
WebFlow|A Visual Programming Paradigm for Web/Java

Based Coarse Grain Distributed Computing

Dimple Bhatia, Vanco Burzevski, Maja Camuseva

Geo�rey Fox, Wojtek Furmanski, and Girish Premchandran

Northeast Parallel Architectures Center

Syracuse University

111 College Place

Syracuse, New York 13244

dbhatia@npac.syr.edu, vanco@top.syr.edu, maja@top.syr.edu

gcf@npac.syr.edu, furm@npac.syr.edu, girishp@npac.syr.edu

Presented at Workshop on Java for Computational Science and Engineering Workshop,

Syracuse University, December 1996.

Abstract

We present here the recent work at NPAC aimed at developing WebFlow|a general pur-

pose Web based visual interactive programming environment for coarse grain distributed

computing. We follow the 3-tier architecture with the central control and integration We-

bVM layer in tier-2, interacting with the visual graph editor applets in tier-1 (front-end) and

the legacy systems in tier-3. WebVM is given by a mesh of Java Web servers such as Jeeves

from JavaSoft or Jigsaw from MIT/W3C. All system control structures are implemented

as URL-addressable servlets which enable Web browser-based authoring, monitoring, pub-

lication, documentation and software distribution tools for distributed computing. We view

WebFlow/WEbVM as a promising programming paradigm and coordination model for the

exploding volume of Web/Java software, and we illustrate it in a set of ongoing application

development activities.

1 Introduction

As anticipated in our WebWindows ansatz [WebHPCC96], current Web systems, fueled by Java,

evolve rapidly towards a powerful open infrastructure that will enable world-wide distributed

computing. In the current Web/Java expansion phase, we are witnessing a wide variety of

new interesting tools and technologies but the overall integration framework is still missing and

the software reuse remains di�cult. We need a coarser grain encapsulation unit than a Java

class to enable user-friendly distributed computing on the Web. In fact, several attempts at

specifying such a framework are underway, for example JavaBeans from JavaSoft. However,

the Web software industry is currently focused mainly on the front-end support for component

based GUI integration, whereas the middleware and back-end layers are still an open research

and prototyping area.

1

At NPAC, we are monitoring the emergent Web technologies pertaining to the domain of

world wide scalable distributed computing and we are designing and prototyping a visual graph

based data
ow environment, WebFlow, using the mesh of Java Web Servers as a control and

coordination middleware, WebVM.

In this document, we review brie
y our Web technology evaluation activities in Sections 2{4,

followed by the presentation of our WebFlow/WebVM prototype (tier-2) in Section 4 which

forms the core of this paper. This is followed by the discussion of the WebFlow front-end (tier-

1) in Section 6 and some initial back-end (tier-3) activities in Section 7. Finally, we summarize

in Sections 8 a set of planned or ongoing application development activities in the areas of

command and control, telemedicine, distance education and Internet commerce that will build

on top of WebFlow/WebVM infrastructure.

Table 1: Comparative analysis of strategies and components for Web based distributed com-

puting in selected systems investigated at NPAC.

Habanero Jigsaw Infospheres JavaSoft Netscape

Module collaboratized Resource dapplet! Java Bean LiveWire app.

applet DJINN server

Port/Channel Java socket any HTTP portlet! RMI custom?

carrier mailbox

Message Marshalled Event Pickled any object Serialized Object JavaScript

or Action Resource bytesteam

Compute-Web Star topology 2-node any topology

Runtime Collaboratory Java HTTP dapplet/DJINN Jeeves (Java community or

server server manager? server) enterprise system

User Interface AWT Forms visual authoring? HotJava Navigator

Coordination instantaneous client-server asynchronous CORBA multi-server

broadcast multi-server

Persistency Resource Store
at �le? JDBC LiveWire! DB

Publication javadoc

2 Web/Java Expansion Phase

Expressive power of Java attracts developers and we observe an explosion of �rst generation

Java systems on the Internet. Examples include: NCSA Habanero [Haba96] for synchronous

collaboratory; dynamic HTTP servers such as Jigsaw [Jigs96] from MIT/W3C or Jeeves from

JavaSoft; Marimba's Castanet and Bongo trying to establish a new pure Java based Web-like

framework; Caltech Infospheres [ChaRi96], IBM aglets for intelligent agents based computing;

and many others.

At NPAC, where we are closely monitoring this `bleeding edge' of interactive Web, we ob-

serve that although these new systems o�er attractive capabilities, the current generation Java

software is still di�cult to customize, repackage or reuse. The reason is that Java class is a too

small, too �ne grain encapsulation unit and hence reusing a package requires usually detailed

understanding of a large number of its tightly interwoven classes.

WebFlow

HotJava Browser

Web Server

WebWork Modules

Java Interpreter

Compute-Web

Java Threads

WebHPL

Web based Virtual Machine (WebVM)

Jigsaw

Web Server

Jigsaw

HTTP

HTTP

HTTP

RMI,OS,Infosphere

RMI,OS,Infosphere
HTTP

Oracle

Illustra

mSQL

JDBC

CORBA

Java IDL

including Java servers (Jigsaw)
and message passing
(RMI, OS, Infospheres, JDBC, IDL)

Figure 1: Overview of the WebFlow/WebVM architecture: WebVM is formed in tier-2 as a

mesh of Java Web servers, managing WebFlow nets (or compute-webs) and interacting with

the legacy systems in tier-3 (back-end) and with the visual graph editor applets in tier-1 (front-

end).

3 WebFlow/WebVM Concepts

Our goal is to provide a coarser grain packaging model and the associated user-friendly authoring

framework for distributed applications on the Web. We believe that we should build on top

of the established standards such as HTTP, HTML and Java, and hence we adopt Java Web

server as a base runtime and coordination node of any distributed Web system. Data
ow model,

already proven e�ective by previous systems such as AVS, Khoros, CODE [Browne92], HeNCE

[Dong94] and others, seems to be a natural coordination framework to extend the current 2-node

model in which HTTP/MIME data
ows between Web client and server towards multi-server

systems.

Hence, we propose a runtime environment given by a mesh of Web Java servers to coordinate

distributed computation represented as a set of channel-connected coarse grain Java modules.

Modules are thin veneer Java interfaces so that any chunk of Java can be easily modularized

and connected to other modules via suitable communication ports, acting as terminals of point-

to-point data
ow channels. Modules run asynchronously, are mobile, i.e., can be instantiated

on any WebVM server, and communicate by exchanging Java objects along their data
ow

channels.

Aspects of such emergent architecture can be already found in current systems, analyzed

in Table 1. For example: Jigsaw/Jeeves develop the concept or resources/servlets as control

encapsulation units; Infospheres develops portlets/mailboxes as terminals for communication

channels; Habanero is a multi-server system; and so on.

4 Early Experiments

We initiated the WebFlow/WebVM design process by experimenting with existing systems.

Over the summer/fall '96, we evaluated a suite of new Java systems including Aglets, Habanero,

Infospheres, Jeeves, Jigsaw, JSDA, Shaking Hands, and others. One of early decisions we made

was that rather then developing custom Java servers from scratch as in Habanero or Infospheres,

we prefer to add new services and maintain them within the Web Java server addressing space.

Such organization facilitates management and o�ers natural, Web-browser based monitoring,

publication and distribution support for the Web software.

Figures 2 and 3 illustrate our early experiments with Jigsaw where we constructed a chat

collaboratory as Jigsaw resource (Figure 2) and we formed a token ring by connecting a set

of Jigsaw resources viewed as WebFlow modules using Infospheres portlets. Later on, we

switched to the Jeeves model since the servlet API is likely to become a standard as given

by a core Java package java.servlet. We intend to continue the exploration of Jigsaw and

other promising public domain Java systems and we tentatively base the WebFlow/WebVM

prototype development on the Jeeves server architecture.

5 Tier-2 WebFlow/WebVM Prototype

5.1 Overview

Our prototype WebVM is given by a mesh of Jeeves servers, running servlets that manage and

coordinate distributed computation. Atomic encapsulation units of WebVM computation are

OutputFilter

InputFilter

FileResource

PickleUnpickle

Resource
Attributes

Resource
Bytecodes

Resource
Content

CONTROL DATACODE

CLIENT

WEBMASTER

CHAT CHAT
Participant 1 Participant 2

Servlet Resource

WebVM Node

WebVM Node

Module Resource

Jigsaw Server as WebVM Node

Resource Editor

Resource Store

WebVM Node

Figure 2: Internal dynamics of the Jigsaw Java Web server by MIT/W3C. All services are

structured and managed as Resource objects (similar to Servlet objects in Jeeves). Resources are

maintained in a persistent store, editable and downloadable on demand. The �gure illustrates

a set of standard Jigsaw resources such as File or Editors, and our own experiments with

multi-user and/or multi-server extensions such as Chat session or WebFlow module Resources.

Jigsaw 1

Jigsaw 2

Jigsaw 3Jigsaw 4

Jigsaw 5

Jigsaw 6

APPLET

CLOCK

TokenRing Resource / Module

Caltech Infospheres Portlets
based communication

receive();
t = getTimeout();
sleep(t);
send();

while(t > 0) {

}

Figure 3: Early integration experiments: Portlet library extracted from Caltech Infospheres is

used to form a token ring, connecting a set of Jigsaw Resource nodes. A message packet rotates

along the ring with a user-adjustable speed and generates visual feedback in a monitor applet.

called modules and they communicate by sending objects along channels attached to module

ports. Unlike management servlets which are usually persistent and application independent,

modules are more transient and can be dynamically created, connected, scheduled, run, relo-

cated and destroyed by servlets. WebFlow is a particular programming paradigm implemented

over WebVM and given by a data
ow programming model (other models under experimenta-

tion include data parallel, collaboratory, and televirtual paradigms). WebFlow application is

given by a computational graph, visually edited by end-users using Java applets.

Modules are written by module developers, people who have only limited knowledge of the

system. on which the modules will run. They not need concern themselves with issues such as:

� allocating and running the modules on various machines

� creating connections among the modules

� sending and receiving data across these connections

� running several modules concurrently on one machine

The WebFlow system hides these management and coordination functions from the developers,

allowing them to concentrate on the modules being developed.

WebFlow management is currently implemented in terms of the following three servlets: Ses-

sion Manager, Module Manager, and Connection Manager. These servlets are URL addressable

and can o�er dynamic information about their services and current state. Each of them can

also communicate with each other through sockets as discussed in the next section.

Figure 4 illustrates the three base servlets employed in setting up and managing WebFlow

operation. Session Manager receives graph speci�cation from the editor applet, creates an image

of the whole compute-web using module proxy objects called ModuleRepresentation, decides

on the compute-web decomposition strategy, and noti�es Module Manager about local modules

to be instantiated.

Module Manager starts and maintains ModuleWrapper threads than run Modules. Each

module, when created, noti�es ConnectionManager about the connectivity required by this

module Ports, and waits for the connections to be established.

WebFlow channels connecting twomodule Ports are formed dynamically by the corresponding

ConnectionManagers: Sockets returned by their 'accept' and 'connect' calls are passed to the

appropriate ports. After all ports of a module receive their requested sockets, the module

noti�es the Module Manager and is ready to participate in the data
ow operations.

5.2 WebFlow requirements

The requirements placed on WebFlow stem from the discussion above. Namely, WebFlow shall:

� allow modules to be run on demand

� support communication between the modules

� provide facilities for the user to create and destroy an application, where an application

is a set of interconnected modules.

To support the requirements placed on the system, the following components have been created:

Session Manager

Connection Manager

Module Manager

WebFlow Editor Applet

ModuleRep

ModuleRep

ModuleRep

Port

Channel

ChannelChannel

Port

ServerSocket

ModuleWrapper

ModuleWrapper

UNIX Module

Native Module

Java Module

Figure 4: Initial design of the WebFlow management layer, implemented as a set of Jeeves

servlets and including: Session Manager, Module Manager and Connection Manager.

Manager
Connection

Manager
Module

Manager
Connection

Manager
Module

Session
Manager

Applet
WebFlow

Figure 5: Overview of WebFlow Prototype Design

� Module Manager, in charge of running modules on demand

� Connection Manager, in charge of creating connections between the modules

� Session Manager, in charge of executing all the actions the user performs on the front

end.

In the following section, we describe each of these management entities in more detail.

5.3 WebFlow management

Module Manager The Module Manager is the simplest of the three system components. It is

in charge of running modules on demand. A user/editor request to create a module is sent to the

Module Manager residing on the particular machine on which the module should be run. The

Module Manager creates a separate thread for the module (thus enabling concurrent execution

of multiple modules), and loads the module code, making the module ready for execution.

A request for running (destroying) a module triggers a special method called run (destroy).

These methods were written by the module developers.

An important observation is that the Module Manager has no notion of a session built into

it. It can support any number of modules, and requests coming from any number of Session

Managers.

1

2

3

4

5

Connect OK

Establish

OK

Connection

Port 1 Port 2

Connection Manager 1 Connection Manager 2

Figure 6: Steps ivolved in making the connection between the two ports.

Connection Manager The Connection Manager is in charge of establishing connections

between modules. To be precise, it establishes connections between individual ports, regardless

of the module on which they reside, and regardless of the machine on which the module is run.

As each module is initialized, its ports register with the Connection Manager. This enables

the Connection Manager to establish connections between registered ports as illustrated in

Figure 6.

To connect port 1 and port 2 in Figure 6, a connect request is received by the �rst Connection

Manager in step 1. In step 2, an establish request is sent to the second Connection Manager,

which then, in step 3, sends an OK message back to the �rst Connection Manager to acknowl-

edge the establish request. The second Connection Manager proceeds to send a Connection

back to the �rst Connection Manager which receives the connection and passes it on to the

port. Finally, in step 5, the �rst Connection Manager replies that the operation has succeeded.

If an error occurs in any stage of the protocol, then instead of OK messages, error messages will

be sent back, thus aborting the protocol, and notifying the caller that the connection failed.

The �gure shows the more general case in which the two ports reside in separate Connection

Managers. Of course, the two ports may be registered at the same Connection Manager, in

which case the whole connection procedure is simpli�ed, and steps two and three are not needed.

As with the Module Manager, the Connection Manager has no notion of a session built into it.

It can support any number of Session Managers.

6 Session Manager

The Session Manager is the part of the system in charge of accepting to the rest of the system.

These requests include: creating a new module, connecting two ports, running the application,

and destroying the application.

Both the Session Manager and the front end store a representation of the application that

the user is building. The di�erence between the two is that the Session Manager needs to worry

about the machines on which each of the modules has been started, while the front end worries

about the position of the representation of the module on the screen.

In the WebFlow prototype, the Session Manager can only work with one user at a time. In

other words, there is only one session active at any one point in time (we are currently exploring

JSDA support for WebFlow to provide multi-user collaborative editing capabilities).

��
��
��
��

��
��
��
��

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

���
���
���

���
���
���

������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������

�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������

Client

Web Server

Servlet

socket connection

URL connection

Figure 7: Servers in the WebFlow system are accessible through both URL and socket connec-

tions.

6.1 Internal communication in WebFlow

All the URLs point to the web server. The web server analyzes the URL, As illustrated in

Figure 7, the WebFlow prototype supports two types of communication:

� via URL

� via socket connections

In the �gure, the client can either be front end, or the Session Manager, while the servlet can

be any of the three servlets that exist in the system.

All the URLs point to the web server. The web server analyzes, the URL, and forwards

the request to the servlet denoted in the URL. Socket connections are received directly by the

servlet.

The former|via URL|is used when a component's socket address is unknown. This feature

allows the whole system to be accessed over the web. However, the current implementation

of the URL addressing scheme does not provide a convenient way to send whole objects as

parameters. On the other hand, the socket connection scheme provides for a very natural way

of sending any object, provided it knows how to serialize itself, over the socket. This is very

useful, as all the requests and replies can easily be expressed as objects whose internal state

holds the type and parameters of the request or reply.

At the time being, each of the three servlets in the WebFlow system listens to both the

URL and socket connections at all times. Internal requests and replies for creation, running,

and destruction of modules, as well as connecting ports all go through the socket connection,

whereas the URL communication is being used to provide the socket address of the server and

to perform system-wide operations, such as give usage statistics, reset the system, add new

resources to the system, etc.

It is conceivable that the HTTP protocol will evolve so that the whole WebFlow communi-

cation could be eventually handled uniformly in the URL addressing mode. For the time being,

we will support both URL and socket based addressing modes and we will monitor, participate

in and respond to W3C e�orts aimed at dynamic and object-oriented extensions of the HTTP

protocol.

6.2 Module and Port identi�cation in WebFlow

As soon as a module is created, it is assigned a unique identi�er. This identi�er is present

with all the requests associated with the module, i.e. the module's running and destruction

(recall that creation also creates the identi�er). Module identi�ers are necessary because of the

following reasons:

� they provide an easy way of identifying the target of module operations

� they enable multiple instances of the same module to be run on the same machine, each

of the instances having a separate identi�er

Each port also has an identi�er, but they are less general than the module identi�ers. Since

ports can never exist outside of a module, it su�ces to assign unique identi�ers to ports on one

module. The current implementation is a bit more general, however, since it assigns identi�er

to ports per one Module Manager/Connection Manager combination.

6.3 I/O modules in WebFlow

The previous discussion took for granted the input and output modules in an application.

However, current web browser restrictions make input and output modules a non-trivial task.

Since the front end can be invoked from an arbitrary machine connected to the web, the

input and output modules should be able to receive their input and send their output to the

same, arbitrarily chosen, machine. The only way of doing so in the current state of a�airs is to

provide applets that will be able to receive user inputs, and show the application's outputs.

Therefore, the input/output modules are made of two parts: a WebFlow part|that works

under the WebFlow model, and an applet part|that provides I/O capabilities, as illustrated in

Figure 8. Upon initialization, the I/O modules inform the system that they require an applet

to be spawned for them. That request is forwarded all the way to the system's front end, which

has the capability to open a new frame on the screen, and load an HTML page in it. That

HTML page can contain an invocation of the I/O module's applet.

The front end receives the HTML pages by making separate requests to the Session Manager.

In the long run, the responsibility of creating and serving these HTML pages will be placed in

a separate manager|the Viewer Manager, a topic further discussed in the following sections.

Session Manager

Module Manager

WebFlow Editor Applet

ModuleRep

ModuleWrapper

Visualization Applet

Applet

Java Sockets

HTTP

HTML

Module

Figure 8: I/O Modules in WebFlow

6.4 WebFlow API

WebFlow o�ers a well-de�ned API for module developers that hides the communication details

in terms of port and module abstractions. We include here for illustrative purposes a few

samples of WebFlow programming at the module developer level.

Ports It is fairly easy to create and add new ports in the module implementation. Any new

port type has to be derived from abstract Port class. The new port type has to only override

the send and receive methods of the Port class for data transfer. The Port class constructor

automatically registers the port with the Connection Manager. When the module terminates,

the port deregisters itself from the Connection Manager.

An example port is shown below. The port is an Integer port which sends and receives

Integer objects.

public class IntPort extends Port {

DataInputStream is;

DataOutputStream os;

Integer data;

boolean bool;

public void send(Object num) {

data= (Integer)num;

if(getSocket()!=null) {

try {

os= new DataOutputStream

(getSocket().getOutputStream());

os.writeInt(data.intValue());

} catch(IOException e){}

}

}

public Object receive() {

if(getSocket()!=null) {

try {

is = new DataInputStream

(getSocket().getInputStream());

data= new Integer(is.readInt());

} catch (IOException e){}

return(data);

}

else return(null);

}

}

Ports can be both synchronous as well as asynchronous depending upon the way they check

for data. Asynchronous ports remain dormant and wake up whenever data is available for

receiving or sending. Synchronous ports keep on polling for data, so the user is
exible to use

synchronous or asynchronous ports depending upon the application.

MODULE

ADDER

OUTPUT

MODULE

MODULE 1

INPUT INPUT

MODULE 2

Sample Adder application

Figure 9: Sample Adder Application

Modules Modules basically consist of three main methods:

� initialize

� run

� destroy

Code for a basic adder module is shown below. This module receives numbers from two other

modules and sends the result to a third module, as shown in Figure 9.

The initialize method initializes the module by registering its ports with the Connection

Manager, creating a MetaModule object containing the module id and port id's and then

passing on the MetaModule object to the Module Manager. Essentially, all ports are declared

and instantiated in this method. For example,

public MetaModule initialize() {

//set the Metamodule

MetaModule mm = new MetaModule("mm");

//declare the ports

port1= new IntPort(); //input port1

mm.putPortID(port1.getPortID());

port2= new IntPort(); //input port2

mm.putPortID(port2.getPortID());

port3= new IntPort(); //output port

mm.putPortID(port3.getPortID());

return(mm);

}

Viewer module speci�es additionally an HTML string to be passed to the front-end and used

there to �re a suitable viewing frame. In the initialize method, the MetaModule object holds

this string and passes it on to the ModuleManager. The HTML syntax may contain code to

display images, run other applets, etc. An example of the initialize method of the viewer module

is given below.

public MetaModule initialize() {

// Set the MetaModule MetaModule

mm = new MetaModule("mm");

int i;

//declare the port

imgport=new ImgPort();

mm.putPortID(imgport.getPortID());

//data reqd for this particular module

try{

InetAddress local =

java.net.InetAddress.getLocalHost();

hostName = local.getHostName();

listener = new ServerSocket(0);

// open new server socket

portNumber = listener.getLocalPort();

}

catch (UnknownHostException e) {

System.out.println(e);

}

catch(IOException e) {

System.out.println(e);

}

// create the HTML String object

String htmlString = new

String(...HTML code...);

//Store the object in the MetaModule

mm.setHTML(htmlString);

//return the Metamodule

return(mm);

}

The run method describes the behavior of the module. Upon receiving the run request from

the ModuleManager, the module executes the run method in which the module may receive,

send or process data. It is here that the module can interact with various other modules by

data transfer.

public void run() {

while(true) {

//receive values

num1=port1.recieve().intValue();

num2=port1.recieve().intValue();

num3=num1 + num2;

//send result

port2.send(new Integer(num3));

}

}

The destroy method terminates a running module. All ports are deregistered and the module

stops executing. All socket connections of the ports are closed.

public void destroy(){ //terminate

port1.destroy(); //destroy all ports

port2.destroy();

port3.destroy(); }

6.5 Next Steps

The WebFlow prototype served its role as a proof that such a system can be built but it also

showed that several new servers are needed to provide the full functionality. One of them|the

Viewer Manager|was already mentioned above. At least the following new servlets will be

added to the WebFlow system:

� Viewer Manager

� WebVM Server Manager

� Resource Manager

� Communication Manager

The Viewer Manager will be in charge of providing HTML pages that include I/O module's

applet. One Viewer Manager will reside with every Module Manager, since any Module Manager

may have I/O modules.

The WebVM Server Manager will be responsible for managing the servers in the system. It

will be capable of adding and deleting servers from the system, as well as responding to queries

about active servers. Unlike Module Managers and Connection Managers, Server Managers will

be scarce in the system.

The Resource Manager will provide a list of resources, or modules, that can be found in the

system. There are two possible ways of implementing resource management functions. One is

by assigning a dedicated Resource Manager to each host, and the second is via a more collective

Resource Manager, responsible for a group of hosts. In the �rst case, the Resource Manager

could be grouped with the Module Manager, and in the second, it could be grouped with the

Server Manager.

The Communication Manager will multiplex all the communications between ports registered

on a given WebVM node. In theWebFlow prototype, each port has its own socket through which

it communicates with the remote port, thus not only wasting system resources (one extra socket

per port), but also having to deal with the low level details of sending and receiving messages

(although it has the distinct advantage of having the sockets themselves take care of message

bu�ering).

The Communication Manager will provide facilities for sending, receiving, and bu�ering

messages. Its natural place is together with the Connection Manager, since these two servlets

actually represent only two stages in the overall communication process. Future WebFlow

implementations will probably have just one Connection and Communication Manager, instead

of two separate ones.

7 Tier-1 Visual Graph Editor

Since the idea of WebFlow is to create and maintain a domain of world-wide reusable compu-

tational modules, the natural place for accessing and maintaining such a domain is the Web

itself. Therefore we are faced with the existing browsers such as Netscape or Internet Explorer

as a basis for the WebFlow Graphical User Interface. The security restrictions imposed by these

browsers, implementation di�erences due to the ongoing corporate competition, as well as the

recent developments in the Network Computer domain all point towards a design solution of a

light weighted front end, that will be accessible trough any browser (including new consumer

electronic front-ends) and a solid back end given by a personal Java Web server, hooked to a

WebVM network, which will implement the most of the functionality of the system.

The front end is designed as a tool for visual authoring of computational data
ow graphs that

integrate the existing public domain software modules. It is based on highly intuitive visual

icons and click-and-drag design metaphors which hide the inherent complexity of the WebFlow

system.

In the current implementation of the front end we used the UCI's Graph Editing Framework

(GEF) [Robb96] as a basis to develop the front end of the WebFlow system. GEF supports the

basic graph editing mechanisms and it is naturally extensible. This framework is well structured

with cleanly decoupled layers, which makes possible to concentrate on the application speci�c

details that concern the WebFlow front end. Figure 10 shows a snapshot of the current editor

in action.

The front end is implemented as an applet, it resides in the top level layer of the system, and

it creates and maintains a connection with the Session Manager in the back end of the system.

The user creates a computational graph from modules as building blocks, by selecting the

corresponding icons from a list of available modules in the system and inserting them into the

graph. Multiple instances of a speci�c module can be created and their internal state and their

connections are completely independent.

After the modules are inserted as nodes in the graph, the applet requests its initialization

from the back end. After the initialization is done the back end replies to the applet, bringing

information about the interface of the selected module. The applet builds and stores the

representation of the graph, keeping information just about its visual representation. The

Figure 10: Initial WebFlow front-end, based on extended GEF (Graph Editing Framework)

from UCI. Modules are selected from the palette in the click-and-drag style. Compute-webs are

constructed interactively in the click-click-to-connect model. Individual modules can be given

user-programmable visual appearance. In the next step, vector graphics drawing tools will be

provided for interactive authoring of module icons.

Web
Browser

Web
Browser

Web
Browser

Web
Browser

Access

Progress
Web Server

Java
Web Server

Java

Web Server
Java

Web Server
Java

Web Server
Java

Web
Browser

Web Server
Java

Applets

Aglets
Aglets

Servlets

IBM
CICS

Oracle

Figure 11: Example of a distributed heterogeneous database environment, managed by the

WebVM layer via JDBC interfaces, and custom editable via WebFlow visual graph editing

tools. Intelligent agents such as IBM aglets are used to disseminate or search for the information,

stored/retrieved by servlets and visualized by applets.

information about the actual modules and their mapping on real machines are stored by the

back end.

In the same fashion as the modules, the connections between modules are created. Connecting

two modules means connecting a port from one module to a port of the other, by means of

simple clicking and dragging.

Individual modules and/or connections can be removed from the graph, which results in

deleting them from the structure maintained by the applet itself and in killing the initialized

instances of the corresponding modules in the real system as well as breaking the real connec-

tions between initialized modules.

After the computational graph is created it can be executed as well. The results are monitored

trough the input/output modules that are inserted in the graph. The execution of a compu-

tational graph can generate variety of feedback patterns, ranging from just producing �nal

results from a complex computation, to periodic performance visualization and system moni-

toring modes, to real-time interactive display modes. Current WebFlow editor is restricted to

single-user 2D graphics operations but we are also initiating activities on bringing the front-end

to the next level of interactivity. This includes integrating WebFlow with JSDA to support

collaboratory editing and with VRML2 to support televirtual authoring paradigm.

Infosphere WebSpace Televirtuality

HPCC NII ATM Legacy Systems

WebVM WebVM

Scalable Televirtuality (IBM)

VDCE (RL)

WebSpace (DoE)

CRPC (NSF) PCRC (DARPA)

Figure 12: WebVM as a reusable middleware, tested in a set of research projects at Syracuse

University such as WebSpace, VDCE and Televirtuality, focused on various front-end metaphors

in tier-1 and/or various computational paradigms in tier-3.

8 Tier-3 Legacy Layer

In parallel with the core WebFlow development work described so far, we are also starting

activities on building domain-speci�c tier-3 module libraries, including WebFlow wrappers to

existing codes and legacy systems. ModuleWrapper discussed in Section 5 can wrap any com-

putation, including pure Java, native libraries or external UNIX or NT processes.

In the pure Java sector, we are developing control, monitoring and coordination support

for the base WebVM/WebFlow operations. Native libraries with C-coded optimized primitives

o�er a natural extension for media processing and high performance computing . In the ex-

ternal processing sector, we are experimenting with JDBC drivers for Oracle and mSQL, with

JDBC/ODBC drivers for PC databases such as Access or SQL Server and we are developing a

WebVM based distributed database layer (see Figure 11), with intelligent agent (such as IBM

aglets) based connectivity and visual WebFlow support for designing high level information

retrieval and data mining strategies.

Hypothesis
Testing

Plot-Track
Assignment Threat

Database

Database

Database

Database

Database

Terrain

Masking
Interceptor

Assets

Route
Optimization

Terrain
Masking Threat

Analysis

Decision
Support
System

Theatre

(track initiation) (track continuation)

Sensors Sensors

Tracks Tracks

Other
Surveillance

and
Reconnaisan

Functions

Threats Threats Threats

Flyouts

ThreatsMasking
Masking

Terrain Terrain

Locations

Locations

Interception
Intervals

Optimal
Locations

Optimal
Routes

COMMAND AND CONTROL DECISION MAKING

Figure 13: WebFlow/VDCE application for Command and Control

9 WebFlow/WebVM Applications

We view WebVM as a reusable middleware and we intend to test it in a set of Web based

distributed applications under development. These e�orts, partially supported by Department

of Energy, Rome Laboratory and IBM Watson, allow us to test various aspects of the WebVM

architecture as illustrated in Figure 12. In two `depth' projects, WebSpace and VDCE, we

are probing selected tier-1 and tier-3 aspects of WebVM, respectively. In the `breadth' area,

focused on system scalability we are initiating collaboration with IBM Watson in the area

of Televirtuality and we are seeking federal funds to address World-Wide Virtual Machine

architecture [HPDC96] [SC96].

9.1 Command and Control

In the VDCE project [VDCE96], we are analyzing C3I functions recently published by the RL

C3I Parallel Benchmarking Project and we are developing a library of 3CI modules that would

support interactive composition of Battle Management C3I systems such shown as in Figure 13

using the visual graph editing tools. More generally, VDCE addresses complementary aspects

of Web based distributed computing and it o�ers a natural connectivity between the pure Java

Agent Author CMS DBMS HPL PDA Sim TVRConf

Conf Conf

Agent

TVR

DBMS Sim
VoD

Img
World

Img

HPL HPL HPL HPL

HPL HPL HPL HPL

HPL HPL HPL HPL

HPL HPL HPL HPL

CMSCMS

CMSCMS

CMS

Agent World-Wide Web

Author

PDA

VoD World

Agent

DBMS

Figure 14: WebFlow based telemedicine bridge authoring toolkit

based WebFlow model and the ATM based HPDC environments.

9.2 Telemedicine

In the CareWeb project [CareWeb96], conducted jointly with Syracuse University College of

Nursing, SUNY Health Science Center and Syracuse City School District, we are developing a

collaboratory telemedicine system for school nursing, based on the `bridge' topology [Bridge96].

Figure 14 illustrates a CareWeb bridge under development, connecting `points of need' (par-

ents, nurses) with `points of care' (nurse practitioners, pediatricians) via an intelligent Web

based switchboard. Individual bridge services are managed as WebVM nodes and connected,

integrated and customized for individual healthcare provider needs using the WebFlow visual

authoring tools.

9.3 Televirtuality

In a joint project with IBM Watson [TVR96], we are analyzing scalability issues of WebVM

architecture in the context of televirtual, i.e., 3D multi-user collaboratory environments on the

Internet.

HONDA

TOYOTA
FORD

CHEVY

TOYOTA FORD

CHEVY
HONDA

SKY VIEWFLOOR/ROOF VIEW

Floor

Stores

Portal

TOWER VIEW Elevator

TOYOTA
FORD

Figure 15: Example of a Televirtuality application with non trivial compute-web topology:

Virtual Shopping Mall

We use Java based Liquid Reality VRML2 browsers for the interactive front-ends and we start

building 3D worlds that would provide experimentation platform for the scalability research.

We selected urban architectural domain for world building due to its natural modularity and

we develop two speci�c worlds: Virtual SU Campus based on CAD data by the SU Department

of Architecture, and Virtual Shopping Mall jointly with IBM Watson.

Our initial Mall architecture is drafted in Figure 15. Individual stores,
oors and towers are

powered by WebVM servers, managed by the Mall tenants and o�ering interactive shopping ser-

vices. WebFlow authoring tools will be used for specifying connectivity between architectural,

commerce and human/avatar components of such a complex world.

We are also working on building system level WebFlow tools for performance visualization

and interactive debugging, based on the TVR metaphor. In this world, modules are represented

as rooms, ports as doors, channels as halls connecting rooms etc. New object arriving at an

input port would result in the corresponding door opening and an avatar-messenger entering

the room with a new chunk of data to be taken over by other avatars-managers for further

handling.

References

[Bridge96] David Warner, D. and Balch, D., \Medicine Meets VR: BRIDGE,"

http://www.telemed.med.ecu.edu/bridge/bridge 1.htm

[Browne92] J.C. Browne, \CODE|The Computationally Oriented Display Environment,"

University of Texas at Austin, 1992, http://www.cs.utexas.edu/users/code

[CareWeb96] SU College of Nursing, NPAC, Syracuse School District, SUNY HSC,

\CareWeb|a Web based community oriented healthcare communications system,"

http://www.npac.syr.edu/projects/careweb

[ChaRi96] Mani Chandy, Adam Rifkin, \The Caltech Infospheres Project,"

http://www.cs.caltech.edu/ adam/CALTECH/infospheres.html

[Dong94] J. Dongarra, \HeNCE: Heterogeneous Network Computing Environment,"

http://www.cs.utk.edu/netsolve/

[Haba96] NCSA's Habanero Collaborative Tools Library,

http://www.ncsa.uiuc.edu/SDG/Software/Habanero/ToolsLibrary.html

[HPDC96] G. Fox andW. Furmanski, \TowardsWeb/Java based High Performance Distributed

Computing|an Evolving Virtual Machine,"

http:/www.npac.syr.edu/projects/webspace/doc/hpdc5/talk

[Jigs96] Jigsaw HTTP Server, World-Wide-Web Consortium,

http://www.w3.org/pub/WWW/Jigsaw/

[Robb96] Jason Robbins, \GEF: Graph Editing Framework,"

http://www.ics.uci.edu/~jrobbins/GraphEditingFramework.html

[SC96] W. Furmanski and G. Fox, \HyperWorld|Design and Prorotype Components,"

http:/www.npac.syr.edu/projects/webspace/doc/sc96/talk

[TVR96] D. Dias, W. Furmanski, and V. Mehra, \Scalability of Televirtuality Servers"

[VDCE96] S. Hariri, G. Fox, W. Furmanski and S. Warzala, \Virtual Distributed Computing

Environemnt," http:/merlin.cat.syr.edu/projects/vm

[WebHPCC96] G. C. Fox, and W. Furmanski, \Web based HPCC at NPAC,"

http://www.npac.syr.edu/projects/webspace/webbasedhpcc.html

