
NPAC Technical Report: SCCS-???

Using Java and JavaScript in the Virtual Programming
Laboratory: A Web-Based Parallel Programming Environment

Kivanc Dincer and Geoffrey C. Fox
Northeast Parallel Architectures Center
Department of Electrical Engineering and Computer Science
111 College Place, CST Mail-Stop 3-217
Syracuse University
Syracuse, NY 13244-4100
{dincer, gcf}@npac.syr.edu
http://www.npac.syr.edu/users/{dincer,gcf}/

Abstract

The Virtual Programming Laboratory (VPL) is a Web-based virtual programming environment built
based on a client-server architecture. The system can be accessed on any platform (Unix, PC, or Mac)
using a standard Java-enabled browser. Software delivery over the Web imposes a novel set of
constraints on design. We outline the tradeoffs in this design space, motivate the choices necessary to
deliver an application, and detail the lessons learned in the process. We discuss the role of Java and
other Web technologies in the realization of the design. VPL facilitates the development and execution
of parallel programs. The initial prototype supports high-level parallel programming based on Fortran
90 and High Performance Fortran (HPF), as well as explicit low-level programming with the MPI
message-passing interface. Supplementary Java-based platform-independent tools for data and
performance visualization are an integral part of the VPL. Pablo SDDF trace files generated by the
Pablo performance instrumentation system are used for postmortem performance visualization.

1. Introduction
Virtual Programming Laboratory (VPL) (Figure 1) is a Web-based, integrated, parallel programming
environment consisting of a visual file manager for manipulating files and directories in a users account,
laboratory modules for compiling and executing message-passing MPI [1] programs (written in Fortran,
C, and Java) and data-parallel programs (written in Fortran 90 and High Performance Fortran [2]),
performance analysis and visualization subsystem to depict executed programsperformance behavior as
animated or static displays, and a graphic plotting component to materialize output data as
two-dimensional plots. VPL is unusual among Web services, because it allows users to create, edit, and
execute files, rather than simply retrieve them by following hypertext links or by making simple
database queries.

We expect that in the future the Web will be the standard user interface in many organizations for
accessing computational resources. And instead of X-windows on Unix platforms, or Windows
environments on personal computers and Macs, Web browsers will be used to manipulate the
systemsresources. VPL is a proof-of-concept prototype that we developed using standard Web
technologies. Java and JavaScript is used primarily to ensure interactivity and visual animations at the
client site in addition to static components such as HTML. The interactive Web, HPCC backends

controlled by Web servers extended with CGI modules, and HTTP-based communication represent
critical enabling technologies in this framework.

VPLs basic function is to provide a user-friendly interface to server-site useraccounts and allow the use
of HPCC parallel computing platforms and software on them in a convenient manner while giving the
user an opportunity to observe the behavior and behavior of his/her program visually. Users do not need
to log into a Unix account or type any Unix commands. Once they supply the required username and
password, they are logged into their accounts and can use the computational facilities as well as
educational materials from the same interface, the Web browser.

In this paper we are going to describe our experience of building VPL, a Web-based virtual
programming environment. We primarily concentrate on using VPL for educational purposes based on
our recent experiences. In Section 2 we describe the system architecture and potential areas of usability
for VPL. Section 3 discusses the shortcoming of other Web technologies in user interface design, and
emphasizes Javas contributions in this area. Section 4 describes the main components of the VPL main
control panel with emphasis on the file manager, text editor, and programming labs. Section 5 describes
the role of Java for visualizing the data structures and performance data traces. We investigate three
components related to visualization: the data visualization component, the performance visualization
component, and the 2D graphics plot package. We conclude by talking more on the Web security and
future directions.

VPL makes it easier for its maintainer to make changes to the posted software, to indicate certain
resources as sharable, and to change access restrictions and management policies in a quick and
convenient manner without needing superuser privileges. It also makes it possible to access posted
resources from any platform.

Figure 1. VPL Client-site configuration items.

2. The System Architecture and Areas of
Usability

In recent years we have witnessed a rapid development of computer networks, dramatic improvements
in the processing power of personal computers, and striking advances in magnetic storage technology.
Furthermore, more and more colleges, universities, schools, companies, and private citizens connect to
the Internet either through affiliations with regional not-for-profit networks or by subscribing to
information services provided by for-profit companies. World-Wide Web (WWW) has emerged as an
exciting and innovative front-end to the Internet. It provides Internet users with a uniform and
convenient means of accessing the wide variety of resources (pictures, text, data, sound, video) available
on the Internet, and Web browsers make the Internet a more user-friendly environment by integrating all
those resources into a single tool that eliminates the necessity for novice users to struggle with a steep
learning curve.

In this paper we are going to describe our experience of building VPL, a Web-based virtual
programming environment. VPL is a client-server architecture --- a central Web server coordinates the
accesses to local computational resources (Figure 2). The core server site components of the VPL
architecture are the following:

1. CGI scripts written in Perl process the requests coming from the file manager, text editor,
laboratory modules, and other Java applets. For example, scripts related to the programming
laboratory pick up the program to be compiled, activate the selected compiler directly or by using
makefiles execute the resultant program on the parallel machine, and report the user
compilation/runtime errors or execution results.

2. The compilers for serviced languages in the context of VPL (i.e., Fortran 90, HPF, C and Fortran),
MPI and other runtime libraries related to the compilation process, a Perl interpreter, Pablo
software, all the related HTML files, and class libraries are stored on the server.

Figure 2. Client-server interaction in VPL.

Different versions of VPL were used for supervised on-site demos and unsupervised Web demos of
local software products, and as a Web interface for using remote parallel computers. VPL can also be
used for distant education as a part of collaborative distance teaching environments such as the Virtual
University [3].

An initial prototype of VPL, called HPF/pC++ on the Web[4], with limited functionality was first used
to demonstrate the current status of the PCRC [5] project at the Supercomputing 95 conference. NPACs
F90D/HPF compiler and CSCs parallel C++ compiler were shown to share the same common runtime
system through a Web interface supported by an HPCC and CGI back-end on a parallel cluster of
workstations. We later used the same prototype in our on-site and remotely executed demos. The system
dynamically generated specific HTML in response to compilation requests on arbitrary user codes. This
is in contrast to the static compilation of demo programs, which was done off-line. Unlike static
compilation of demo codes, this resulting document is unbounded in size and the HTML generated for
any given code will change over time as the contents of the program code and data file change.

All the improvements in the Internet and Web technologies have opened many ways for educators to
overcome time and distance in order to reach students. For educators, the WWW provides an exciting
new opportunity for distance teaching and learning. The WWW and its digital libraries offer a powerful
and continuously growing reservoir of educational material. Electronic mail, computer conferencing,
and electronic bulletin boards facilitate communication among class members. Built-in, server-site
extensibility mechanisms such as CGI and client-site support with Java, JavaScript, and helper
applications open the way to world-wide distributed collaborative learning/teaching environments. The
computer industry adds value in terms of quality browsers and multimedia VR front-ends.

We supplement the distance teaching efforts with the VPL software that provides virtual programming
laboratory functions using Web browsers. We target high-performance computing parallel language
teaching that requires to do many exercises and programming assignments. The Java language helps us
to provide an interactive user-interface and well-developed graphical utilities for visualizing the results
and behavior of programs.

With C. Hecht and K. Barbieri, we later tailored an upgraded version of our HPF on the Websystem for
the Cornell Theory Center (CTC) environment (IBM SP-2 parallel machine on the Andrew File System)
as the Web/HPF module. The Web/HPF module is used in CTCs Virtual Workshops since February
1997 as the interactive programming laboratory tool for teaching parallel programming and HPF.

VPL was also successfully used in a graduate level computational science course at Syracuse University
during the Fall 1996 semester. Students used VPL to do their HPF and MPI programming assignments
by accessing computational resources via standard Web browsers.

We recently started to invoke VPLs use in evaluating newly developed software among collaborating
research institutions. Several commercial companies already have try-and-buyprograms that involve
distributing their software on CDs with temporary licenses for potential customers. A similar need arises
when a research institution plans to adopt a public domain software to use as part of its development
cycle. Since many not-for-profit public domain software products do not satisfy all the criteria
demanded by a commercial package, it may be crucial to test it under different circumstances before
adopting and installing it on local computing platforms. This installation process sometimes takes
several days, depending on the tools provided. It would be nice to assess the quality of the software
before adopting it. Furthermore, a tool like VPL can help to post new patches to the current software on
the Web, along with a running copy of the latest version of the software. For example, VPL users soon
will be able to follow the day-to-day status of NPACs Java+MPIproject targeted towards writing
SPMD-style Java code with calls to MPI message-passing routines.

3. Using Java for Graphical User Interface
Design
Java is an excellent resource for building graphical user interfaces that we are used to seeing in many
commercial software packages. When combined with the browser and other Web technologies, Java
helps to provide a uniform user interface platform on every type of computer in the world, from personal
computers to Unix workstations. In this section we describe the problems associated with using older,
more standard Web technologies such as HTML and frames. We faced many problems while building
various early prototypes of VPL. We investigate the shortcomings of HTML in the two categories
described below. In the first category, we find that the introduction of JavaScript functions provides
better support for more sophisticated applications, making user interaction more satisfactory and
implementation cheaper and simpler. Yet Java, in addition to handling all the problems we mentioned in
the first category, can also resolve the problems mentioned in the second category.

In general, there is a fundamental difference between the type of interaction supported by HTML and
the forms of interaction to which we are all accustomed in graphical user interfaces. In GUIs, operations
typically take the form of the user selecting an operand or operands through direct manipulation and
then applying an operator by means of a menu selection or keyboard accelerator. In HTML-based user
interfaces, there is no notion of selecting objects per se. Instead, the page the user is on is viewed as an
implicit operand, and therefore the user can select a command to apply to that operand. In effect, an
HTML interface can allow the user to apply a number of different commands to a single object, or a
single command to one of a number of different objects. Commands that take multiple operands are
much harder to implement.

We were able to simulate the behavior of traditional GUIs by using multiple frames, keeping the
operands and operators in separate frames, and filtering all the submit and select actions through
JavaScript functions before submitting them to the server.

3.1 Problems that can be solved using JavaScript

Transmitting information to server. There are only two ways for the browser to transmit information
to the server from an HTML document. Pressing a submit button transmits the widget state, while
selecting an anchor transmits a request to follow a hypertext link. Until a submit button is pushed, it is
not possible for the server to determine anything about intermediate activities that a user might perform,
such as typing text into an input field, toggling radio buttons or checkboxes, selecting items from menus,
moving the mouse, and so on. JavaScript adds dynamism to the HTML pages through its ability to check
widget states as soon as they are entered, and by being able to submitvalues explicitly without needing
to use buttons or links. Consequently, it is possible to implement many features of sophisticated user
interfaces over the Web such as immediate feedback to the user.

Asynchronous Communication with Server.It is not possible for an applicationcf2 to preempt the
browser’s activity or provide any asynchronous communication.For example, it is not possible to notify
the user asynchronously about the results of a background task or remind the user to save work.
JavaScripts time-out mechanism and alert dialog capability can be used to do these kind of things.
Furthermore, JavaScript modules can open HTTP connections asynchronously.

Transmission granularity. Each user action (submit or select) causes an entire new page or frame to be
transmitted back to the browser over the network. There is no way for the application to cause an
incremental update of a portion of the display. Even on high-bandwidth local area networks, transmitting
and rendering large pages is time consuming; for distant browsers it becomes the dominant cost. We
used hidden frames containing only the required field values and sent only those small frames to the
server using JavaScript.

Widget set. The widget set available through HTML’s forms capability is limited to submit buttons,
radio buttons, checkboxes, pop-up menus, single/multiple selection scrolling lists, text fields and areas,
mapped images, and text type-in widgets. It is not possible to combine either submit button or anchor
behavior with a pop-up menu, or include icons in menus or scrollable lists to provide the sort of
command selection model that is present in so many user interfaces. is no way to provide constraints on
selection elements (e.g., toggling "list Java files" causes a file list menu to filter out non-Java files).

Native Submit Buttons. Web pages with custom image buttons instead of the native ones provided by
the browsers look more uniform across platforms, but users must learn to recognize buttons anew for
each idiosyncratic application. Despite this disadvantage, we chose to use the native Windows system’s
submit buttons for our interface to achieve a more uniform look.

Long pages with buttons. We found that some HTML pages, such as the tutorial and print windows,
always produced pages that were multiple screens in height. We replaced these windows with two
frames, one of which contains the global buttons that are always visible while manipulating the
document in the other one.

Viewport positioning. Another problem is that HTML and HTTP do not provide effective control over
viewport positioning. Because browsers cannot informthe server of the browsers window size or exact
viewport position within a document, a server cannot cause the browser to scroll to a particular location.
This means that it is often necessary for the server to refresh a whole page by forcing a redirection on
the browser that would otherwise not be necessary simply in order to scroll to the desired position on the
page. Although it is possible using named anchors to tell the browser where to scroll to on the new page,
this is very coarse-grained control.

Action of a form. The action associated with a form is restricted to only one URL which inhibits having
different actions with different submit buttons. Recently, JavaScript 1.1 made it possible to change
dynamically the target of the action of a page or button.

3.2 Problems that can be solved only by Java.

Graying out invalid options. There is no way to gray-out either graphics or menu options in HTML
that would have the obvious benefits of alerting the user of the existence of inapplicable commands and
preserving registration. This means that the interface designer is forced to generate two sets of graphics:
one for active commands, and one for any inapplicable commands. This doubles the network traffic
associated with downloading the graphics, as well as increasing the human effort required to create the
service.

Keyboard Accelerators. There is no way to associate keyboard accelerators with submit buttons.
Binding the Enter or Return key to submit is an interesting special case of binding the default selection.

Little control over page appearance and registration. The application has very little control over the
location of displayed objects on the finally rendered page, or on how and to where the browser will
scroll the page if the page does not fit into a single screen. HTML explicitly yields rendering decisions
to browsers. This has many advantages for browsing hypertext documents, but it proves awkward for
interface design.

Scrollbars in textareas. It is not possible to control the position or presence of scroll bars on textarea
widgets. This is a particular problem, because the default of most widget sets is to put the vertical scroll
bar on the right of the text widget and the horizontal scroll bar on the bottom. For large textareas, this
often results in the vertical scroll bar being scrolled off the right of the user’s viewport, and the
horizontal scroll bar being scrolled off the bottom of the viewport. For some applications it may be
desirable to have scroll bars on all four sides of a viewport.

Pop-up menus. VPL user interface has a column of buttons at the left of the page that will invoke the
file, directory, and other VPL functions. The number of buttons will only increase as the system
becomes more sophisticated. Because HTML does not support pop-up submit buttons, we were unable
to implement the obvious and familiar behavior of a menu bar. The irony of this is that associating an
action with a menu selection is probably the most common form of interaction that users have with
menus. The only "correct" model for command menus in HTML is the exhaustive enumeration of the
commands as submit buttons.

When the number of commands becomes too large to support in this way, an alternative way is to
partition the commands into broad classes and put the commands on menus and the name of each menu
in front of it as a submit button. This means that the user must select an option from the menu and then
click on the submit button to execute the selected operation. This is non-standard, but an applicable
solution.

4. VPL Main Control Panel Items
This section describes the main control panel items of the VPL illustrated in Figure 3.

4.1 File Manager

File manager is a simple visual file browsing tool similar to its Windows-based PC counterparts that
perform directory and file operations.The file manager has multiple frames: one for operation buttons,
two for listing the usersfiles and directories, and another one for displaying the currently selected file
and directory. Most of the actions selected by pressing the buttons are applied to this current
directory/file pair.

Directory buttons are available for opening a new directory, for removing the currently selected, or for
renaming the currently selected directory. File buttons are used to copy a currently selected file into the
same or another directory, to remove the currently selected file, or to rename the currently selected file.
View/Print buttons open a separate window to display the contents of the currently selected file. The
user can print the contents of a file by using the browsers print function. In addition to all of the above,
buttons for activating the text editor or HPF and MPI laboratory sessions on a separate window are
provided for the users.

All user inputs are validated by client-side JavaScript modules before submission to the server site. This
eliminates some of the unnecessary work on the server and tightens the security. For example, we filter
the filenames to prevent meta-characters like ;or &and check to see if the new directory name conflicts
with an already existent directorys name. The associated server site CGI scripts manage the directory
and file operations appropriately and either send the user a new directory listing or an error message.
Most of the time, the server will not send an error message, because of the precautions taken at the client
site.

Figure 3. Snapshot of VPL User Interface.

4.2 Text Editor

The CGI-based text editor with extended functions written in JavaScript allows the user to create new
files or edit the existing files without leaving the virtual lab environment. The editor functions are

supported/complemented by CGI scripts on the server site.

There are two other alternatives for choosing a text editor to be used in the VPL environment: We could
choose to use traditional Unix editors such as vi, emacs, or pico. We could choose to use a
platform-independent, Java-based editor. Using a CGI- or Java-based editor has the advantages of doing
most of the routine editing workon the client site and being platform-independent. They work similarly
in every platform from which the user calls them. Their functionality is embedded in the browser itself.
The editor module communicates with the server only for savingand loadinguser files. On the contrary,
standard Unix editors can be used only when VPL is activated from Unix workstations supporting
X-windows. Furthermore, since the editors are on the server site, every key stroke travels to the server
site and back.

The most important reason for not using standard editors at all was that they give users a way to go out
of their own directories, which we certainly could not allow. While using the CGI-based editor, the
source of the load and save operations are verified by the JavaScript functions and CGI modules to
make sure that the user accesses only the files in his/her own directory. The uploading/downloading of
files from/to client site user accounts is an essential function of such an editor.

We also provide some integrated on-line helpwith the editor for the novice High Performance Fortran
(HPF) users. When the user switches the help mode on, a hint window appears for each selected HPF
directive. The supplied hint may be as simple as typing an example directive of the chosen type directly
into the editor window (simple) to prompting the user to enter variable parts of the directive while the
other parts are filled out automatically (prompt mode).

4.3 HPF and MPI Programming Laboratories

VPL users are represented with a forminterface where they select the services that they require. VPL
supports HPF/Fortran 90 programming and MPI programming in C/Fortran 77/Java on parallel
machines.Users may choose a file for compilation and an appropriate compiler along with the number of
processors needed for execution on the target (Figure 4). The compilation is achieved either by directly
activating related compilers on the target machine or by using makefiles that indirectly activate the
compilers (only if the necessary object file is not already in the user space). Using makefiles prevents
redundant re-compilations. Specifying input files or output files for redirection of program input and
output is also possible. The output can be written in a specified file in the same directory.

MPI Lab opens the MPI laboratory window for compiling and executing selected C and Fortran 77
programs with calls to the MPI message-passing library. HPF Lab opens the HPF laboratory window
for compiling and executing selected Fortran 90 and HPF programs. For the HPF and Fortran 90
programs, the source files should have an extension of .f90. This is also validated in the client site.

Figure 4. Server site compilation items.

In order to wisely manage disk space occupied by each user, executable files are implicitly named in a
special way. The associated CGI scripts on the server site compiles the given programs. For each
different type of compiler there is a unique target executable file name that is written to a users home
directory, not in one of the subdirectories. This ensures that users will not have tens of executables
taking a lot of space and that disk space occupied by each user is managed wisely at the expense of a bit
less flexibility.

5. Using Java for Visualization
Visualization has been the cornerstone of scientific progress throughout history. Virtually all
comprehension of science and technology calls on our ability to visualize. Graphical visualization is a
standard technique for facilitating human comprehension of complex phenomena and large volumes of
data. In fact, the ability to visualize is almost synonymous with understanding. Visualization can be
thought of as the last step of solving computational problems or a form of assessment of the results.

We employ visualization components written in Java for post-mortem performance visualization of
parallel message-passing programs and for the visualization of data structures of parallel programs and
also the results produced. The behavior of parallel programs on advanced computer architectures is often
extremely complex, and performance monitoring of such programs can generate vast quantities of data.
Therefore, it seems natural to use visualization techniques to gain insight into the behavior of parallel
programs so that their performance can be understood and improved. On the other hand, scientific
visualization is concerned with exploring data and information graphically in order to understand the
data. Through a mixture of tools and techniques we seek to promote new dimensions of insight into
problem solving by using current technology.

Figure 5. Preparing visualization traces for a representative C + MPI code.

5.1 Java-Based Performance Visualization System (JPVS)

The substantial effort of parallel programming is justified only if the resulting codes are adequately
efficient. In this sense, all types of performance tuning are extremely important to the development of
parallel software. Performance improvements are much more difficult to achieve with parallel programs
than with sequential programs. One way to overcome this inherent difficulty is to bring in graphical
tools. We can count Comet [6], IPS [7], ParaGraph [8], Paws [9], and TraceView [10] among these
tools.

We have developed a software tool, Java-Based Performance Visualization System (JPVS), that
provides a detailed, dynamic, graphical animation of the behavior of message-passing parallel programs,
as well as graphical summaries of their performance. A concept demo of JPVS was prepared for the
ARPA PI meeting held in June ‘96. JPVS helps to visualize execution traces (in Self-Defining Data
Format - SDDF [11]) generated from Fortran or C codes instrumented with Pablo trace collection
(instrumentation) library calls (Figure 5). Pablo [12] of the University of Illinois at Urbana-Champaign
is a well-recognized performance instrumentation and analysis environment designed to organize and
visualize information collected from programs executing on parallel machines.

In an attempt to gain insights that might be missed by any single view, JPVS provides many different
visual perspectives from which to view the same performance data.. It includes modules for visualizing
processor utilization, inter-processor communication overhead, input/output behavior, and overall task
performance.

Postmortem Analysis. JPVS is currently used only for postmortem visualization, It uses an SDDF trace
file created during the execution of the parallel program and saved for later study. Although a real-time
performance visualization would be possible, it is not desirable because of three major impediments.
First, it is difficult to extract performance data from the distributed-memory processors and send it to the
outside world during execution without significantly perturbing the application program being
monitored. Second, the network bandwidth between the parallel machine and the graphical workstation,
as well as the drawing speed of the workstation, are usually inadequate to handle the extremely high data

transmission rates that would be required for real-time display. Finally, even if these other limitations
were not a factor, human visual perception would be hard pressed to digest a detailed graphical
depiction as it flies by in real time.

In designing JPVS, our principal goals were to build a system that is easy to understand, easy to use, and
portable from platform-to-platform.JPVS has an easy-to-use, interactive, mouse- and menu-oriented user
interface so that the various features of the package are easily invoked and customized. Another
important factor in ease of use is that the users parallel program need not be extensively modified to
obtain the data on which the visualization is based. JPVS currently takes its input data from execution
trace files in the SDDF format produced by Pablo, which enables the user to produce such trace data
automatically. We have tried to keep the users learning curve for JPVS very short, even at the expense
of limiting the flexibility of its data processing and graphical display capabilities.

One of the weaknesses in previously built performance visualization systems is that they are dependent
on having a high-powered graphical UNIX workstation at the client end. On the other hand, JPVS is
based on the Java AWT and thus runs on a wide variety of scientific workstations and personal
computers from many different vendors. JPVS also inherits a high degree of such portability from Pablo,
which runs on parallel architectures from a number of different vendors (e.g., Intel, Meiko, Ncube,
Thinking Machines). Therefore, the package is capable of displaying execution behavior from different
parallel architectures and parallel programming paradigms.

JPVS provides sixteen different visual perspectives, since no single view is likely to provide full insight
into the complex behavior and large volume of data associated with the execution of parallel programs.
The information conveyed by the displays and charts are as self-evident as possible, and they facilitate
understanding. The type of information conveyed by a diagram is obvious, or at least easily remembered
once learned. The choice of colors used takes advantage of existing conventions to reinforce the
meaning of graphical objects, and are consistent across views.

5.1.1 Displays

In this section we describe the individual displays provided by JPVS.The displays of JPVS fall into one
of four basic categories: utilization, communication, input/output and task information (). Utilization
displays are concerned primarily with processor utilization. They are helpful in determining the
effectiveness with which the processors are used and how evenly the computational work is distributed
across the processors. Communication displays depict interprocessor communication and they are
particularly helpful in determining the frequency, volume, and overall pattern of communication.
Input/output displays show the input/output events, which are the events that involve reading from or
writing to the disk. Task displays use information provided by the user. With the help of the Pablo
instrumentation system they depict the portion of the users parallel program that is executing at any
given time. Specifically, the user defines taskswithin the program by using special Pablo routines to
mark the beginning and end of each task and assign it a user-selected task name. The scope of what is
meant by a task is left entirely to the user: a task can be a single line of code, a loop, an entire
subroutine, or any other unit of work that is meaningful in a given application.

Here we will first describe the displays common to all or several of the basic categories. The processor
states and operations may change, but the basic structure of the display and representation stays the
same. Then, we will describe a few special displays. The current limit for most of the displays is 32
processors, which was adequate for the platforms that we tested this software.

Figure 6. Snapshot of a sample JPVS session

A. Common Displays

1. Gantt Chart
The Gantt chart depicts the operations performed by individual processors by a horizontal bar
chart in which the color of each bar indicates the status of the corresponding processor as a
function of time. The Gantt chart provides the same basic information as the Count display, but on
an individual processor, rather than aggregate, basis.

2. Event Count Display
This display shows the aggregate number of processors in each separate stage as a function of
time. Since the categories are mutually exclusive and exhaustive, the total height of the composite
is always equal to the total number of processors.

3. Animation
In this display, the parallel system is represented by a graph whose nodes (depicted by numbered
ellipses) represent processors. The status of each node is indicated by a different color, so that the
ellipses can be thought of as the front-panel lightsof the parallel computer.When the event traces
involve communication events, the graph is further extended with arcs (depicted by lines between
the ellipses) representing communication between processors. A line is drawn between the source
and destination processors when each message is sent, and erased when the message is received.
Thus, both the colors of the nodes and the connectivity of the graph change dynamically as the
simulation proceeds. The lines represent the logical communication structure of the parallel
program and do not necessarily reflect the actual interconnectivity of the underlying physical
network.

4. Concurrency Profile
For each possible number of processors, this display shows the percentage of execution time
during the run that exactly N processors were in a given state. The percentage of time is shown on
the vertical axis and the number of processors is shown on the horizontal axis.

5. Summary Display
This shows the cumulative percentage of execution time that each processor spent in each stage
over the entire run.For example, when this display is used in the context of the processor
utilization summary, it provides feedback on the overall efficiency of the program and load
balance across processors.

6. Trace Display
This is a non-graphical display that prints an annotated version of each trace event as it is read
from the SDDF trace file. It is primarily useful in the single-step mode for debugging or other
detailed study of the parallel program on an event-by-event basis.

7. Clock Display
This display provides digital clock readings during the graphical simulation of the parallel
program. The current simulation time is shown as a numerical reading, and the proportion of the
full trace file that has been completed thus far is shown by a colored horizontal bar.

8. Statistical Summary
This is a non-graphical display that gives numerical values for various statistics summarizing
processor utilization and communication, both for individual processors and aggregated over all
processors. The data provided include the percentage of busy, overhead, and idle time; total count
and volume of messages sent and received; maximum queue size; and maxima, minima, and
averages for the size and overhead incurred for both incoming and outgoing messages.

B. Specific Displays

1. Processor Utilization Kiviat Diagram
This display gives a geometric depiction of the utilization of individual processors and the overall
load balance across processors. Each processor is represented by a spoke of a wheel. The recent
average fractional utilization of each processor determines a point on its spoke, with the hub of the
wheel representing zero (completely idle) and the outer rim representing one (completely busy).

The distance from the hub corresponds to the percentage of use. Poor load balance across
processors causes the polygon to be strongly skewed or asymmetric.

2. Communication Spacetime Diagram
In the Spacetime Diagram, processor number is on the vertical axis, and time is on the horizontal
axis, which scrolls as necessary as time proceeds. Processor activity (busy/idle) is indicated by
horizontal lines, one for each processor, with the line drawn solid if the corresponding processor is
busy (or doing overhead), and blank if the processor is idle. Messages between processors are
depicted by slanted lines between the sending and receiving processor activity lines, indicating the
times at which each message was sent and received.

3. Communication Matrix
This display shows the communication pattern among processors by using a square array, with
sending and receiving processors along the two dimensions, respectively, for each message. At the
end of the simulation, the Communication Matrix display shows the cumulative statistics (e.g.,
communication volume) for the entire run between each pair of processors, depending on the
particular choice of color code.

C. Parameters

The execution behavior and visual appearance of JPVS can be customized in a number of ways to suit
each users taste or needs. The individual items in the parameters menu are described in this section.

Time Unit: The relationship between simulation time and the timestamps of the trace events is
determined by the time unit chosen. By convention, Pablo provides event timestamps with a
resolution of microseconds. Consequently, a value of 100 for the time unit in JPVS, for example,
means that each tickof the simulation clock corresponds to 100 microseconds in the original
execution of the parallel program.
Start Time and Stop Time: By default, JPVS starts the simulation at the beginning of the trace
file and continues to the end of the trace file. By choosing other starting and stopping times,
however, the user can isolate any particular period of interest for visual scrutiny without having to
view a possibly long simulation in its entirety.
Trace Node and Trace Type: These parameters determine which trace events are printed in the
Trace display window. This feature allows the user to focus on events for a specific node and/or of
a specific type, since looking at every event for every processor can be tedious and time
consuming. The default value for both parameters is all.

5.1.2 Interaction with Pablo

Pablo [12] is a performance analysis environment designed to provide performance data capture,
analysis, and presentation across a wide variety of scaleable parallel systems. Pablo helps to predict
application or system behavior on massively parallel systems by means of post-execution analysis. By
recording dynamic activity at the application level, one can identify and remove performance
bottlenecks. To gain insight from this data and to tune both application and system software, the data is
processed and presented in ways that not only show trends but also allow detailed exploration of small
scale behavior.

The Pablo environment consists of three primary system components: portable software instrumentation,

portable performance data analysis, with a trace data meta-format coupling the instrumentation with the
data analysis, support for mapping performance data to both graphics and sound. From these three
components, we adopted only the first one to use in the VPL. JPVS replaces the functions of the other
two components. The Pablo instrumentation component [13] can be further subdivided into three
subcomponents:

a graphical interface for interactively specifying source code instrumentation points;

modified C and Fortran parsers that receive the instrumentation specifications from the graphical
interface and emit instrumented source code (i.e., source code with embedded calls to a trace
capture library);

and a trace capture library that can record performance data generated by the instrumented source
code when it is executed on distributed memory parallel systems. All the idiosyncrasies of
extracting data from a particular parallel machine generating event timestamps, as well as
buffering data, are isolated in the Pablo trace capture library.

The Pablo graphical interface and the parsers cooperate to enable insertion of trace library calls at the
selected instrumentation points in the users code. In the VPL environment, we instead let the users
instrument an application source code by manually inserting calls to the Pablo performance data capture
library. This minimizes the amount of software that needs to be ported into Java.

Pablos only modification to the source code is the insertion of calls to the trace capture library. At
execution time, the inserted instrumentation code invokes tracing routines supplied by the trace capture
library, producing performance data in a standard trace format. It is possible to move an instrumented
program to another parallel system which allows the same application data to be captured there, thus
permitting cross-architecture performance comparisons. The Pablo trace capture library is scaleable with
the size of the system being studied and is also extensible, allowing users to add environment
functionality as needed.

Although performance analysis occasionally requires knowledge of architecture-specific data semantics,
the Pablo design philosophy presumes that embedding this information in either the trace data format or
the analysis software modules will preclude cross-platform portability and extensibility. For this reason,
the performance data format is semantics-free (i.e., there are no predefined event types or data sizes).

5.1.3 Pablo Self-Describing Trace Data Format

The Pablo Self-Describing Data Format (SDDF) is a trace description language or data meta-format that
specifies both the structure of data records and data record instances. SDDF does not restrict the user to
a predefined record set, but allows description of general data records. This feature makes it a
meta-format. Self-describing data files include a group of record definitions and a subsequent sequence
of tagged data records. The tag identifies the type of the record, allowing the data record byte stream to
be interpreted by using a particular record definition. The SDDF format supports the definition of
records containing scalars and arrays of the base types found in most programming languages (i.e.,
byte/character, integer, and single and double. precision floating point) and multi-dimensional arrays
whose sizes, but not number of dimensions, can differ in each record instance.

The Pablo portable trace data format links the Pablo instrumentation software, which captures dynamic

performance data, and the JPVS, which analyzes and visualizes the performance data.

On a distributed-memory parallel system with hundreds or thousands of processors, the size of an event
trace file can quickly reach many gigabytes. For the sake of compactness and efficient processing a
binary version of SDDF exists. On the other hand, the necessity of portability (even across machines
with different byte ordering, floating point formats, or word lengths) and human-readability dictates an
ASCII version of SDDF. Simple tools are provided for quick conversions from one representation to the
other.

The ASCII and binary versions of the SDDF meta-format describe three classes of records:

Stream attribute records contain information pertinent to the entire trace file such as the machine
platform, or generation date of the trace file. run. Each stream attribute consists of a key and an
attribute, both of which are arbitrary strings of characters.
Descriptor records describe record layouts or structures. Each descriptor record associates a
record name with a description of the fields that will appear in all data records having that name.
In addition, descriptor records can contain both record and field attributes that provide descriptive
information about records and fields.
Data records contain actual event trace information. In the ASCII version of SDDF, a data record
is interpreted by matching the record name in the data record with the name of a previously
defined descriptor record. In the binary version of SDDF, records are matched to definitions via
integer tags.

Figure 7 shows a sample SDDF file in the ASCII format. This file contains a stream attribute (the trace
file generation date), two record descriptors (message send and message receive), and four data records.
The integers 1and 2near the message send and receive record descriptors are the record tags used to
match data records to definitions in the binary version of SDDF. The message send field Sourceis a
one-dimensional array whose actual size will be specified in each instance of the message send data
records. Using the record descriptors, the first data record shows that processor 0 sent 512 bytes to
processors 1 and 3 at time 100.10.

SDDFA
/*
* "run date" "January 1, 1997"
*/ ;;
#1:
// "event" "message sent to other processors"
message send{
 double timestamp;
 // "Source" "Sending processor"
 int source;
 // "Destination" "Destination processor(s)"
 int dest[];
 // "Length" "Message length in bytes"
 int length;
};;
#2:
// "event" "message received from other processors"
message receive{
 double timestamp;
 // "Me" "My processor id"
 int myid;
 // "Source" "Sending processor"
 int source;
 // "Length" "Message length in bytes"
 int length;

};;

message send{100.100000, 0, [2]{1, 3}, 512};;
message send{100.100100, 1, [2]{0, 2}, 512};;
message receive{110.102000, 1, 0, 256};;
message receive{110.110000, 2, 1, 512};;

Figure 7. A sample SDDF file in ASCII format.

5.2 VPLPlot: Using Java for Plotting 2-D Data Graphs

VPLPlot is an interactive tool for drawing 2-D data plots (Figure 8). Its implementation in Java makes
the VPLPlot platform-independent. It can accept data from programs executed in the context of VPL as
well as from ASCII files in tabular format (i.e., tables of columns of numbers) at user-specified URL
addresses. All the options of the plotted graph is customizable through a GUI.

Figure 8. Snapshot of a VPLPlot session.

Currently we support line and scatter plots, bar charts, area graphs, and contour graphs. The graphs can
be annotated with a title and axis labels in various font styles and colors. You can view multiple data
sets within the same window, the same data set in different windows, or different data sets in different
windows. It is also possible to delete previously drawn plots, replace the currently selected plot with
another plot, or print out the currently selected plot. Furthermore, it is possible to save the current
configuration of the VPLPlot (i.e., files selected, plot and graph customization choices, etc.) into a
configuration file, and retrieve back this file for later use.

We are planning an extension to the VPLPlot that will make it possible to plot arbitrary GNUPlot [14]

files, and to save the current VPLPlot configuration in a GNUPlot file format.

VPLPlot can access data files spread over the Internet on Web or FTP sites via the Javas built-in
network routines. Moreover, VPLPlot can be used to plot data files in a VPL users account without
hindering the security and privacy of VPL users. The VPLPlot is a Java applet which can communicate
with a back-end CGI file access module at the VPL server site in order to obtain the users directory
information. The contents of the directory is shown to the user using an extended network-capable
version of the Java file dialog display. The selected file can then be sent to the applet through the socket
connection. To save the current configuration, the data flows in the reverse direction towards the server.

5.2.1 Customize Plot Menu

Data Format. Data files are ASCII files with numeric data arranged in one or more columns separated
by blank space. Lines beginning with a number sign (i.e., #) are treated as comments and ignored. In all
cases the numbers on each line of a data file must be separated by blank space dividing the line into
columns. The format of data within a file can be selected by the user. In the case of XY Plots, chosen x
and y values from a line are plotted as a series of XY values to be plotted against y- and x- axises. In Y
Plots, VPLPlot interprets the input data as a series of Y values to be plotted against a set of
constantly-spaced x-axis intervals. Contour plots are done similarly.

Plot Styles. This option allows customization of the line colors and styles. Currently, plots may be
displayed in one of six styles: lines, scatter points, lines with points, area plots, bar charts, and contour
graphs. Line plots connect data points with lines so that changes or trends within the data can be
observed. Scatter plots show the data points as a marker so that groupings of data can be easily seen.
When a dot type of marker is selected, there is a tiny dot at each point; this is useful for scatter plots
with many points. Area plots fill in the data points with solid color so that similar and dissimilar data
points are easily viewed. Bar charts display data in vertical bars so that it will be easy to compare data
values. Contour style is used to draw contour graphs.

5.2.2 Customize Graph Menu

Graph Background Color option sets the window background color.

Font Type and Color option selects the font and font color used in the graphics window for drawing the
title and x and y labels.

Tics. By default, tics are drawn inwards on the left and bottom borders only. This is useful when doing
impulse plots.

Title option produces a plot title that is centered at the top of the plot. Using the optional adjustment
option, the title can be centered, or left or right-justified at the top of the plot window.

X and Y-axis labels. This command sets the x-axis (y-axis) label that is centered along the x (y) axis.
Vertical (i.e., rotated) text is centered vertically at the left of the plot.

X- and Y-axis range option sets the horizontal (vertical) range that will be displayed. If only one value
is provided the range in the opposite direction is unaffected (or still autoscaled). To set a range back to
autoscale, give a star as the value.

X- and Y-axis zero axis. Setting the x-axis (y-axis) zeroaxis draws the x-axis (y-axis). By default, this
option is on.

5.3 Data Wrappers for Visualizing Program Data Structures

Data wrappers allow users to pass data from programs written in C or Fortran to Java applets (and vice
versa) for steering the computations or monitoring and visualization of the data items. The data wrappers
at both ends inherently communicate with each other using the Berkeley Unix socket mechanism (i.e.,
TCP domain sockets). The data flows from applet to the executable program and vice versa in a way
similar to message-passing with blocking calls. The program and the applet are synchronized loosely by
passing messages over the sockets. The data wrappers use the External Data Representation (XDR)
format when passing data between such dissimilar machines to take care of different byte order,
floating-point format, etc.

Data wrapper functions can be investigated in two categories. Description functions help to define the
parameters that the user can adjust at run time to affect the action of the computation, and the data items
that will be passed to the applet, and Communication functions take care of the actual send and receive
process during the actual simulation. The user should put the necessary functions at appropriate points in
the program and Java applet in order to ensure correct behavior.

There are two general classes of data in the system: primitive data and aggregate data. Primitive data
items are simple objects such as bytes, integers, single- and double-precision floating-point numbers,
and text strings. Aggregate data items are vectors and two-dimensional arrays with an arbitrary number
of elements of unsigned character(byte), integer, single-precision floating-point, and double-precision
floating-point at the moment.

Any data type can be used as input, but generally only the primitive data types are suitable for use as
parameters. The only difference between a parameter and module input is that parameters are usually
associated with user interface widgets. For example, a text parameter can be viewed or set using a text
field widget. Users generally should be allowed to control parameter values. However, the program can
set a parameter value internally at any time, which may be necessary if the user sets a parameter to an
illegal value. The following are sample data wrapper function definitions (in Fortran) that we developed
for data visualization and computation steering:

int create_parameter_TYPE(name, init, minval, maxval)
int create_in_port_vector(data, dim1, type)
int create_in_port_2D_data(data, dim1, dim1,type)
int create_out_port_vector(data, dim1, type)
int create_out_port_2D_data(data, dim1, dim1,type)

int set_parameter_TYPE(name, value)
int set_vector_TYPE(name, value)
int set_2D_data_TYPE(name, value)
int get_parameter_TYPE(name, value)
int get_vector_TYPE(name, value)
int get_2D_data_TYPE(name, value)

int connect_widget(param_num, widget_type)
int modify_parameter_TYPE(name, type, init, minval, maxval)

The name specifies the name of the parameter or data item. Init, minval, and maxval specify a
parameters initial value and valid range of values, respectively. type changes according to the type of the
parameter or data. Value keeps the value of the parameter or data item, while dim1 and dim2 declare the
number of elements in 1D and 2D arrays.

6. Comparison of VPL with EPIC: a Client-Site
Virtual Programming System
EPIC (EPCC Interactive Courseware) [15] is an on-line interactive education software developed at
Edinburgh Parallel Computing Centre that combines both on-line exercises and hypertext course
materials. EPIC allows users to read through the course notes on the Web at their own pace, giving the
user the option of assimilating information at a self-determined speed. EPIC also contains an on-line
interactive exercise component that helps the users to test and make use of their newly acquired skills.

Having the exercises accessible directly within the framework of one single courseware package allows
a much smoother method of working. In many instances this will remove the need for configuring some
machines to run the programs during the courses. EPIC can be used to automatically configure the
machine with the appropriate software and allow the users to spend time studying the course materials
rather than setting up of the system.

As seen, EPIC and VPL are similar tools that have been built using Web and HPCC technologies. The
most significant differentiating property between them is that EPIC provides a virtual programming
system using the applications and scripts at the client-site, while VPL depends mostly on the server-site
software. We can compare the other properties of these systems as follows:

Ease of installation.In order to use the EPIC package, the user must first prepare the local system for
EPIC which involves downloading, uncompressing, and un-tarring the shell and Perl scripts that control
the execution. In addition, the user needs to transfer the client-side of the EPIC tutorials and add EPIC
Mime type to the .mailcap file (i.e., file applications/x-epic entry) and specify the EPIC control master
as the corresponding helper application. This causes the browser to launch the specified helper
application that is capable of understanding the information sent from an EPIC server, rather than trying
to decode EPIC Mime types. This setup is required of all new users.

Although automatic ways to download and install these software packages to the users system have been
included in the EPIC package, the user still needs to make decisions about where to install the new
software and how several environment variables should be set up. In addition, several potential problems
may be encountered during the setup of the scripts. VPL, on the other hand, requires no initial setup by
the user. Anybody having a Java- and JavaScript-enabled browser can easily access the VPL.

Portability and client-site expectations.EPIC needs several software packages (Perl, xterm, and make
facilities) to be installed on the users system. In addition, each exercise needs its own local applications.
For example, to run an MPI application, the CHIMP version of MPI developed by the Edinburgh
Parallel Computing Centre should be installed on the users machine. To run an HPF application, either
PGIs or DECs HPF compilers should exist on the local machine. EPIC is designed to support users on a
set of selected Unix platforms.

These requirements of EPIC are expensive requirements for sites with limited funds and computational
power. Many of the licensed software packages, such as the commercial HPF compilers, are b notwithin
the reach of small institutions. In addition, an individual user may find the disk space required to install
all those software packages a limiting factor.

In contrast, a VPL client may have a Mac, a PC running Windows or Linux, or any Unix workstation as
long as there is a browser. Every type of software package that is expensive or that requires a lot of disk
space is already installed on the VPL server site.

Usability Areas.EPIC is customized only for teaching. On the other hand, VPL is also targeted towards
being a generic interface for parallel computer platforms. We mentioned various uses of VPL in the
Introduction.

Cost. VPL makes it easy to update required educational software easy. It can be extended to include
new scheduling policies, or new parallel machines at the back-end. All these changes can be made
transparently to the user. EPIC users, on the other hand, have already installed the necessary client-site
files, and would need to download the new copy of the software to take advantage of the improved
version of EPIC.

Adaptability. VPL can be configured to offer more capabilities to Unix clients. For example, the user
who has Xterm facility will be able to choose an editor of choice such as vi, emacs, or pico and may use
xv, or debuggers for programming.

7. Server Security Measures
Since users have the capability of executing real programs using VPL, the server was configured in a
very careful manner in order not to hinder the security of the entire system. As a first precaution, we
used a Web server authorization mechanism to restrict accesses to the system. The Web authorization
mechanism allows the Web administrator to specify as protected certain directories or files under a
server. A password file is generated containing the usernames and associated passwords of all the valid
users of the system. We have protected all the document directories and CGI script directories in this
way. A user who does not supply a matching username/password pair is not allowed to access the class
directories; instead a special page containing information about the system and contact information to
the Web administrator is shown. One concern may be the security of transferring these passwords over
the internet. In spite of common belief, in the decent browsers such as Netscape 3.0 passwords are not
transferred in clear textform, but in encrypted form just as Telnet or FTP does. Therefore, it is as secure
as using those popular network tools.

Another concern was possible attacks by other legitimate users of the system. To prevent this we set up
a special account for the VPL and ran the server under this account. This is in direct opposition to the
common approach of running the Web servers as nobodywith minimum privileges. This brought us the
flexibility to use UNIX system file protection mechanisms to protect our directories from other users of
the same system. In the common nobodyapproach, the access rights for all the files should be set as
readable and executable by the world,which make them vulnerable to bad guystrying to steal homework
solutions of other users. Furthermore, as much as possible, the system never indicates the actual location
of the class accounts to the user. We always precluded this information from diagnostics and status
messages or error messages.

In order to make it secure to run a server from a privileged account, we took several measures to prevent
the mischief: First, there is no way for the users of the system to go out of their directories by using any
of the utilities provided by the system. Commands such as delete/make/rename directory or
delete/remove/rename/copy file always manipulate items in the users home account. Using JavaScript
for validity checks at the client site, and more advanced CGI script based checks on the server site,
guaranteed this result.

The input fields typed by the users are checked against all kinds of special Unix meta-characters, and
rejected if determined to be invalid. In a sense, the users of this system have fewer rights than they
would have with an actual account on the same system. However, for a class account the tools and
utilities provided by this system should be more than enough. In many cases, Unix accounts give the
users more rights than they actually needed anyway.

Users can only run executables that they have generated. They are not allowed to use any of the
commands other than the provided by the VPL system. Furthermore, programs supplied by the user for
execution may contain possible system calls. We filter the user programs for system calls,and reject the
execution if one found. The user may also gain some access to system files such as the password file
using input/output statements. The same problem has caused the Java language verifier to reject all
input/output statements embedded in the applets loaded into the client side. We could have done
something similar, but we chose to restrict the input/output syntax/semantics a little, and allow user
input/output. The input, output statements are filtered against any files the users open outside their own
directories. We do not allow using variables as filenames in open statements, since this would elaborate
the filtering process and might force us to adapt Javas way of thinking. The user must always put the
filename in quotes in the open statement so that the system can validate it.

8. Summary
In this paper we have summarized our experiences in building a Web-based virtual programming
environment for parallel computing platforms. Our goal was to create a general programming
environment to facilitate the development and execution of parallel message-passing and data parallel
programs. VPL is a unique tool that allows browsing, program development, directory management,
performance, and scientific data visualization within the framework of a single package. It is one of the
first prototypes that uses the Web as the standard interface for accessing computational resources. We
described the role of the Java language in providing platform-independent graphical user interfaces and
visualization software components. We also described the VPL performance and data visualization
components written in Java.

Acknowledgments

We would like to thank S. ElMohamed, M. Egilmezbilek, W. Furmanski, T. Haupt, D. Leskiw, X. Li, N.
McCracken, M. Sen, and H. Topcuoglu for their feedback in various stages of this project and E.
Weinman for proofreading this manuscript.

References

[1] Message Passing Interface Forum, "MPI: A Message-Passing Interface Standard," International

Journal of Supercomputer Applications, vol. 8, no. 3 & 4, pp. 157--416, 1994.

[2] High Performance Fortran Forum, "High Performance Fortran Language Specification: Version 1.0,"
Scientific Programming, vol. 2, no. 1 & 2, 1993.

[3] Furmanski, W., "Next Generation World-Wide Web Technologies for Distance Education," talk
presented at the Virtual University Conference, The Wharton School of Management, University of
Pennsylvania, Jan.1995. (At http://kayak.npac.syr.edu:2005/WebTools/PotPourri/ WhartonTalk.ps)

[4] Cowie, J., Dincer, K., and Li, X., "Towards a Web-based PCRC Programming Environment," SCCS
Technical Report, NPAC, Dec. 95.

[5] Parallel Compiler Runtime Consortium Project, at http://www.npac.syr.edu/projects/ pcrc/.

[6] Kumar, M., "Measuring Parallelism in Computation-Intensive Scientific/Engineering Applications,"
IEEE Transactions on Computers, vol. 37, pp. 1088--1098, 1988.

[7] Miller, B. P. and Yang, C.-Q., "IPS: An Interactive and Automatic Performance Measurement Tool
for Parallel and Distributed Programs," In Proc. Of the Seventh Conference on Distributed Memory
Computer Systems, vol. 7, pp. 482--489, 1987.

[8] Heath, M. T. and Etheridge, J. A., "Visualizing the Performance of Parallel Programs," IEEE
Software, vol. 8, no. 5, pp. 29--39, 1991.

[9] Pease, D., Ghafoor, A., Ahmad, I., Andrews, D. L., Foudil-Bey, K., Karpinski, T. E., Mikki, M., and
Zerrouki, M., "PAWS: A Performance Evaluation Tool for Parallel Computing Systems," IEEE
Computer, vol.24, no. 1, pp. 18--29, 1991.

[10] Malony, A. D., Hammerslag, D. H., and Jablonowski, D. J., "TRACEVIEW: A Trace Visualization
Tool," IEEE Software, vol. 8, no. 5, pp. 19--28, 1991.

[11] Aydt, R. A., "The Pablo Self-Defining Data Format," Technical Report, Department of Computer
Science, University of Illinois, Sept. 1996). (At URL http://bugle.cs.uiuc.edu/Projects/
Pablo/documents.html).

[12] Reed, D. A., Aydt, R., Madhyastha, T. M., Noe., R. J., Shields, K. A., and Schwarz, B. W., "The
Pablo Performance Analysis Environment," Technical Report, Dept. Of Computer Science, University
of Illinois, 1992. (At URL http://bugle.cs.uiuc.edu/Projects/Pablo/documents.html).

[13] Noe, R. J., "Pablo Instrumentation Environment User’s Guide," Technical Report, Department of
Computer Science, University of Illinois, October 1996. (At URL http://bugle.cs.uiuc.edu/
Projects/Pablo/documents.html).

[14] Williams, T. and Kelly, C., "GNUPlot: An Interactive Plotting Program Manual, version 3.6a," at
URL http://www.cs.dartmouth.edu/gnuplot/gnuplot.html.

[15] Edinburgh Parallel Computing Centre, "EPIC Home Page", at URL http://www.
epcc.edu.ac.uk:0080/epic/.

URL for this paper: http://www.npac.syr.edu/users/dincer/papers/vpl/

