
Submitted to a special issue of Concurrency: Practice and Experience following the Java for Com-

putational Science and Engineering Workshop held at NPAC on the 16/17th December 1996.

Submitted: 5th February 1997.

Java simulations for physics education

Simeon Warner1, Simon Catterall, Edward Lipson

Department of Physics, Syracuse University, Syracuse, NY 13244-1130, USA

We discuss the use of World Wide Web-based Java simulations in teaching physics to K{12 and

undergraduate students. Our work focuses on the physics of membranes and illustrating how such

systems are studied. We propose that Java should be used not only to produce small versions of

research simulations but also to provide models illustrating simpler concepts underlying the main

subject matter. In particular, applets should be tailored to the context in which they appear and

should be as intuitive to use as possible. The applets we are developing are described in the context

of current client performance. We also highlight the development of collaborative systems as an

area of particular interest.

Introduction

Current simulations in many areas of physics and engineering require high-performance computers

and long run times, which tend to make the subjects inaccessible to students. In collaboration

with the Department of Physics and the College of Engineering at Cornell University; and the

College of Engineering and Computer Science and the Northeast Parallel Architectures Center

(NPAC) at Syracuse University, we are developing a set of interactive educational modules based

on large simulations. Four modules are being developed:
uctuating membranes;
uid dynamics;

1Corresponding author; simeon@physics.syr.edu

1

crack propagation and structural failure; and avalanches. In this paper, we concentrate on our

work in membrane physics and quantum gravity [1,2], from which we will produce the
uctuating

membranes module.

The educational modules are to be integrated into undergraduate courses, and then into K{12 (ages

4 to 18) curricula. Material is being developed such that it can be used for individual study and in

classroom situations. We intend to use the best available technologies. Currently, these include the

World Wide Web (Web) and Java, but they may soon include Virtual Reality Modeling Language

(VRML). Web technologies are being developed at an extremely rapid pace, so we are continually

evaluating new technologies as they emerge.

Before Java became available, the entry-level general-science course `Science for the 21st Century'

(o�ered by the Department of Physics at Syracuse University [3]) used CGI (Common Gateway

Interface [4]) scripts and HTML (Hypertext Markup Language [5]) forms to provide interactive

Web access to neural-network models [6]. These were enthusiastically received by students and

have proved a useful stepping stone to the development of Java applets in the current work. We

are also drawing on NPAC's experience in developing Web material for K{12 students in the Living

Schoolbook Project [7].

We discuss below our experiences writing simulations in Java, and preliminary studies in building

educational modules. To date, evaluation has been by peers alone, and our modules are aimed at

the undergraduate level.

Membrane physics

The study of two-dimensional interfaces and membranes to help understand their properties is an

important area of research for many �elds of science, including biology (cell membranes), chem-

istry and chemical physics (reactions at interfaces, cosmetics, medicine), and theoretical physics

(condensed matter, particle physics). It is remarkable that the surface behavior of red blood cells

2

in the body can be described by theories very similar to the string theories of particle physics. We

aim to produce modules that will bring out the generality of membrane models. They will provide

a range of explorations from the biology of life processes through materials to cosmology. We hope

to leverage interest in the abstract physics from the more accessible biological contexts.

Simulations of real membranes are designed to probe the underlying microscopic dynamics. In

particular, the study of arti�cial membranes composed of amphiphilic phospholipids (see, for ex-

ample, [8]) is a lively research �eld with applications in industry and medicine. For example, such

membranes are able to close in on themselves forming spherical vesicles, and may be tailored to

open up and release their load when the `correct' physical and chemical conditions are found. In

this way, they have potential as drug carriers [9].

In the area of particle physics, string theories can be thought of as theories of random surfaces.

Thermal
uctuations in the biological context are then replaced by quantum
uctuations. To

illustrate concepts in particle physics, we hope to draw on the common thread with real membranes.

However, it is hard to see how we can explain any meaningful particle physics, other than to the

high-end of K{12. At present, we are concentrating on real membranes and the biological context

in particular.

We consider two classes of membrane:
uid membranes, where the constituent molecules can freely

ow around each other for any shape of the membrane surface, and crystalline or polymerized mem-

branes, where the molecules are held in place by strong covalent bonds. At any �nite temperature,

these membranes undergo thermal
uctuations and the physical properties of the surface depend

on the interplay between these disordering e�ects and the ordering associated with a curvature-

suppressing energy term. Complex phase structures exist between `smooth' surfaces, `crumpled'

surfaces, and other more exotic arrangements.

3

From applets to teaching tools

Our suite of simulations will illustrate a variety of phenomena, including the `
ickering' of red blood

cells, the `crumpling' transition in polymerized membranes, and string theory. We are using Java,

supported by text, still images, video, and interactive simulation-on-demand. Java simulations of

small systems provide the most interactive experience for the student. However, Java is currently

comparatively slow, and client systems are not up to supercomputing standards. Thus we will

also use simulation-on-demand for larger systems. Even here, Java is an excellent tool for building

client-side user interfaces.

The term `edutainment' has been coined to describe the idea of adding entertainment to an edu-

cation application to enhance the learning experience. In essence, the old idea of making learning

fun | taking medicine with sugar. However, we must recognize just how challenging it may be to

entertain; students are unimpressed by last year's video games. It is a tall order to produce physics

education material that will be considered `cool' and thus interesting. While we cannot compete

with the latest video games on presentation, we must not become complacent and assume content

will be enough.

In spite of the need to be `cool', we think simplicity is very important. Most students will use each

applet for only a short time, and so time spent learning to use the applet is largely time wasted. We

are not trying to teach people how to `drive' an applet, we are trying to teach physics. So we want to

leverage as much as possible from the students' experience with other computer interfaces (games,

for example). Can we make the applets seem intuitive? If we can, then the learning experience

will be less stressful and hopefully more productive. It is thus important not to fall into the `gizmo

trap.' Functionality should be added only where it doesn't make the basic functions more di�cult

to use. There can always be a second version with more complex features. Also important is screen

real estate; adding redundant functionality often wastes this precious resource.

4

Experience with simulation applets

We have found Java easy to use, and the code is very similar to our research simulations written

in C and C++. This has actually worked in reverse now; our latest C++ simulation is based on

the structure of the Java code.

*** Figure 1 here ***

Figure 1: Snapshot of a simple Java applet running a Monte Carlo simulation of an 8�8 crystalline

2D membrane.

The applet shown in Fig. 1 allows the viewpoint to be arbitrarily rotated as the membrane evolves

under Monte Carlo updates. It uses the OOGL OFF class written by Daeron Meyer of The Geom-

etry Center [10]. This class has been extended with one new constructor and an update method to

do data conversion. In this way, we were able to add display and rotation with very little e�ort.

This applet provided us with useful proof of concept, though the speed of execution limits us to

rather small grids (16�16 becomes quite slow), mainly because of graphics speed. However, this

varies widely and is improving on all platforms as new implementations become available.

VRML is an obvious choice for 3D displays. We have made static VRML worlds from membrane

examples with promising results. Although the VRML viewer we used (Silicon Graphics Inc.

Cosmo 1.0 on Irix) could render very much faster and better than our Java code, a 33�33 mesh was

still unacceptably slow on an Silicon Graphics Inc. Indy workstation. Typical research simulations

are 64 or 128 nodes square.

VRML alone is not enough, as we need to have text for explanation and instructions. New products

integrating VRML and Java may provide good solutions to this. The ideal scenario would be the

ability to create a VRML component within a Java applet. Alternatively, we could pop up a

separate VRML window dynamically generated from the Java simulation.

The
uid membrane simulation shown in Fig. 2 allows both node moves as in the crystalline case,

5

*** Figure 2 here ***

Figure 2: Snapshot of a Java applet running a Monte Carlo simulation of a 2D
uid membrane.

One link is highlighted to illustrate the link
ip that is taking place.

and also geometry changes (link
ips). The current implementation optionally highlights link
ips

to help illustrate the simulation process. In this case, the membrane has spherical topology and

the speed limiting factor is the image rendering.

The �rst impression of dynamics in Monte Carlo simulations is good, but it is rather misleading.

Monte Carlo dynamics are not real and the individual con�gurations are not as meaningful as

they appear. Instead, one must look at statistics from a representative ensemble of equilibrium

con�gurations. Fig. 2 shows an inset graph of the internal energy of the surface, we are adding

simple analysis routines to allow students to calculate mean values and autocorrelation times.

Further, for one to extract meaningful data, the system must thermalize for any given set of

parameters. This can be particularly problematic around phase transitions, an area of particular

interest, where Monte Carlo simulations often take much longer to reach equilibrium. At present we

have a button that sets the simulation running without updating the display (hence much faster)

for a predetermined number of updates.

*** Figure 3 here ***

Figure 3: Snapshot of a supporting Java applet illustrating the properties of a simple spring. The

user can move the end of the spring by dragging the block or one of the graph tracers to plot the

force-extension and energy-extension graphs for a simple spring obeying Hooke's Law.

In addition to our headline simulations, we intend to develop supporting applets to illustrate prin-

ciples behind the simulations. For example, some of the membrane simulations are based on ball-

and-spring triangulations. We thus have an applet to help students understand springs (Fig. 3).

This can then be tailored, along with supporting text, to various levels of understanding. For the

6

younger students, just the idea of increasing force will su�ce, whereas we hope to illustrate the

importance of stored energy to more advanced students. We have purposefully made the interface

very simple with buttons that clear the graphs, draw in the whole graphs, and o�er help (including

explanation of the other two buttons). The help information appears in a pop-up window.

Speed

Java has made client-side computation a commonplace reality. In a classroom or many-user situa-

tion, there is clearly more power on desktops than on the server. This is especially important if we

consider large groups where this scalability would be particularly important. If just the Java byte

codes are downloaded, as opposed to movies or server-push animation from CGI simulation, then

there will be a drastic reduction in server hits and data transfer. Thus client-side computation is

essential with many slow links. Java class �les are compact, typically only a few kilobytes long.

We tune the size and complexity of our Java models to the expected client performance. As

technology progresses, we will be able to handle large and more interesting problems. In particular,

there will be a signi�cant performance improvement if just-in-time (JIT) compilers become widely

used.

Collaborative systems

There is obvious application of collaborative technologies to classroom situations. One simple

scenario might have the teacher controlling all displays and passing control to a chosen student

when required. For this, one requires applications that can act as either master or slave, and some

method of token passing to establish the master at any given time. Statistical studies like Monte

Carlo are ideal candidates for slightly more sophisticated collaborative systems involving combined

data collection from a classroom of workstations. Imagine many groups running simulations in

isolation, collecting data, and then performing statistical analysis. Each group could then submit

7

data to a shared analysis package and perform analysis on data from the whole class. This would

provide a wonderful illustration of the bene�ts of more data.

NPAC scientists are developing a collaborative system called `Tango' [11] which is integrated with

a Web interface. The NPAC team has already demonstrated the ease of integrating existing applets

into their collaborative framework by porting two simple physics applets into Tango.

Concluding remarks

It is clear that `cool applets' alone will not solve the problem of developing well thought out

educational material. However, interactive simulations will add signi�cant value to educational

material, and hopefully stimulate the students' interest in subjects such as physics which many

consider uninteresting or arcane.

Java appears to be the best technology available now. It is not yet clear how Java will develop in the

next couple of years, though we can be sure that it will change signi�cantly. While the development

of Java is primarily driven by the needs of commercial Internet users, it seems reasonably equipped

for use in scienti�c contexts. The issues of speed, display technology (VRML/Java rendering), and

stability are our primary concerns. We see collaborative tools as a particularly exciting development

that will add another level of interaction to educational tools.

Acknowledgements

The applets described in this paper were written, or contributed to, by Eric Gregory, Metin Sezgin

and Roberto Salgado. This work has been supported by NSF Grant ASC-9523481.

8

References

1. S. Catterall, G. Thorliefsson, J. Kogut and R. Renken, \Singular vertices and the triangulation

space of the D-sphere", Nuclear Physics B468 263 (1996)

2. M. Bowick, S. Catterall, M. Falcioni, G. Thorliefsson and K. Anagnostopoulos, \The
at phase

of crystalline membranes", Journal de Physique I, France 1321 (1996)

3. S. Catterall, M. Goldberg, E. Lipson, A. Middleton and G. Vidali, \Implementation of infor-

mation technologies in the teaching of `Science for the 21st Century' ", International Journal of

Modern Physics C, in press

4. CGI speci�cations are available from the WWW Consortium (W3C) site:

http://www.w3.org/pub/WWW/CGI/

5. The speci�cations for HTML forms have remained largely unchanged since HTML 1.0. The

current speci�cation is HTML 3.2. HTML speci�cations are available from the WWW Consortium

(W3C) site: http://www.w3.org/pub/WWW/MarkUp

6. Neural-network models are part of the Mind and Machine module o�ered by the Department of

Physics at Syracuse University: http://www.phy.syr.edu/courses/modules/MM/index.html

7. K. Mills, G. Fox, P. Coddington, B. Mihalas, M. Podgorny, B. Shelly, and S. Bossert, \The

Living Textbook and the K{12 Classroom of the Future", Proceedings of the 1995 International

Symposium on Supercomputing, ACM (1995);

online version: http://www.npac.syr.edu/projects/ltb/SC95/index.html.

Living Schoolbook (previously Living Textbook) site: http://www.npac.syr.edu/projects/ltb/

8. G. Gomper, and M. Schick \Self-assembling amphiphilic systems", in volume 16 of Phase

Transitions and Critical Phenomena, Academic Press (1994)

9. See, for example: \Liposome Technology : Volume III : Targetted Drug Delivery and Biological

9

Interaction", edited by G Gregoriadis, CRC Press Inc., Florida (1983)

10. The OOGL OFF class was extracted from Daeron Meyer's 3D viewer applet. This and

other graphics packages are available from the Geometry Centre at the University of Minnesota:

http://www.geom.umn.edu/~daeron/apps/

11. Tango Web based collaborative system: http://www.npac.syr.edu/tango/

10

