
SPRINT: Scalable Partitioning, Re�nement, and INcremental

partitioning Techniques1

Chao-Wei Ou and Sanjay Ranka

4-116 Center for Science and Technology

School of Computer and Information Science

Syracuse University

Syracuse, NY 13244

1This work was supported in part by NSF under ASC-9213821 and ARPA under contracts #DABT63-

91-C-0028 and NAG-1485. The content of the information does not necessarily reect the position or the

policy of the United State government, and no o�cial endorsement should be inferred.

Abstract

The methods for partitioning computational graphs for practical application can be broadly classi-

�ed into two classes based on whether physical coordinate information is used for the partitioning.

The use of coordinate-based partitioning methods provides faster but lower quality partitioning

than methods that use edge information explicitly.

In this paper We describe the SPRINT software for partitioning graphs utilizing only coordinate

information on parallel machines.

1 Introduction

From the perspective of parallel computing, a large number of applications can be represented

as computational graphs. In a computational graph, the vertices represent tasks that can be

executed concurrently, while the edges represent the interaction between them. Informally, the

parallelization of these applications requires partitioning the vertices of the graph such that each

partition has equal computational load and the cross-edges, which the ends of an edge locate at

di�erent partitions, are minimized. The quality of the partitions can be determined by the number

of cross-edges, which cause communications in applications. The better the quality of the partitions,

the fewer cross-edges there are. Graph partitioning has many important real-world applications,

such as domain-decomposition techniques for solving PDEs, laying out circuits in VLSI, etc. In this

paper we limit ourselves to the use of graph partitioning for mapping data-parallel applications on

a coarse-grained parallel machine.

Exploitation of locality is a necessary feature for the e�ective parallelization of these applications

on parallel machines. The various levels of memory hierarchy present in these architectures include

registers, caches, local accesses, non-local accesses, disk accesses, etc. At the very least, parallel

machines can be modeled to have two levels of hierarchy, local accesses and non-local accesses.

Local accesses are much faster than non-local accesses, typically by at least an order of magnitude.

A number of methods use explicit edge information to achieve very good partitioning. Important

heuristics include simulated annealing, mean-�eld annealing, recursive spectral bisection, recursive

spectral multisection, mincut-based methods, and genetic algorithms [1, 10, 11, 12, 13, 18, 20, 24].

Although these heuristics can be applied to arbitrary graphs, empirical evidence of the quality

of the partitioning has generally been limited to graphs from two- or three-dimensional physical

domains.

SPRINT software focuses on a subclass of applications in which the computational graph is such

that the vertices correspond to two- or three-dimensional coordinates, and the interaction between

computations is limited to vertices that are physically proximate. Examples of such applications

include �nite element calculations [21], molecular dynamics [3], particle dynamics [25], particle-in-

a-cell [17, 31], region growing [6], and statistical physics [5]. A list of other such applications is

given in [4]. For these applications, partitioning can be achieved by exploiting the above property.

Essentially proximate points are clustered together and form a partition such that the number of

points attached to each partition are approximately equal. Most of the interactions are local and the

amount of interprocessor communication is low if proximate points are clustered together. Many

such algorithms have been described in the literature, including recursive coordinate bisection [32]

and inertial bisection [14]. We have discussed an index-based indexing scheme in [27] and shown

that it produces good mappings for computational structures satisfying the above property.

For a large class of irregular and adaptive data-parallel applications [4], the computational

structure changes from one phase to another in an incremental fashion. Thus the partitioning

information of the previous phase can be e�ectively utilized to give the partitioning for a new

phase. Changes are typically gradual, reecting adiabatic changes in the physical domain, or

large-scale, reecting additions to a data structure. Molecular dynamics applications often exhibit

gradual changes, because interactions between particles are implemented by neighboring lists that

change as the atoms move [3]. Adaptive PDE solvers are examples of the large-scale changes. Other

examples with which we are familiar include some vision algorithms, including region-growing and

1

* * *
*

*
*

*
*

*

* *

*

*

* * *

*

**

*
*

*

*

*

*

*

*
*

**

Incremental sorting
into a sorted list

Merging an unordered list

Perturbation Adding new points

Figure 1: Incremental Aspects

labeling [6], statistical physics simulations near critical points and the particle-sorting phase of a

direct Monte Carlo simulation [7]. The key problem in e�cient parallelization of these applications

is to be able to react quickly to minor modi�cations in the data structure. The physical and

numerical properties of these algorithms typically guarantee that large-scale restructuring of data

is needed infrequently. Thus, for e�ective parallelization, the partitioning of the graph needs to be

updated as the graph changes over time. The following scenarios may arise (Figure 1):

� Perturbation: All the coordinates may perturb (within some small distance), e.g., particle-

dynamics problems [26].

� Node Additions: New points may be added and/or old points deleted, as with adaptive grids

[4].

One option is to repartition the new graph without using previous information. The methods

provided in SPRINT allow this to be done in an incremental fashion at a much lower cost than

that of other methods.

2 Related research

In recent years several graph-partitioning libraries have been proposed including TOP/DOMEDEC [29]

by Charbel Farhat and Host Simon, Chaco [14] by Bruce Hendrickson and Robert Leland, and

MeTiS [16] by George Karypis and Vipin Kumar.

TOP/DOMDEC is written in C++ and includes a number of partitioning algorithms (a greedy

algorithm [8], RCM-based algorithms [19], principal inertia algorithms [9], recursive graph bisection

algorithms, and recursive spectral bisection algorithms [24]). The user interface includes high-speed

three-dimensional graphics, an interprocessor communication simulator, and an output function

with parallel I/O data structures.

2

Chaco allows for recursive application of any of several di�erent methods for �nding small edge

separators in weighted graphs. These methods include inertia-based, spectral-based, Kernighan-

Lin, and multilevel methods. Chaco not only provides bisection methods, but also multidimensional

methods.

MeTiS is a set of programs for partitioning graphs and for producing �ll-reducing orderings for

sparse matrices. The algorithms in MeTiS are based on multilevel graph partitioning schemes.

3 SPRINT: Scalable Partitioning, Re�nement and INcremental

partitioning Techniques

The SPRINT library provides software for parallel graph-partitioning using coordinate information

such as index-based partitioning, recursive coordinate bisection, and recursive inertial bisection.

It is built on the P4 parallel programming system and allows portability across a wide variety of

architectures. As MPI (Message-Passing Interface) becomes more popular, we expect to modify

our communication routines to MPI.

int generate_random_graph(n,weight,perm)

int n, **perm;

double **x, **weight;

{

int i,j,lower_global_ref,upper_global_ref,local_n;

lower_global_ref = n*SPRINT_my_proc/SPRINT_num_procs;

upper_global_ref = n*(SPRINT_my_proc+1)/SPRINT_num_procs;

local_n = upper_global_ref-lower_global_ref;

*x = (double *) malloc(local_n*DIM*sizeof(double));

*perm = (int *) malloc(local_n*sizeof(int));

if (weight != NULL) *weight = (double *) malloc(local_n*sizeof(double));;

srand48(SPRINT_my_proc);

for (i=0;i<local_n;i++) {

for (j=0;j<DIM;j++)

x[i*dim+j] = drand48();

perm[i] = i+lower_global_ref;

if (weight != NULL) *weight[i] = NNODES*drand48();

}

return(local_n);

}

Figure 2: A simple function to generate a random graph.

Figure 2 describes a simple function to generate a random graph. This example is included to

show the basic data structures and metadata used in SPRINT to describe graphs. lower global ref

and upper global ref specify the boundaries of the graph in each processor; local n represents

3

the number of vertices in a processor; x represents the double-precision coordinates of vertices

in one-dimensional array; perm is the global reference for vertices. Currently, SPRINT supports

double-precision coordinates and weights of vertices.

#include <stdio.h>

#include "P4_HOME_DIR/include/p4.h"

#include "SPRINT_HOME_DIR/include/sprint_defs.h"

#include "SPRINT_HOME_DIR/include/sprint_funcs.h"

#define NNODES 20 /* number of vertices of the graph */

#define DIM 2 /* number of dimensions of the graph */

void main(argc,argv)

int argc;

char **argv;

{

int local_n;

double *x;

int *perm;

p4_initenv(&argc,argv);

SPRINT_init(0,0,1);

local_n = genertae_random_graph(NNODES,&x,NULL,&perm);

SPRINT_coordinate_bisection(DIM,local_n,&x,SPRINT_DBL,&perm);

free(x);

free(perm);

SPRINT_done();

p4_wait_for_end();

}

Figure 3: A simple example demonstrating the use of the SPRINT library.

The example in Figure 3 shows a simple code that uses SPRINT software. The code gen-

erates a random graph and partitions this graph into the desired number of partitions. The

function p4 initenv reads the argument list that contains the information needed in P4 (in-

cludes process creation). SPRINT init initializes the working space used for SPRINT. gen-

erate rendom graph generates a random graph for partitioning. The partitioning function

SPRINT coordinate bisection partitions the random graph into the desired number of par-

titions. The space can be de-allocated by using SPRINT done and p4 wait for end. Examples

throughout the paper that illustrate the functionality of SPRINT will use similar data structures.

4

4 Coordinate-Based Partitioners

The computational graphs considered in SPRINT assume that most interactions occur between ver-

tices that are physically proximate in two or more dimensions. Quality comparisons of partitioning

achieved by some of these methods such as index-based partitioning and recursive orthogonal bi-

section with edge-based partitioners (e.g., recursive spectral bisection) can be found in our previous

work [23]. In the following we briey describe the various methods and software interfaces.

4.1 Index-Based Partitioning (IBP)

z-Curve indexing and the Hilbert space-�lling curve are two of several ways to index pixels in

a two-dimensional grid. These two indexing schemes are shown in Figure 4 (a) and Figure 4

(b) for a graph in which the set of vertices are arranged in an 8 � 8 grid. z-Curve and Hilbert

space-�lling curve indexing maintain the property that close vertices have close indices along both

dimensions. These indexing schemes can be generalized to n-dimensions and used to convert an n-

dimensional index into a one-dimensional index such that proximity in the n-dimensions is generally

maintained. Index-based algorithms for partitioning graphs have been described in [23]. An IBP

algorithm includes �ve phases|indexing, sample sorting, distributing non-local indices, balancing,

and updating the reference table.

42 43 46 47 58 59 62 63 21 22 25 26 37 38 41 42

40 41 44 45 56 57 60 61 20 23 24 27 36 39 40 43

34 35 38 39 50 51 54 55 19 18 29 28 35 34 45 44

32 33 36 37 48 49 52 53 16 17 30 31 32 33 46 47

10 11 14 15 26 27 30 31 15 12 11 10 53 52 51 48

08 09 12 13 24 25 28 29 14 13 08 09 54 55 50 49

02 03 06 07 18 19 22 23 01 02 07 06 57 56 61 62

00 01 04 05 16 17 20 21 00 03 04 05 58 59 60 63

(a) (b)

Figure 4: Di�erent indexing schemes for an 8� 8 image: (a) z-curve and (b) Hilbert space �lling

curve.

The z-Curve index can be derived easily by interleaving the indices. A simple example of

interleaving indices is as follows. Suppose index1 = 001, index2 = 010, and index3 = 110. Then

the interleaved index would be 001011100. In the above case the number of bits in each dimension

are equal. This could easily be generalized to cases where the sizes are di�erent. For example, if

index1 = 101, index2 = 01, and index3 = 0, then the interleaved index would be 100110. This

is done by choosing bits (right to left) of each dimension one by one, starting from dimension 3.

When the bits of a particular dimension are no longer available, that dimension is not considered.

Another indexing scheme that maintains proximity in multiple dimensions is based on Hilbert

space-�lling curves [15] (Figure 4 (c)). We have performed experiments with this indexing, and the

quality of partition obtained is similar to the z-Curve indexing. However, most of the algorithms

discussed in this paper are independent of the indexing method used.

5

8

10

18

20

22

23 24 27

28

32

34

37

45

46

4852

54

56 61

63

(a) (b) (c)

Figure 5: An example of partitioning the graph into 4 partitions by IBP using Hilbert curve: (a)

The initial graph; (b) indices for all vertices after indexing using Hilbert space-�lling curve; (c) the

partitioned graph. The index assignment is based on an 8� 8 image.

8

10

18

20

22

23 24 27

28

32

34

37

45

46

4852

54

56 61

63

(a) (b) (c)

Figure 6: An example of partitioning the graph into 4 partitions by IBP using z-curve: (a) The

initial graph; (b) indices for all vertices after indexing using z-curve space-�lling curve; (c) the

partitioned graph. The index assignment is based on an 8� 8 image.

6

After indexing is done, an e�cient sorting algorithm can be applied to sort these vertices

according to their indices. We used sample-based sorting methods [2, 28, 30]. First, some elements

are randomly picked from the distributed list and a parallel bitonic sort or parallel merging sort

is performed to sort the sampling elements. Second, the sorted sampling list is divided into p

equal parts and the maximum elements in each partial list are recorded to form boundaries for all

processors. Finally, all elements are distributed among the processors according to the previous

boundaries. The elements in the processor with the lower identi�cation number are fewer than the

elements in the processor with the higher identi�cation number. Two examples of graphs are shown

in Figure 5 and Figure 6 for Hilbert space-�lling curves and z-curve space-�lling curve, respectively.

An index-based partitioning scheme does not need to sort the local elements, quickly �nding the

m smallest or largest elements instead. The algorithm used in SPRINT is based on quick selection

to �nd the desired elements and is followed by a communication phase to balance the elements.

The global-distributed reference table needs to be updated for applications that require the new

location of the node. The syntax of the procedures in SPRINT is given in Figure 7. These four

sets of functions perform the parallel index-based partitioning using table-look-up for the input

graph. hilbert and zcurve use the Hilbert space-�lling curve and z-Curve, respectively. If the

input graph is non-uniformly weighted, the su�x with \ w" will take the weights into account

to partition the graph. If the attributes of vertices in the graph are coordinates and/or weights,

users may move these attributes along with the partitioner by calling the functions with the su�x

\ move". These functions allow users to acquire the data that has been located at the proper

processors after the completion of the function. All four of these sets of functions require that

users assign a globally unique integer reference to each vertex. The index will be used to create the

global-distributed reference table. The range of global references is [0 .. N) where N represents

the number of vertices of the graph. All these functions return the new number of vertices after

partitioning. An example for the correct function call sequence in SPRINT is given in Figure 8.

4.2 Recursive Coordinate Bisection (RCB)

Recursive coordinate bisection orthogonally bisects the graph along the largest dimension into two

almost-equal weighted subgraphs and continuously and recursively bisects these two subgraphs

along the largest dimension of each subgraph into two subsubgraphs in each subgraph. The key

feature of this scheme is to determine the median vertex, which can be quickly found at the current

dimension. The common usage of recursive coordinate bisection is to �nd the median vertex

recursively. The median �nding divides the graph into two subgraphs based on the geometry of the

graph and calculates the number of vertices or the weight for both subgraphs. The subgraph with

the larger number of vertices or greater weight will be divided into another two subgraphs until

the median vertex is found. If the graph contains some vertices with the same coordinates at the

current dimension, the tie can be broken by arbitrarily or randomly assigning those vertices to one

of two subgraphs.

In parallel implementation RCB needs one all-to-all communication in each recursive median-

�nding step. This fact would cause RCB to spend more time in �nding the median vertex. The

improvement can be made by creating sampling buckets to reduce the number of recursive steps.

The number of sampling buckets can be de�ned as the bandwidth and the packet size of the

communication. This would speed up the recursive median-�nding process to the logarithm of

the number of sampling buckets based on 2. Figure 9 shows the quick-median �nding based on

7

int SPRINT ibp hilbert(ndims, local n, x, xtype, perm)

int SPRINT ibp zcurve(ndims, local n, x, xtype, perm)

int SPRINT ibp hilbert w(ndims, local n, x, xtype, wgt, wtype, perm)

int SPRINT ibp zcurve w(ndims, local n, x, xtype, wgt, wtype, perm)

int SPRINT ibp hilbert move(ndims, local n, x, xtype, perm)

int SPRINT ibp zcurve move(ndims, local n, x, xtype, perm)

int SPRINT ibp hilbert w move(ndims, local n, x, xtype, wgt, wtype, perm)

int SPRINT ibp zcurve w move(ndims, local n, x, xtype, wgt, wtype, perm)

int ndims: input the number of dimensions of the graph.

int local n: input the number of vertices in the processor.

void **x: input coordinates of vertices in one dimensional row-major representation. It returns the

new pointer of coordinates of the local vertices.

int xtype: coordinate data type (e.g., SPRINT INT, SPRINT FLT, or SPRINT DBL).

void **wgt: input weights of vertices and return the new pointer of weights of the local vertices.

int wtype: weight data type (e.g., SPRINT INT, SPRINT FLT, or SPRINT DBL).

int **perm: input the pointer of the global references and return the new pointer of the global

references of the local vertices.

Figure 7: Syntax of routines for the index-based partitioning

8

#include <stdio.h>

#include "P4_HOME_DIR/include/p4.h"

#include "SPRINT_HOME_DIR/include/sprint_defs.h"

#include "SPRINT_HOME_DIR/include/sprint_funcs.h"

#define NNODES 20 /* number of vertices of the graph */

#define DIM 2 /* number of dimensions of the graph */

void main(argc,argv)

int argc;

char **argv;

{

int local_n, new_local_n;

double *x, *wgt;

int *perm;

p4_initenv(&argc,argv);

SPRINT_init(0,0,1);

local_n = genertae_random_graph(NNODES,&x,&wgt,&perm);

new_local_n = SPRINT_ibp_hilbert_move_w(DIM,local_n,&x,SPRINT_DBL,&wgt,SPRINT_DBL,&perm);

free(x);

free(perm);

free(wgt);

SPRINT_done();

p4_wait_for_end();

}

Figure 8: An example of using the index-based partitioner based on the Hilbert space-�lling curve

to redistribute weighted graphs.

9

8 buckets. The implementation of RCB in SPRINT focuses on quickly �nding the close-median

vertex instead of the exact median vertex. Experiments show that the quality of partitioning

remains good. Figure 10 shows an example of partitioning a graph into 4 partitions.

(a) (b)

Figure 9: Quick integer median-�nding.

(b)(a) (c)

Figure 10: An example of partitioning a graph into 4 partitions by RCB: (a) The initial graph; (b)

partitions of the �rst recursive step; (c) the partitioned graph after RCB

Recursive Inertial Bisection (RIB)

Recursive inertial bisection bisects the graph along the longest extension into two subgraphs to

avoid long and thin subgraphs. RIB �rst calculates and diagonalizes the initial tensor of centroid

(the center of mass) to �nd the principle axis, which is the longest extension. All the vertices project

to this axis to form a linear vector. This vector is bisected at the median to two sub-vectors, such

that the element values in the lower vector are less than those in the higher vector. According to

these two sub-vectors, two subgraphs can be formed. The same process is applied to the subgraphs

recursively until the desired number of partitions is achieved.

10

Finding the principle axis that corresponds to solving the eigen value of the tensor. In the RIB

problem it calculate the eigen vector corresponding to the largest eigen value. In parallel imple-

mentation this step can be done synchronously, since the size of the tensor is small (corresponding

to the number of dimensions). The method for �nding the median of the vector is the same as that

used in recursive coordinate bisection. Figure 11 shows the partitioning of a graph into 4 partitions.

(b)(a) (c)

Figure 11: Partitioning the graph into 4 partitions by RIB: (a) The initial graph; (b) partitions

of the �rst recursive step (c) the partitioned graph after RIB. The solid-thick lines represent the

principle axis.

The syntax of the routines for coordinate bisection and inertial bisection are given in Figure 12.

These four functions perform recursive coordinate bisection. The functions with the su�x \ w" or

\ move" retain the same meanings as those in the previous sections. The total cost may be reduced

if one moves the partial attributes of vertices to the proper processor and redistributes the rest of

the attributes by using SPRINT data redistribute, because this method needs coordinates to

compute the momentum of the graph and subgraphs. Coordinates have to be moved after each

recursive step of coordinate-based bisection, as do the weights.

5 Incremental Index-Based Partitioning { Perturbation

In applications such as molecular dynamics, particle-in-a-cell methods, particle dynamics, etc., the

interaction between several particles is simulated. These particles are dispersed in a two- or three-

dimensional space, and the simulation is performed for a large number of time steps. At each

time step, the numerical approximation techniques used for simulation dictate that the amount

of particle movement be small. Further, most of the important interactions in the simulation are

limited to points that are physically proximate. Assume that index-based mapping is used to

partition these points. The corresponding index is expected to change by a small amount, but this

is not always the case (e.g., the index of (3, 3) is 15, while the index for (3, 4) is 26).

Thus the incremental mapping for perturbation of the particles, after a few time steps, can be

reduced to the following problem. There is a globally sorted list A of size n. A nearly globally

sorted list B is derived from list A by perturbing each element by a small amount (on an average)

by adding or subtracting a small random number.

We have developed an algorithm to distribute the elements in B e�ciently by utilizing infor-

mation of the previously globally sorted list A [22]. The basic principle used by the algorithm is

the fact that A is close to B and globally sorted, and the partitions of A can be used to distribute

11

int SPRINT coordinate bisection(ndims, local n, x, xtype, perm)

int SPRINT inertial bisection(ndims, local n, x, xtype, perm)

int SPRINT coordinate bisection w(ndims, local n, x, xtype, wgt, wtype, perm)

int SPRINT inertial bisection w(ndims, local n, x, xtype, wgt, wtype, perm)

int SPRINT coordinate bisection move(ndims, local n, x, xtype, perm)

int SPRINT inertial bisection move(ndims, local n, x, xtype, perm)

int SPRINT coordinate bisection w move(ndims, local n, x, xtype, wgt, wtype, perm)

int SPRINT inertial bisection w move(ndims, local n, x, xtype, wgt, wtype, perm)

int ndims: input the number of dimensions of the graph.

int local n: input the number of local vertices in the processor.

void **x: input the pointer of coordinates of local vertices and return the new pointer of coordinates

of local vertices after partitioning.

int xtype: coordinate data type (e.g., SPRINT INT, SPRINT FLT, or SPRINT DBL).

void **wgt: input the pointer of weights of local vertices and return the new pointer of weights of

local vertices after partitioning.

void **wgt: input pointer of weights of vertices.

int wtype: weight data type (e.g., SPRINT INT, SPRINT FLT, or SPRINT DBL).

int **perm: input the pointer of global references of local vertices and return the new pointer of

the global references of local vertices after partitioning.

Figure 12: Syntax of routines for recursive-coordinate bisection and recursive-inertial bisection.

12

the elements of B into lists of approximately equal size. Each of these lists is such that all the

elements of the list are greater than the previous list. An incremental globally sorting algorithm

assumes the presence of a globally sorted list A, of size n, divided equally among all the processors

in a contiguous fashion. The list A is divided into p partitions to get approximate boundaries of p

partitions of B on each processor. The maximum element of the local list A is used to create an

array of the size of the number of partitions in each processor; Boundaryi[j] := Ai[
jn
p
], 1 � j � p.

For each element of B an appropriate partition must be obtained.

Each element of B can be classi�ed into three categories, depending on whether the element

belongs to the same partition as the corresponding element of A or to another partition. Those

elements that are non-local to the current partition will be moved to the proper partition corre-

sponding to the previous boundary information. The quick �nding algorithm will then be applied

to the local list, followed by the balancing step. After all these steps, list B will be globally sorted.

The syntax of incremental index-based partitioning for perturbation is given in Figure 13.

Description

Four sets of functions perform the incremental index-based partitioning for the applications that

graphs slightly change after each computation iteration. The su�x \ w" and \ move" represent

the same meanings in the section of Index-Based Partitioning. Uses of the incremental index-based

partitioning are restricted to calling the incremental partitioning functions in SPRINT instead of

developing the communication functions themselves, since the the global reference information will

not be maintained for the next calling routine. If communication functions to move data are needed,

static partitioners may be used instead. Since the cost of an incremental partitioner is much less

than the cost of a static partitioner, users may lose this advantage.

6 Incremental Index-Based Partitioning { Addition

For many applications, such as adaptive meshes, new vertices are added to the computational

graph. Typically, this is done in a localized area to study numerical behavior more precisely. These

re�nements are based on the solution of the previous phase and are available only at runtime.

During a typical simulation vertices may be added in a particular portion, only to be removed

after a few phases. The following discussion is limited to the case when vertices are added to the

computational graph. All of these algorithms can be easily modi�ed when this is not the case.

Remapping requires calculating the z-Curve indices or Hilbert space-�lling curve indices of the

new vertices, which must be combined with the indices of the previous phase. Since the previous

mapping is available, this corresponds to adding an unsorted list of integers (corresponding to the

indices of the new vertices that are added) to a globally sorted list (corresponding to the indices of

the old vertices).

Let A represent a sorted list of n integers, and let B represent an unsorted list of m integers.

A simple sequential approach for merging list B into list A is to sort B, followed by merging the

two sorted lists. We assume that the list A is already globally sorted and divided equally among

all the processors. This corresponds to the partitioning of the previous phase. The new vertices

added in the new phase are assumed to be generated locally. This is not always going to be the

case and, fact, for most practical cases the incremental vertices are added in localized portions.

13

int SPRINT perturb ibp hilbert(ndims, local n, x, xtype, perm)

int SPRINT perturb ibp zcurve(ndims, local n, x, xtype, perm)

int SPRINT perturb ibp hilbert w(ndims, local n, x, xtype, wgt, wtype, perm)

int SPRINT perturb ibp zcurve w(ndims, local n, x, xtype, wgt, wtype, perm)

int SPRINT perturb ibp hilbert move(ndims, local n, x, xtype, perm)

int SPRINT perturb ibp zcurve move(ndims, local n, x, xtype, perm)

int SPRINT perturb ibp hilbert w move(ndims, local n, x, xtype, wgt, wtype, perm)

int SPRINT perturb ibp zcurve w move(ndims, local n, x, xtype, wgt, wtype, perm)

int ndims: input the number of dimensions of the graph.

int local n: input the number of vertices in the processor.

void **x: input the pointer of coordinates of the local vertices in one-dimensional row-major rep-

resentations and return the new pointer of coordinates of the local vertices after partitioning.

int xtype: coordinate data type (e.g., SPRINT INT, SPRINT FLT, or SPRINT DBL).

void **wgt: input the pointer of weights of local vertices and return the new pointer of weights of

local vertices after partitioning.

int wtype: weight data type (e.g., SPRINT INT, SPRINT FLT, or SPRINT DBL).

int **perm: input the pointer of the global references and return the new pointer of global refer-

ences of the local vertices.

Figure 13: Syntax of routines for incremental index-based partitioning for perturbation.

14

This typically correspond to all the new elements belonging to a few processors.

According to the previous assumption, the new added vertices need to be distributed to the

proper processor corresponding to the boundary information provided by the previous partitioning

phase. Since most new vertices reside in the local partition, the load may be imbalanced while

performing the quick �nding. This would, however, save the cost of the extra communication and

the total cost of the incremental partitioner would be much less than that of applying the static

partitioner from scratch when the communication cost vs. computation cost and the number of

additional vertices is a fraction of the number of vertices of the graph.

The syntax of incremental index-based partitioning for addition is given in Figure 14. These four

sets of functions perform incremental index-based partitioning for adding new vertices to the graph.

Functions with the su�x \ w" or \ move" retain the same meanings as mentioned in the previous

sections. The same restrictions as in the previous section (Incremental Index-Based Partitioning

{ Perturbation) are applied to these four sets of functions. The advantages of these functions are

that the costs are much less than the costs of the static partitioners, since most of the computations

and communications occur in the additional vertices.

7 Incremental Index-Based Partitioning { Deletion

The syntax of the incremental index-based partitioning for deletion is in Figure 15. These functions

need global references instead of graph data because the attributes of the vertices remain the same.

The only argument the user is asked to input is the global references of the rest of the graph's

vertices. SPRINT does not provide the options as did the previous partitioning functions, as the

attributes of vertices are not involved in these functions. The data redistributing function in the

\Utilities" section can be used to rearrange the vertices.

8 Other Utilities

8.1 Initialization

This function is used to set up the following global variables used in SPRINT:

� SPRINT num procs is an integer to indicate the total number of processors involved in

SPRINT.

� SPRINT my proc is an integer to indicate the processor identi�cation number of the proces-

sor.

� SPRINT logic id is an integer to indicate the processor identi�cation number of the current

processor group, especially for recursive coordinate bisection and recursive inertial bisection.

� SPRINT global max is a double-precision array of the size of dimensions of the graph to

store the global maximum coordinates in each dimension. In other words, this will provide

the upper bound for the input graph to all partitioning functions in the SPRINT.

� SPRINT global min is a double precision array of the size of dimensions of the graph to store

the minimum coordinates in each dimension and this corresponds to lower bound for the

graph.

15

int SPRINT inc ibp hilbert(ndims, local n, perm, add local n, add x, xtype, add perm)

int SPRINT inc ibp zcurve(ndims, local n, perm, add local n, add x, xtype, add perm)

int local n: input the number of old vertices in the processor.

int SPRINT inc ibp hilbert w(ndims, local n, perm, add local n, add x, xtype, add wgt,

wtype, add perm)

int SPRINT inc ibp zcurve w(ndims, local n, perm, add local n, add x, xtype, add wgt,

wtype, add perm)

int SPRINT inc ibp hilbert move(ndims, local n, x, xtype, perm, add local n, add x,

add perm)

int SPRINT inc ibp zcurve move(ndims, local n, x, xtype, perm, add local n, add x,

add perm)

int SPRINT inc ibp hilbert w move(ndims, local n, x, xtype, wgt, wtype, perm, add local n,

add x, xtype, add wgt, wtype, add perm)

int SPRINT inc ibp zcurve w move(ndims, local n, x, xtype, wgt, wtype, perm, add local n,

add x, xtype, add wgt, wtype, add perm)

int ndims: input the number of dimensions of the graph.

int local n: input the number of old vertices in the processor. void **x: input the pointer of coor-

dinates of the old local vertices and return the new pointer of coordinates of the old local vertices

and the additional vertices.

int xtype: coordinate data type (e.g., SPRINT INT, SPRINT FLT, or SPRINT DBL).

void **wgt: input the pointer of weights of the old local vertices and return the new pointer of

weights of the old local vertices and the additional vertices.

int wtype: weight data type (e.g., SPRINT INT, SPRINT FLT, or SPRINT DBL).

int **perm: input the pointer of the global references of the old local vertices and return the new

pointer of the global reference indices of the old vertices and new vertices.

int add local n: input the number of local additional vertices in the processor.

double *add x: input the coordinates of additional vertices in one dimensional row-major repre-

sentations.

double *add wgt: input the weighted of local additional vertices.

int add perm: input the global references of additional vertices.

Figure 14: Syntax of routines for incremental index-based partitioning for addition.

16

int SPRINT del ibp(local n, perm)

int SPRINT del ibp w(local n, perm)

int local n: input rest number of local vertices after deletion.

int **perm: input the pointer of the global references of the rest vertices and return the new pointer

of the global reference indices of the local vertices.

Figure 15: Syntax of routines for incremental index-based partitioning for deletion.

void SPRINT init(debug ag, demo ag, log ag)

int debug ag: turn on the debuging process to track the current SPRINT status if the ag is

set to 1; otherwise set the ag to 0. This option will help users to check the status of communica-

tions and generate the detail timing inside the set of index-based partitioners.

int demo ag: turn on the demonstrating process to allow users check the current information of

partitions if the ag is set to 1; otherwise set the ag to 0.

int log ag: turn on the script option if the ag is set to 1; otherwise set the ag to 0. This will

generate a script �le for each processor to record the intremedia output for debuging or demon-

strating the current partitions.

� SPRINT dim is an integer of the number of useful dimensions used in \Indexing". Most of

the time this value will equal to the dimensions of the graph. The exception occurs when one

or more dimensions are too small as compared to the most signi�cant dimension.

� SPRINT vtx boundary is an integer array to store the boundaries of the number of vertices

for all processors.

� SPRINT idx boundary is an integer array to stored the largest index in each processor for the

usage of incremental IBP for additional vertices and perturbation. This will help SPRINT

locate the new vertices to the proper processors.

� SPRINT ref boundary is an integer array to store the boundary entries of the reference table.

� SPRINT ibp old idx is a structural array to store the index values for each local vertices ac-

quired from the previous partitioning. This is used in incremental IBP for additional vertices,

perturbation, and deleting vertices. Each element of this array contains two attributes, which

are the index generated from the index-based partitioner and the global reference.

� SPRINT ibp old idx w is a structural array to store the index values for each local vertices ac-

quired from the previous partitioning. This is used in incremental IBP for additional vertices,

perturbation, and deleting vertices. Each element of this array contains three attributes: the

index generated from the index-based partitioner, the weight, and the global reference.

� SPRINT ref table is a structure array containing two attributes, the processor ID and the

local address, to indicate the location of the physical data (Figure 16).

17

8.2 Termination

The following function will free the space of those global variables used in SPRINT.

void SPRINT done()

8.3 Data Redistribution

int SPRINT data redistribute(local n, data, size)

int local n: input the number of local vertices in the processor. char **data: input the pointer of

local data associated with the global references and return the new pointer of local data after the

partitioning. Data can be in any type of array.

int size: input the size of an element in the data.

int SPRINT data redistribute v(local n, data, size)

int local n: input the number of local vertices in the processor. char **data: input the pointer of

local data associated with the global references and return the new pointer of local data after the

partitioning. Data can be in any type of array.

int **size: input the pointer of the size of each element in the data and returned the new pointer

of the size of each element in the redistributed data.

SPRINT data redistribute will redistribute the graph to the processors based on the mapping

returned from partitioning functions. SPRINT data redistribute v will redistribute variable

sized graphs. Both functions return the number of local vertices in the processor after partitioning.

A better data structure that users may think about before implementing the applications might

be a structural type in the C language because users have to use this function to redistribute each

attribute of the graph if the data type is an array, or a lot of local data copies if the data type is a

pointer.

8.4 Communication Schedule

void SPRINT create schedule(local n, ref list, local ref list)

int local n: input the number of local vertices in the processor after data redistribution.

int *ref list: input an array of global references that are needed to perform the local computations.

int *local ref list: output an array of local references corresponding to global references.

This function will create the communication schedule and rearrange the collection of local and

non-local references to the local references. For some applications that need to compute the at-

tributes of neighbor vertices for each vertex in a iteration, users have to specify the reference list

(adjacent list) for the input of this function and this function will return a new reference list that

18

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

2

0

1

0

1

3

30

0 2

1

2

0

3

2

1

3

3

2

4

0

2 2

0

1

2

1

1

3

0

3

3

3

21

4 4

0

1

4

0

4

Data

Data

Data 2

Data 11

Data 9

Data 7

Data 3

Data 12

Data 6

Data 15

Data 10

Data 1

Data 18

5Data

14Data

17Data

16Data

13Data

8Data

19Data

Local Data Storages

Distributed Global Reference Tables

Global Reference Boundaries

0 0 1 5 2 10 3 15 4 20

Processor 0 Processor 1 Processor 2 Processor 3

Figure 16: An example of distributed global reference tables on 4 processors: The �rst row rep-

resents the boundaries of the reference table for all processors. The second row shows that the

distributed reference tables point to the local data storages where the �rst column represents the

processor ID, and it represents the local address in that processor. The third row represents the

local data storages on all processors.

19

0
2
4
9
2
0

9
8

16

4
0
9
11
9
0
2
4
11

11
4
9
12
16

11

16

0
2

2
0

1
4

7
4

0

0
2

1

4

4

1

1
4
5
6

3

3

3

3
6

6

Data 0

Data 4

Data 2

Data 11

Data 9

Data 12

Data 16

Data 8

0

1

2

3

4

5

6

7

2

0

4

11

8

9 16

12

Partition 0

Partition 1

Partition 3

Global Reference List Local Reference List

Figure 17: A mapping from the global references to local references for the example graph at the

left.

points to the data stored locally. This function will remove the duplicate references by using the

hash table to reduce the size of messages and the size of local storage. Figure 17 describes the

mapping of global references to local references.

8.5 Data Localization

void SPRINT gather(data, outdata, size)

char *data: input the data of local vertices in character type.

char *outdata: output the data of local referencing vertices in character type.

int size: input the size of the element in the data.

This function provides the communication to gather those data that are non-local to the processor

20

Data locates at processor P-1

Data Storage

Data locates at processor 0

Data locates at processor 1

Figure 18: Storage arrangement for local and non-local data after localizing data.

Graph ID Graph 1 Graph 2 Graph 3 Graph 4 Graph 5 Graph 6 Graph 7 Graph 8

Graph Name Hscts Aircraft Kall1 Barth4 10k Barth5 Vaughan 50k

jV j 2028 2851 4363 6019 9428 15606 29681 53961

jEj 20341 15093 26570 17473 59863 45878 81795 343576

Table 1: Graphs used in experiments

and rearrange the localized data corresponding to the schedule created by SPRINT create schedule.

Users may be asked to pack the data in a one-dimensional array and indicate the size of the element

of the data array to this function. After data localization, users can access the localized data by

using local ref list. Figure 18 shows the locations of all data that will be used in the next compu-

tation iterations. The data is arranged corresponding to the processor ID of the data in ascending

order.

9 Performance

In this section Table 1 gives the graphs used in our experiments, and Figure 19 and 20 present the

results on the CM5 and the PARAGON, respectively.

21

Graph 1 Graph 2 Graph 3 Graph 4
0.00

0.10

0.20

 4-node
 8-node
16-node
32-node

Graph 5 Graph 6 Graph 7 Graph 8
0.0

0.5

1.0

1.5

2.0

2.5

Figure 19: Partitioning time for Graphs on the CM-5.

Graph 1 Graph 2 Graph 3 Graph 4
0.00

0.10

0.20

0.30

0.40

0.50

 4-node
 8-node
16-node
32-node

Graph 5 Graph 6 Graph 7 Graph 8
0.0

1.0

2.0

3.0

Figure 20: Partitioning time for Graphs on the PARAGON.

22

10 Conclusions

The performances of the four partitioning schemes included in the SPRINT package are close in

quality, but index-based partitioning provides more exibility for incremental aspects. SPRINT not

only provides partitioners, but also a parallel computation environment for developing parallel ap-

plications on message-passing-based machines. Users can easily develop the parallel applications on

SPRINT. We believe that SPRINT is useful for those who work on parallel computing applications.

Acknowledgement

Authors would like to thank Geo�rey Fox, the director of Northeast Parallel Architectures Center,

for his insightful discussion and supports, Ibraheem Al-Furaih for providing experimental results

from the \Chaco" partitioning package, Robert Leland and Bruce Hendrickson for providing the

Chaco software package, and Elaine Weinman for editing the paper.

References

[1] I. Angus, G. Fox, J. Kim, and D. Walker. Solving Problems on Concurrent Processors, vol-

ume 2. Prentice Hall, Englewood Cli�s, NJ, 1990.

[2] M. Bolorforoush, N. Coleman, D. Quammen, and P. Wang. A Parallel Randomized Sorting

Algorithm. Proceedings of the International Conference on Parallel Processing, August 1992.

[3] B. Brooks, R. Bruccoleri, B. Olafson, D. States, S. Swaminathan, and M. Karplus. A Program

for Macromolecular Energy, Minimization, and Dynamics Calculations. Journal of Computa-

tional Chemistry, 4:187, 1983.

[4] A. Choudhary, G. Fox, S. Hiranandani, K. Kennedy, C. Koelbel, S. Ranka, and J. Saltz. Soft-

ware Support for Irregular and Loosely Synchronous Problems. Proceedings of the Conference

on High Performance Computing for Flight Vehicles, 1992.

[5] P. Coddington and C. Baillie. Cluster Algorithms for Spin Models on MIMD Parallel Com-

puters. Proceedings of the 5th Distributed Memory Computing Conference, pages 384{388,

Charleston, SC, April 1990.

[6] N. Copty, S. Ranka, G. Fox, and R. Shankar. SIMD and MIMD region growing algorithms on

the CM-5. International Conference on Parallel Processing, 1994.

[7] L. Dagum. Data Parallel Sorting for Particle Simulation. Concurrency, 4:241{255, May 1992.

[8] C. Farhat. A Simple and E�cient Automatic FEM Domain Decomposer. Comp. and Struct.,

28:579{602, 1988.

[9] C. Farhat and M. Lesoinne. Automatic Partitioning of Unstructured Meshes for the Parallel

Solution of Problems in Computational Mechanics. International J. Numer. Meth. Engrg.,

36:745{764, 1993.

23

[10] G. Fox and W. Furmanski. Load Balancing Loosely Synchronous Problems with a Neural

Network. 1988.

[11] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving Problems on

Concurrent Processors, volume 1. Prentice Hall, Englewood Cli�s, NJ, 1988.

[12] B. Hendrickson and R. Leland. An Improved Spectral Graph Partitioning Algorithm for Map-

ping Parallel Computations. Technical report, Sandia National Laboratories, Albuquerque,

NM 87185, 1992.

[13] B. Hendrickson and R. Leland. An Improved Spectral Load Balancing Method. Proceedings

of 6th SIAM Conference, pages 953{961, 1993.

[14] B. Hendrickson and R. Leland. The Chaco User's Guide, Version 1.0. Technical report, Sandia

National Laboratories, October 1993.

[15] D. Hilbert. Uber die steitige Abbildung einer linie auf ein Flachenstuck. Math. Ann, 38, 1891.

[16] G. Karypis and V. Kumar. MeTiS: Unstructured Graph Partitioning and Sparse Matrix

Ordering System. Technical report, Department of Computer Science, University Minnesota,

1995.

[17] P. Liewer and V. Decyk. A General Concurrent Algorithm for Plasma Particle-in-Cell Simu-

lation Codes. Journal of Computational Physics, 2:302{322, 1985.

[18] H. Maini, K. Mehrotra, C. Mohan, and S. Ranka. Genetic Algorithms for Graph Partitioning

and Incremental Graph Partitioning. Proceedings of Supercomputing '94, November 1994.

[19] J. Malone. Automated Mesh Decomposition and Concurrent Finite Element Analysis for

Hypercube Multiprocessors Computers. Eng., 70:27{58, 1988.

[20] N. Mansour. Physical Optimization Algorithms for Mapping Data to Distributed-Memory Mul-

tiprocessors. PhD thesis, Syracuse University, NY, 1993.

[21] S. Nolting. Nonlinear Adaptive Finite Element Systems on Distributed Memory Computers.

Proceedings of European Distributed Memory Computing Conference, pages 283{293, April

1991.

[22] C. Ou and S. Ranka. Parallel Remapping Algorithms for Adaptive Problems. Frontiers '95,

pages 367{374, 1995.

[23] C. Ou, S. Ranka, and G. Fox. Fast Mapping And Remapping Algorithm For Irregular and

Adaptive Problems. Proceedings of the 1993 International Conference on Parallel and Dis-

tributed Systems, pages 279{283, Taipei, Taiwan, December 1993.

[24] A. Pothen, H. Simon, and K. Liou. Partitioning Sparse Matrices with Eigenvectors of Graphs.

SIAM Journal of Matrix Analysis and Application, 11:430{352, July 1990.

[25] J. Salmon. Parallel Hierarchical N-Body Method. Technical report, Center for Research in

Parallel Computing, Caltech, Pasadena, CA, 1990.

24

[26] J. Salmon and D. Warren. personal communication.

[27] R. Shankar and S. Ranka. Hypercube algorithms for quadtree operations. Journal of Pattern

Recognition, pages 741{747, September 1992.

[28] H. Shi and J. Schae�er. Parallel Sorting by Regular Sampling. Journal of Parallel and Dis-

tributed Computing, 14:361{372, 1992.

[29] H. Simon and C. Farhat. TOP/DOMEC; A Software Tool for Mesh Partitioning and Parallel

Processing. Technical report, NASA Ames Research Center, 1993.

[30] C. Thompson and H. Kung. Sorting on a mesh-connected parallel computer. comm. ACM,

20:263{271, 1977.

[31] D. Walker. Characterizing the Parallel Performance of a Large-Scale, Particle-in-Cell Plasma

Simulation Code. Concurrency: Practice and Experience, 1990.

[32] R. Williams. Performance of Dynamic Load-Balancing Algorithm for Unstructured Mesh

Calculations. Concurrency, 3:457{481, 1991.

25

