) environment exhibiting domain

speci�c functionality

This is the typical graphical interface allowing manipulation at either

metacomputer, or individual component level.

b) Partially scripted level o�ering

Portable exible programming at some performance cost - illustrated

by Java in applet mode

c) Traditional compiled level

O�ering a high-level language with few machine dependent features,

and getting high performance|traditionally within about a factor of

two of the peak performance possible on the particular algorithm|

illustrated by coupled Fortran, C, C++, and Java.

d) Traditional machine speci�c level

Rarely used by application programmers or even those building (high

level) tools. Clearly, allows user to obtain peak performance at the

cost of a very inconvenient programming environment.

Levels c) and d) include the computationally intense parts of the prob-

lem, which can be implemented on appropriate servers. However levels a)

and b) which we discuss in this section, are likely to be executed in the client

machine/environment. We describe the current trends in software strategy

[2], [6] as a shift from software built in terms of PC Windows, Macintosh,

UNIX environments to a WebWindows basis, i.e., software built on the in-

terfaces de�ned by Web servers and Web clients. This is, of course, a valid

approach whether one is writing for a single stand-alone machine (running

a Web server and client) or the entire worldwide network. In this sense, the

use of Web technology for user interfaces is trivial|the user interface is not

5

constrained greatly by the di�culties of high-performance computation, as

it runs on the \conventional" client side and so can naturally use best client

side technologies. Some examples of Web based user interfaces are:

� NCSA's biology workbench [10], which is a CGI interface to a collection

of useful computational biology resources.

� An environment [11] built by Gregor von Laszewski to support a

metaproblem|the linked components of a large scale NASA weather

simulation. This uses a Java graphical editor to allow the user to

choose which program component to run on which of a distributed set

of computers.

� NIST's user interface [12] for their IBM SP2 parallel computer.

� The Virtual Programming Laboratory (VPL) [13] built by Kivanc Din-

cer and used in the Syracuse course, CPS615, this semester to support

parallel program development.

� A typical Java visualization applet [14] to support VPL.

We expect this type of interface development to continue and become the

norm. However, we see a particularly important role for Java (and VRML)

in terms of level b). Namely, Java seems an attractive language for building

client side data analysis systems. These typically involve both computation

and visualization|in which linkage, Java has unique capabilities. Thus,

we expect a set of high quality Java applets (or compiled plug-ins) to be

developed which support this analysis. Those applets will be used at level

a) by the general user with the expert modifying the code of the applets

(level b)) for customized capability. A good example of Java for scienti�c

visualization is the work of Cornell [15] on an applet for teaching fracture

mechanics. We depict the resultant, environment which essentially becomes

a Java wrapper for code written in traditional languages and running on

sequential, parallel or distributed computers. This use of Java is likely to

grow rapidly as it requires modest changes to existing software and adds

great value without changing the familiar programming paradigm. However,

we see it as a natural Web \seed" that can grow into the more pervasive use

of Java.

6

5 WebFlow and Coarse Grain Software Integra-

tion

As we have discussed, it is very natural to use web hardware and software

to implement control of metaproblems [16]. Although we only described

earlier the dataow model for this, one can, of course, use these ideas for

any application with linked components that have relatively large chunks

of computation that dwarf the latency and bandwidth implied by using the

Web as a compute engine. In fact, we can include our recently completed

RSA130 factoring project [17] in this class. This distributed the sieving

operations over a diverse range of clients (from an IBM SP2 at NPAC to

a 386 laptop in England) under the control of set of servers. This was

implemented as a set of Web server CGI Perl scripts FAFNER [7]. These

created daemons to control the computation on each client which returned

results to the server that accumulated results for �nal processing to locate

factors.

We can extract two types of computing tasks from our factorization

experience [1]. The �rst is the resource management problem|identifying

computer resources on the Web; assigning them suitable work; releasing

them to users when needed, etc. A sophisticated Web system ARMS [18] for

this is being developed by Lifka at the Cornell Theory Center. Well-known

distributed computing systems in this area include LSF, DQS, Codine and

Condor (see review in [19]), and this seems a very natural areas for the

use of Web systems including linked databases to store job and machine

parameters.

The second task is the actual synchronization of computation within

a given problem|resource management, on the other hand assigns prob-

lems to groups of machines and does not get involved with detailed parallel

computing algorithm and synchronization issues. Here, we see two general

concepts. One is support of the messaging between individual nodes that

creates a virtual (parallel) machine out of the World Wide Web.

This low level support is called WebVM and should implement the func-

tionality of parallel systems, such as MPI in terms of Web technology mes-

sage systems|either HTTP or direct Java server|server (client) connec-

tions. Here, the most elegant model is perhaps based on a mesh of Web

Servers [20] although today's most powerful implementations would use like

FAFNER, a mesh of Web clients controlled by a few servers [21]. In the

spirit of WebWindows, we can expect servers or server equivalent capability

7

to become available on all Web connected machines. Note that the natural

Web model is server-server, and not server-client and indeed this supports

the traditional NII dream of democracy with everybody capable of either

publishing or consuming information.

On top of WebVM, one can build higher level systems, such as the dis-

tributed shared memory model (called WebHPL) or more easily an explicit

message passing system, such as the dataow model. WebFlow supports

a graphical user interface ([1], [2], [16]) specifying metaproblem component

linkage and one can naturally design domain speci�c problem solving envi-

ronments in this framework. One would support scripted \little languages"

(designed for each application) at the top level a) (in classi�cation of Sec-

tion 4, which would allow for more exible and dynamic metaproblem com-

ponent linkage.

Now is, of course, a confusing time for there are as many compute-

web implementation strategies as there are major players in emerging Web

technology|especially as we evolve from powerful, but rather ad hoc server

side CGI scripts to integrated dynamic Java client and server systems. Thus,

now is not the time for \�nal solutions" but rather for experimentation and

exibility to examine and inuence the key building blocks of future Web

computers.

Finally, note that the Web encourages new models for computation with

problems publishing their needs and Web compute engines advertising their

capabilities and dynamic matching of problems with compute resources.

6 Java as the Language for Computational Science

and Engineering

We recently held a workshop [22] on this theme at Syracuse. This covered

generally the topics of the last two sections where we saw Java as clearly

attractive for both user interfaces, wrappers, and the metaproblem control.

Here, we consider its possible role as the basic programming language for

science and engineering - taking the role now played by Fortran 77, Fortran

90, and C++.

Java's most important advantage over other languages is that it will be

learnt and used by a broad group of users. Java is already being adopted in

many entry level college programming courses and will surely be attractive

for teaching in middle or high schools. Java is a very social language as

one naturally gets Web pages from one's introductory Java exercises that

8

can be shared with one's peers. We have found this as a helpful feature

for introductory courses. Of course, the Web is the only real exposure to

computers for many children, and the only languages they are typically

exposed to are Java, JavaScript, and Perl. We �nd it di�cult to believe

that entering college students, fresh from their Java classes, will �nd it

easy to accept Fortran, which will appear quite primitive in contrast. C++

as a more complicated systems building language may well be a natural

progression, but although quite heavily used, C++ has limitations as a

language for simulation. In particular, it is hard for C++ to achieve good

performance on even sequential and parallel code, and we expect Java not

to have these problems.

In fact, let us now discuss performance, which is a key issue for Java.

We have already suggested a multilevel scienti�c programming environment

that would use purely scripted, applet mode and purely compiled environ-

ments with di�erent tradeo�s in usability and performance. As discussed

at our workshop, there seems little reason why native Java compilers, as

opposed to current portable JavaVM interpreters or Just in Time compilers

(JIT), cannot obtain comparable performance to C or Fortran compilers.

A major di�culty is the rich exception framework allowed by Java that

could restrict compiler optimizations. Users would need to avoid complex

exception handlers in performance critical portions of a code.

An important feature of Java is the lack of pointers and their absence,

of course, allows much more optimization for both sequential and paral-

lel codes. Optimistically, we can say that Java shares the object oriented

features of C++ and the performance features of Fortran.

One interesting area is the expected performance of Java interpreters

(using just in time techniques) and compilers on the Java bytecodes (Virtual

Machine). Here, we �nd today perhaps a factor of 4{10 lower performance

from a PC JIT compiler compared to C compiled code. Consensus at the

workshop expected this performance degradation to be no worse than a

factor of two for the portable applet mode. As described above, with some

restrictions on programming style, we expect Java language or VM compilers

to be competitive with the best Fortran and C compilers. Note that we can

also expect a set of high performance \native class" libraries to be produced

that can be down loaded any accessed by applets to improve performance

in the usual areas one builds scienti�c libraries.

One interesting omission is a purely interpreted version of Java|level

a). This would also be very helpful for teaching. JavaScript is interpreted,

but we would view it as a \little language" for document handling - and not

9

a general Java-like interpreted environment.

Finally, we will discuss parallelism in Java. Here, we return to the four

categories of concurrency.

1. Data Parallelism

This is supported in Fortran by either high level data parallel HPF

or at a lower level Fortran plus message passing (MPI). Java does

not have any built in parallelism of this type, but at least the lack of

pointers means that natural parallelism is less likely to get obscured.

There seems no reason why Java cannot be extended to high level

data parallel form (HPJava) in a similar way to Fortran (HPF) or

C++ (HPC++) [23]. At the lower message passing level, the situa-

tion is clearly satisfactory for Java as the language naturally supports

inter-program communication, and the standard capabilities of high-

performance message passing are being implemented for Java [24].

2. Modest Grain Size Functional Parallelism

This is built into the language with threads for Java and has to be

added explicitly with libraries for Fortran and C++.

3. Object Parallelism

This is quite natural for C++ or Java where the latter can use the

applet mechanism to portably represent objects. We have built a

collaboration system TANGOsim where a Java server controls a set

of Java applets and other applications spawned from them [25]. We

generalized the session manager present in collaborative systems to

be a full event driven simulator. This illustrates the power of Java

for this problem class and shows that it can unify traditional time

stepped simulations (typical for data parallelism) with event driven

forces modeling, and other such simulations.

4. Metaproblems

We have already discussed in Section 5, the power of Java in this case

for overall coarse grain software integration.

In summary, we see that Java has no obvious major disadvantages and

some clear advantages compared to C++ and especially Fortran as a basic

language for large scale simulation and modeling. Obviously, we should not

and cannot port all our codes to Java. Rather, we can start using Java for

10

wrappers and user interfaces. As compilers get better, we expect users will

�nd it more and more attractive to use Java for new applications. Thus, we

can expect to see a growing adoption by computational scientists of Web

technology in all aspects of their work.

References

[1] Fox, G. C., Furmanski, W., Chen, M., Rebbi, C., and Cowie, J. H.

\WebWork: integrated programming environment tools for national

and grand challenges." Technical Report SCCS-715, Syracuse Uni-

versity, NPAC, Syracuse, NY, June 1995. Joint Boston-CSC-NPAC

Project Plan to Develop WebWork.

[2] Fox, G. C., and Furmanski, W. \The use of the national information

infrastructure and high performance computers in industry," in Pro-

ceedings of the Second International Conference on Massively Parallel

Processing using Optical Interconnections, pages 298{312, Los Alami-

tos, CA, October 1995. IEEE Computer Society Press. Syracuse Uni-

versity Technical Report SCCS-732.

[3] Fox, G. C. \High performance distributed computing." Technical Re-

port SCCS-750, Syracuse University, NPAC, Syracuse, NY, December

1995. To appear in Encyclopedia of Computer Science and Technology.

[4] Fox, G. C. \A tale of two applications on the NII." Technical Report

SCCS-756, Syracuse University, NPAC, Syracuse, NY, March 1996.

Submitted to the 1996 Sixth Annual IEEE Dual-Use Technologies and

Applications Conference.

[5] Fox, G. C. \An application perspective on high-performance computing

and communications." Technical Report SCCS-757, Syracuse Univer-

sity, NPAC, Syracuse, NY, April 1996.

[6] Fox, G. C., and Furmanski, W. \SNAP, Crackle, WebWindows!." Tech-

nical Report SCCS-758, Syracuse University, NPAC, Syracuse, NY,

April 1996.

[7] \Factoring RSA 130 on the Web," http://www.npac.syr.edu/factoring

[8] \Defense Modeling and Simulation O�ce," http://www.dmso.mil/

11

[9] \Suggested Software Environments in the Year 2007,"

http://www.npac.syr.edu/users/gcf/petastu�/petasoftwp

[10] \NCSA Computational Biology Workbench,"

http://bioweb.ncsa.uiuc.edu

[11] \Web based Distributed Computing Environment for Data Assimila-

tion,"

http://www.npac.syr.edu/projects/nasa/home.html

[12] \NIST's SP2 Interface,"

http://www.itl.nist.gov/div895/sasg/websubmit/

[13] \HPF and MPI Virtual Programming Language,"

http://www.npac.syr.edu/projects/cps615fall96/

[14] \Web based Visualization,"

http://www.npac.syr.edu/users/dincer/pablo/

[15] \Java Applet for Crack Propagation,"

http://www.msc.cornell.edu/ houle/cracks

[16] \NPAC Projects in Web based HPCC,"

http://www.npac.syr.edu/projects/webbasedhpcc

[17] \Tutorial on RSA 130 Factoring,"

http://www.npac.syr.edu/users/gcf/crpcrsamay96

[18] \Discussion of ARMS Resource Management,"

http://www.tc.cornell.edu/er96/�04fall96/�o1arms.html

[19] \Review of Cluster Management Software,"

http://nhse.cs.rice.edu/NHSEreview/96-1.html

[20] \Talk on WebFlow and WebVM,"

http://www.npac.syr.edu/projects/webspace/doc/hpdc5/hpdc5.html

[21] \Super-Web: Towards a Global Web based Parallel Computing Infras-

tructure,"

http://www.cs.ucsb.edu/ schauser/papers/96-superweb.ps

\Create Your Own Supercomputer with Java,"

http:/www.javaworld.com/javaworld/jw-01-1997/jw-01-dampp.html

12

[22] \Workshop on Java for Computational Science,"

http://www.npac.syr.edu/projects/javaforcse

[23] \Data Parallel Java Prototype,"

http://www.npac.syr.edu/users/dbc/HPJava

[24] \GLOBUS Metacomputing Infrastructure,"

http://www.mcs.anl.gov/globus

[25] \TANGO Java Collaboratory,"

http://www.npac.syr.edu/projects/tango

13

