
Dynamic Alignment and Distribution of Irregularly Coupled Data

Arrays for Scalable Parallelization of Particle-in-Cell Problems

Wei-keng Liaoy, Chao-wei Ouy, and Sanjay Rankaz

y2{120 Center for Science and Technology

School of Computer and Information Science

Syracuse University, Syracuse, NY 13244-4100

zCSE Building, #301

Department of Computer Science

University of Florida, Gainesville, FL 32611

Abstract

Particle-in-cell (PIC) plasma simulation codes require two data arrays|particle array and �eld

array|for storing the lists of particles and electromagnetic �elds, respectively. In every iteration

the two are updated based on the values of each other. The interaction between these two arrays

is dynamic due to the movement of particles.

E�cient parallelization of PIC requires the two data arrays to be load balanced and the amount

of communication generated due to the interaction between them to be minimized. This requires

dynamic distribution and alignment of the two arrays. In this paper we present fast and e�cient

methods for achieving this task at runtime. The implementation and performance of a relativistic

electromagnetic PIC plasma simulation code on the CM-5 are described.

1 Introduction

The particle-in-cell algorithm is a method widely used to simulate plasmas and hydrodynamics

[4] [1]. The movement of particles is computed by the interaction between each pair of particles

in a self-consistent system. Instead of directly calculating the interaction of particles, the PIC

algorithm employs a regular computational mesh on the particle domain and assigns the particle

attributes to nearby grid points of the mesh. The �eld equations are then solved on the mesh and

the force which moves each particle to its new position is obtained by gathering the attributes of

nearby grid points from the resultant �elds on the mesh.

The PIC algorithm has two di�erent data structures, particle array and mesh grid array. The

mesh grid array is spatially homogeneous. The particle array can be nonhomogeneous. In each

iteration the two are updated based on the values of the other. An e�cient implementation on

distributed memory MIMD computers requires distributing these two data structures over the

processors such that o�-processor accesses are minimized. A good load balance in parallelization

should also ensure that each data structure is nearly equally distributed among the processors.

Further, the data access patterns between two arrays may change dynamically (albeit incremen-

tally) and therefore the particles may need to be redistributed frequently to reduce communication

cost.

We assume the mesh grid is distributed along one or more dimensions using BLOCK distribution.

This is necessary for e�ective parallelization of the �eld array. For partitioning the particle array,

we present an e�cient particle redistribution algorithm based on Hilbert indexing [10]. To improve

the performance of redistribution, we used an incremental sorting algorithm that utilizes the pre-

viously sorted information to distribute the particle array e�ciently. These algorithms maintain

good spatial contiguity along multiple dimensions within decomposed particle sub-domains and

thus reduce o�-processor data accesses. We present experimental results which demonstrate that

maintaining spatial contiguity in more than one dimension leads to reduced communication cost.

Although our repartitioning strategies are fast, it is not desirable to repartition the particles at

every iteration. One strategy is to redistribute the particles periodically after every k iterations.

Another strategy is to dynamically decide on when to perform this repartitioning based on moni-

toring the computation and communication costs of the previous iterations. We describe a simple

redistribution strategy that performs comparably to or better than periodic distribution strate-

gies. It has the added advantage that the user does not have to �ne-tune program performance

by choosing the optimal value of k.

The rest of the paper is organized as follows. Section 2 gives a brief description of the PIC

algorithm. Section 3 discusses the particle and mesh domain partitioning strategies for parallel

PIC algorithms. Section 4 describes a coarse-grained parallel machine model and also gives time

complexity analysis for each phase of the PIC algorithm under the described machine model.

Section 5 presents particle distribution and redistribution algorithms using index-based schemes

and also describes the decision policy for dynamic particle redistribution. Experimental results

1

q q q

q

q
q

q

q

q

q

q

Figure 1: Scatter phase: particle contributes

its charge to the grid points at the vertices of

the cell where it lies.

q q q

q

q
q

q

q
q

q
q

Figure 2: Gather phase: particle gathers con-

tributions from the the grid points at the ver-

tices of the cell where it lies.

and conclusions are given in Sections 6 and 7.

2 Particle-in-cell algorithm

In simulating the evolution of plasma we use a self-consistent model in which particles and mesh

grid points mutually interact with each other without any external �elds presented. That is, the

charged particles making up a plasma move under the inuence of the electro-magnetic �elds

that they generate. Instead of directly calculating the interaction of particles, the PIC algorithm

employs a regular computational mesh on the particle domain and assigns the particle attributes

to nearby grid points of the mesh. The appropriate �eld equations are then solved on the mesh,

and the force on each particle due to the resultant �elds is obtained by linear interpolation on the

mesh. The particles are then moved under the inuence of this force to a new position, ready to

begin the next iteration.

The PIC algorithm follows the evolution of the particles in a series of time steps, each of which

consists of four phases:

Scatter phase | Using a linear interpolation scheme each particle scatters its contributions to

the current mesh grid points at the vertices of the cell in which it lies. A particle makes

no contributions to other grid points. The contributions at each grid point are summed to

form the current density there.

Field solve phase | Solve Maxwell's equations on the mesh to determine the electric and

magnetic �elds, E and B. Each grid point on the mesh needs data from its neighboring grid

points to calculate new values for E and B.

Gather phase | The electric and magnetic �elds at particles are obtained from their vertex

grid points by a linear interpolation of particles' relative positions in the cell. Particles

sum these contributions from the vertex grid points to generate the force. Figure 3 gives a

simplistic description of the algorithms of scatter and gather phases.

2

n : number of particles

vertex[4] : stores 4 indices of particle's vertex grid points

weight[4] : stores weight of a particle to its 4 vertex grid points

Scatter()

1 for i 0 to n� 1

2 vertex �nd indices of 4 vertex grid points of particle[i]

3 weight calculate the weight of a particle to its 4 vertex grid points using linear interpolation

4 for j 0 to 3

5 grid charge[vertex[j]] grid charge[vertex[j]] + weight[j] � particle charge[i]

Gather()

1 for i 0 to n� 1

2 for j 0 to 3

3 particle �elds[i] particle �elds[i] + weight[j] � grid �elds[vertex[j]]

Figure 3: Scatter and gather phase algorithms in two-dimensional case.

Push phase | The force obtained from the gather phase moves particles to their new positions.

3 Parallelization

In a parallel PIC algorithm, the distribution of particles and mesh grid points over processors

should be made such that the overhead generated from the parallelization is carefully controlled

to obtain a reasonable speedup. In the scatter and gather phases, the o�-processor data accesses

produced from the interaction between particle and mesh grid arrays is the main portion of the

interprocessor communication overhead.

Parallelization strategies for the PIC problem can be divided into two broad categories [13]:

Direct Eulerian method | Particle domain is divided spatially into several mutually exclu-

sive regions (or sub-domains) and each processor is assigned one of these subdomains. Par-

ticles are then assigned to processors according to their positions and may migrate between

processors' sub-domains as the system evolves.

Direct Lagrangian method | After particles are assigned to processors, this assignment re-

mains �xed throughout the simulation. That is, particles will not move from one processor

to another.

The above two approaches lead to two di�erent implementation schemes for parallel PIC codes.

Lubeck and Faber implemented a PIC algorithm for the two-dimensional electrostatic problem

3

using the direct Lagrangian method on a 128-node INTEL iPSC/1 hypercube [8]. To simplify

the communication process Lubeck and Faber chose to replicate the mesh grid array so that each

processor contains all the mesh grid data. This requires global communication operations to

carry out the work of maintaining the same mesh grid array on every processor. In the scatter

phase, the contributions of particles to the grid points are directly summed into the mesh grid

array in each processor and then the mesh grid array is element-wise summed over all processors.

This global sum operation maintains the same copy of mesh grid data in all processors. After

the �eld solve phase, a global concatenation operation is necessary to broadcast the results of

�eld values over all processors. The results presented by Lubeck and Faber show that the direct

Lagrangian method is an e�cient algorithm for small hypercubes. However, for large hypercubes

the communication due to global operations on mesh grid array dominates the run time of the

PIC simulation.

3.1 Domain partitioning strategies

Instead of replicating the mesh grids in each processor, the other option is to partition the mesh

array into rectangular submeshes and assign a di�erent submesh to each processor. In this case

the contributions of particles to their grid points are sent directly to the owner processors. The

main issue is to decompose two arrays to reduce the amount of o�-processor data access. E�cient

parallelization of each iteration during the system evolution requires that

1. the number of particles assigned to each processor be nearly equal;

2. the number of grid points assigned to each processor be nearly equal; and

3. the communication between the two data structures be minimized.

The �rst two conditions are required to maintain a good processor utilization for computations

in the four phases, while the third condition is required to reduce communication. Achieving

all three conicting goals together is di�cult. In the following we describe and analyze three

potential ways to achieve the above goals:

Grid Partitioning | Partition the grid cells such that each processor gets an equal number of

cells. The particles are then assigned based on the grid cells to which they belong.

Particle Partitioning | Partition the particle domain such that each sub-domain has an ap-

proximately equal number of particles. The grid cells are then assigned based on the corre-

sponding sub-domain to which they belong.

Independent Partitioning | Partition the particle domain such that each sub-domain has

an approximately equal number of particles. Also, partition the grid cells such that each

processor gets an equal number of grid cells.

4

Initial Condition

partitioning Grid Particle Independent

computation �eld solve balanced unbalanced balanced

load particle unbalanced balanced balanced

calculation

type local local non-local

communication amount which is size of internal size of internal sub-domain

proportional to boundaries boundaries di�erence

After a Few Iterations

Direct Eulerian :

partitioning Grid Particle Independent

computation �eld solve balanced unbalanced balanced

load particle unbalanced unbalanced unbalanced

calculation

type local local non-local

communication amount which is size of internal size of internal sub-domain

proportional to boundaries boundaries di�erence

Direct Lagrangian :

partitioning Grid Particle Independent

computation �eld solve balanced unbalanced balanced

load particle unbalanced balanced balanced

calculation

type non-local non-local non-local

communication amount which is sub-domain sub-domain sub-domain

proportional to di�erence di�erence di�erence

Table 1: Comparison of computation load and communication patterns in each of three domain

partitioning strategies. When both particles and grid arrays in a processor correspond to the

same subdomain, the communication cost is proportional to the boundaries of the subdomain.

Otherwise, the cost is proportional to the di�erence between the grid subdomain and particle

subdomain assigned to the processor and the boundary of the grid domain.

5

Independent PartitioningParticle PartitioningGrid Partitioning

Particle Domain Mesh Grids

Figure 4: Three particle and mesh grid partitioning methods.

Table 1 analyzes interprocessor communication and computational load balance for the two

particle movement methods for each of three domain partitioning strategies. Table 1 illustrates

the principle di�culties in designing a scalable and e�cient parallel PIC algorithm. The direct

Eulerian method results in local interprocessor communication, but places no constraints on the

computational load balance. The direct Lagrangian method imposes strict load balance, but

makes no attempt to reduce communication. Because mesh grid data distribution is spatially

homogeneous, while the particle data can be nonhomogeneous, the decision to choose a proper

strategy for particle movement among processors represents a trade-o� between communication

cost and computational load balance.

Gledhill and Storey [3] adopted the direct Eulerian method on grid partitioning, which, as seen

in Table 1, keeps the computation load of particle calculations unbalanced and communication

cost low. When particle distribution is spatially highly nonhomogeneous, the problem of load

unbalance will degrade the whole performance due to the low concurrent e�ciency. Hoshino et al.

used both direct Eulerian and Lagrangian methods on the grid partitioning strategy with scatter

decomposition of grid points instead of the block partitioning used by Gledhill and Storey [5]. For

a large number of processors, the problem of low e�ciency still remains, because the computation

load is unbalanced throughout the simulation.

6

(c)(b)(a)

particle subdomain

of processor i

of processor i

mesh grid subdomain

particle subdomain
of processor k

particle subdomain
of processor j

mesh grid subdomain
of processor i

of processor h
particle subdomain

particle subdomain
of processor i

of processor i
mesh grid subdomain

Figure 5: Illustration of particle and mesh grid subdomains in independent partition strategy.

Scalable implementation of the PIC problem for a large number of processors requires that

load balance be achieved in all phases. The computational load in each phase is large enough

that a load imbalance in any phase could become a bottleneck. For this reason we believe that

scalable implementation of PIC codes would require using the direct Lagrangian method and an

independent partitioning strategy that keeps the computation load, particles, and grid points

strictly balanced. Of course, careful attention must be paid to the communication cost, else it

could become a bottleneck.

We next describe a detailed model of the overall cost of the communication generated and

strategies on how to minimize this cost while maintaining the load balance in the computation

required for all four phases.

3.2 Independent partitioning

Figure 5 illustrates cases that may arise when the particle array and the grid array are mapped

using independent partitioning strategy. Figure 5(a) shows the relative positions of two subdo-

mains corresponding to processor i. The particle subdomain corresponds to a convex hull of all

the particles assigned to a given processor (this convex hull typically expands as the particles

move, assuming the assignment of the particles remains static). The area of particle subdomain

outside the mesh grid subdomain represents data to be sent to other processors during the scatter

phase. In the gather phase, a processor receives updates from those processors whose mesh grid

subdomains are overlapped with the particle subdomain of the receiving processor. Figure 5(b)

illustrates that processor i will receive messages from processors h, j, and k in the scatter phase.

On the contrary, in the gather phase processors h, j, and k will receive messages from processor i.

Further, one can assume that the amount of communication corresponds to the number of unique

7

mesh grid subdomain particle subdomain
of processor iof processor i

Figure 6: Ghost grid points for processor i.

points of the grid which overlap with the particle domain of another processor. This can be done

by sending a sum of all the values and is discussed in detail in the next section.

Ideal partitioning of the two domains should be such that two subdomains for every processor

overlap as much as possible. Clearly, in a highly nonhomogeneous distribution two subdomains

for a processor may not overlap at all, as shown in Figure 5(c). Maximizing this overlap can be

achieved in two ways:

1. Distribute particles such that particles within a subdomain are as spatially close to each

other as possible.

2. Align the particle and mesh subdomains with each other such that the overlaps between

domains assigned to the same processors are close to each other.

In this paper we show that Hilbert index-based mappings of particles can be used to achieve these

two properties simultaneously. Since grid and particle subdomains are partitioned independently

and may not be fully overlapped (Figure 5(a)), ghost grid points are introduced here to store

the particles' contributions to their grid points, which belong to other processors.

The PIC problem uses indirectly indexed arrays. Figure 7 gives an example of indirect in-

dexing where the access pattern of array x is determined by the elements of array a. Several

communication optimizations can be performed to minimize overhead [6]:

Removal of duplicated accesses | For each execution loop, the same o�-processor data may

be accessed multiple times, but only a single copy of that data can be fetched from an

o�-processor. The approach to minimize the communication cost by dividing the particle

domain into compact subdomains generates duplicated data accesses. Removing duplicates

can be done using a hash table [7] or a direct address table. Using a direct address table saves

search time for checking duplicated data accesses, but takes memory space proportional to

the number of mesh grid points. Figure 8 shows the use of a hash table and a direct address

8

processor 0

0 1 2 3

0 1 3

0 1 2 3

4

2local index :

integer array a

local index :

array y

global index :

array x

3 1

+ + + +

processor 1

0 1 2 3

6 4 0

0 1 2 3

5 6 7 8 9

4

4 4

+

5 7 5

4 4

9

[loops in each processor]

for i 0 to 5

x[a[i]] x[a[i]] + y[i]

Figure 7: An example of using an indirect indexed array.

table to remove duplicated o�-processor accesses of the example from Figure 7. For this

particular problem, the size of the mesh grids is small enough that a direct address table

can be used to improve performance. It is worth noting that the PIC problem requires the

use of this table for several hundreds of iterations, and hence the initialization cost of this

table for a direct hash-based method can be ignored.

Communication coalescing | To reduce startup time, all data destined for the same proces-

sor should be collected into a single message.

4 Modeling the communication and computation time

We model a coarse-grained parallel machine as follows. A coarse-grained machine consists of sev-

eral processors connected by an interconnection network. Rather than make speci�c assumptions

about the underlying network, we assume a two-level model of computation. The two-level model

assumes a �xed cost for an o�-processor access, independent of the distance between the com-

municating processors. A unit computation local to a processor has a cost of �. Communication

between processors has a start-up overhead of � , while the data transfer rate is 1

�
. For our com-

plexity analysis we assume that � and � are constant and independent of the link congestion and

distance between two processors. These assumptions closely model the behavior of the CM-5 on

which our experimental results are presented. Although our algorithms are analyzed under these

assumptions, most of them are architecture-independent and should be e�ciently implementable

on meshes and hypercubes.

9

addr = 0
proc = 1

5
y[1]

7

addr = 2
proc = 1 y[3]

7

addr = 2
proc = 1 y[3]

addr = 0
proc = 1

5
y[1] + y[4]

addr = 0
proc = 1

5
y[1]

loop 1 :

loop 3 :

loop 4 :

hash table

hash table

hash table

y[1]
4

proc = 0
addr = 4

4
proc = 0
addr = 4

y[1] + y[2]

4
proc = 0
addr = 4

y[1] + y[2] y[3]proc = 0
addr = 0

0

loop 1 :

loop 2 :

loop 3 :

hash table

hash table

hash table

hash table

processor 1processor 0

0 1 2 3 4 5 6 7 8 9

y[1]ghost grid :

global index

direct address table :

loop i = 1 :

y[1]
+

y[2]

0 1 2 3 4 5 6 7 8 9

ghost grid :

global index

direct address table :

loop i = 2 :

0 1 2 3 4 5 6 7 8 9

y[1]
+

y[2]

ghost grid :

global index

direct address table :

y[3]

loop i = 3 :

0 1 2 3 4 5 6 7 8 9

y[1]ghost grid :

global index

direct address table :

loop i = 3 :

y[3]

0 1 2 3 4 5 6 7 8 9

y[1]ghost grid :

global index

direct address table :

loop i = 1 :

0 1 2 3 4 5 6 7 8 9

y[1]
+

y[4]

ghost grid :

global index

direct address table :

y[3]

loop i = 4 :

direct address table

processor 0 processor 1

Figure 8: Using hash table and direct address table to remove duplicated o�-processor data

references in Figure 7.

10

Here we give a general time complexity analysis of the parallel PIC algorithm using the direct

Lagrangian method, and the computational mesh is distributed over all processors. This analysis

is developed for a two-dimensional case, and the three-dimensional case is similar. In this paper

the particle's cell refers to the cell that encloses the particle. The following notation is used:

P : Total number of processors.

n: Total number of particles.

m: Total number of mesh grid points.

lgrid: Data size of one mesh grid point.

Scatter phase For each of the n

p
particles, the calculations on each of its four vertex grid points

are the same, which include: (1) �nding the global index of the vertex grid point to see if it is

an o�-processor access; (2) �nding the particle weight at the vertex grid point by interpolating

its relative spatial position; and (3) according to the weight, summing the particle's contribution

to the current vertex grid point. Let Ts comp be the computation time spent by a particle on

one of its four vertex grid points; then the computation time for each processor in the scatter

phase is 4 � n

p
� Ts comp. The communication cost is determined by the number of messages to

be sent/received and their sizes. The number of messages to be sent is the number of processors

whose mesh subdomains are covered by the ghost grid points, and the number of messages received

is the number of other processors whose ghost grid points overlap with the mesh subdomain of

the receiving processor. Both these numbers have an upper bound of p � 1. The total amount

of outgoing/incoming data depends on the number of ghost grid points whose upper bound is

u = min(m�
m

p
; 4 � n

p
). Therefore, the upper bound of time spent in the scatter phase is

Tscatter � 4 �
n

p
� Ts comp + (p� 1) � � + u � lgrid � �:

Field solve phase Since a �nite di�erence method is used to solve Maxwell's equations on the

mesh grids, each grid point needs data from its four neighboring grid points. Only the grid points

on the boundaries of the submesh in a processor will access data from the neighboring processors.

Let Tf comp be the computation time spent for updating grid point data and assume that the

mesh is square and the number of processors, p, is also square. The message size along each of

the four neighbors is
p
mp
p
� lgrid. The execution time of the �eld solve phase is

Tfields =
m

p
� Tf comp + 4 � � + 4 �

r
m

p
� lgrid � �:

Gather and push phase Every particle in the gather phase gathers the electric and magnetic

�eld data from the four vertex grid points. The same ghost grid points generated in the scatter

phase are used here to carry the necessary o�-processor �eld data. The communication behavior

is just the inverse of the scatter phase, except that two �elds, E and B, instead of one (charge

11

contributions) are the objects to be transfered among processors. Let Tg comp be the computation

time spent on a particle to add the �elds' data from one of its four vertex grid points, and the

execution time for each processor in the gather phase is 4 � n
p
� Ts comp. Therefore,

Tgather � 4 �
n

p
� Tg comp + (p� 1) � � + 2 � u � lgrid � �:

Since the timing analysis is based on the direct Lagrangian method in which particles stay in

the same processor during the evolution, the push phase has no interprocessor communication

cost. Therefore, the time complexity of the parallel PIC algorithm is

Ttotal � 4 �
n

p
� Ts comp + (p� 1) � � + u � lgrid � �

+
m

p
� Tf comp + 4 � � + 4 �

r
m

p
� lgrid � �

+ 4 �
n

p
� Tg comp + (p� 1) � � + 2 � u � lgrid � �

+
n

p
� Tpush:

5 Particle distribution, redistribution and alignment with mesh

Since particles do not migrate between processors when using the direct Lagrangian method, as the

system evolves the particle subdomain may extend and overlap with more mesh grid subdomains

belonging to non-neighboring processors. When this occurs, the interprocessor communication

cost will increase and degrade the whole simulation performance. Thus, after several time steps,

it is necessary to redistribute the particles so that the particle subdomain of each processor is

spatially coupled with its mesh subdomain and the interprocessor communication decreases.

In addition to maintaining an approximately equal number of particles in each processor for

the next step of simulation, the results of the redistribution also have to align the mesh grid and

overlapped particle subdomains as well as possible. The interprocessor communication cost will

thus be reduced by placing particles in processors that are close to the processors holding the

grids that make up the vertices of their cells.

5.1 Hilbert index-based particle distribution

The goal is to partition the particle array such that spatially contiguous particles are assigned to

a given processor. Row-major indexing and Hilbert indexing are two of the several ways to index

vertices in a two-dimensional grid. Three indexing schemes are shown in Figure 9 for a graph in

which the set of vertices are arranged in a grid of size 8� 8. Row-major indexing orders vertices

such that if two points are along the same row, their indices are close to each other. However,

the same property is not maintained along the other dimension. Hilbert indexing maintains the

above property along both dimensions. This indexing scheme can be generalized to n-dimensions

and used to convert an n-dimensional index into a one-dimensional index such that proximity in

12

1 2 30 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54

56 57 58 59 60 61 62 63

55

(a)

1 2 30 4 5 6 7

16 17 18 19 20 21 22 23

32 33 34 35 36 37 38 39

48 49 50 51 52 53 54 55

(b)

5657585960616263

4041424344454647

2425262728293031

15 891011121314

0

1 2

3 4 5

67

8 9

101112

1314

15

16 17

1819

20

21 22

23 24

25 26

27

2829

30 31 32 33

3435

36

37 38

39 40

41 42

43

4445

46 47

48

4950

515253

54 55

5657

58 59 60

61 62

63

(c)

Figure 9: Three indexing schemes applied on a two-dimensional 8� 8 mesh grid. (a) Row major

array indexing, (b) row-major snakelike array indexing, and (c) Hilbert indexing.

the n-dimensions is generally maintained. Index-based algorithms for partitioning graphs have

been described in [11].

For particle distribution in the PIC problem, we �rst apply the Hilbert index scheme to all cells

in the mesh and to addresses of processors. An example of indexing 64 cells on a two-dimensional

8 � 8 mesh is given in Figure 10. When assigning each cell sub-block to the corresponding

processor, cells i and i+1 are assigned to the same or adjacent processors, and each processor has

a spatially contiguous cell subdomain assigned to it. In addition, cells in a processor are spatially

as close to each other as their numerical indices. After indexing cells, we assign particles the same

indices as the cells where they lie and sort particles in an increasing order based on the assigned

indices. Since particles are arranged with their cells, the particle subdomain assigned in each

processor also maintains the property of spatial contiguity. Therefore, the particle distribution

not only becomes as simple as a linear alignment of the particle array, but also maintains a

property of spatial overlapping between particle and mesh subdomain in each processor. The

Hilbert index-based particle distribution algorithm has two major parts:

Particle indexing | Each particle is assigned an index of its global cell number, which is

arranged using a Hilbert index-based order.

Sorting | The particles are sorted based on the above indices and the global particle array is

distributed equally among all processors in an increasing indexing order. Several algorithms

are available in the literature for parallel sorting [2] [12]. A sample-based sorting scheme

can be used e�ciently to perform the distribution by using an index-based method [11].

For close to uniform distribution, particle subdomains are generally aligned to their mesh

subdomains because each particle and its cell have the same index. Assuming mesh applied on

the problem space is regular, we divide the mesh into submeshes whose shapes are also regular. For

13

0 1 14 15

3 2 13 12

11

1065 9

874

0

1 2

3 4 5

67

8 9

101112

1314

15

16 17

1819

20

21 22

23 24

25 26

27

2829

30 31 32 33

3435

36

37 38

39 40

41 42

43

4445

46 47

48

4950

515253

54 55

5657

58 59 60

61 62

63

processor addresses cell indices

Figure 10: Hilbert indexing scheme is applied on 16 processor addresses and 64 cells in a mesh

where each sub-block contains 4 cells and is corresponding to a processor.

example in a 2-dimensional case, a rectangular mesh is divided into smaller square or rectangular

subdomains that are distributed among processors (see Figure 10). Since the Hilbert indexing

scheme can keep indices spatially close to each other along multidimensions, we apply it on

mesh and divide the mesh by sorting the indices among processors, which produces the mesh

subdomains with shapes close to rectangular or square. The same results can be generated by

applying the Hilbert indexing scheme on particles, obtaining particle subdomains with nearly

rectangular or square shapes. For irregular distribution, maintaining an approximately equal

number of particles among processors may cause particle subdomains to overlap with more non-

neighboring mesh subdomains. In this case, the communication cost between non-neighboring

processors dramatically increases, no matter what distribution strategy was chosen. However,

applying the Hilbert indexing scheme can keep particles close to each other within a particle

subdomain and thus the area occupied by the particle subdomain becomes smaller. The number

of possible ghost grid points is reduced and so is the number of o�-processor data accesses.

Another advantage of using Hilbert ordering is that the mapping of the next redistribution

can be achieved very quickly. We adapted the bucket-based incremental sorting algorithm [10] to

redistribute particles and to maintain its sorted increasing order (Figure 12). A sorted local par-

ticle array is divided equally into L buckets, and L�1 boundaries are obtained for the next stage.

A global concatenation operation is performed in line 1 of Bucket incremental sorting() to

obtain the index boundaries of all processors at the previous sorting. Each element of the local

particle array can be classi�ed into three categories, depending on whether the index belongs to

the same bucket as the previous, to a di�erent bucket in the same processor, or to another pro-

cessor. An all-to-many communication subroutine in line 20 is employed to move particles whose

indices belong to other processors to their destinations. Lines 22{23 perform the sorting in each

of the buckets and then merge with the received particles in line 24. An order-maintaining load

balance operation moves extra particles to appropriate destinations such that the global order of

concatenated particle array does not change [10]. Particle redistribution achieves better results

by using the incremental sorting algorithm than by using the distribution algorithm at each step

14

20

0

40

60

80

100

120

140

160

0 50 100 150 200 250 300 350 400 450 500

redistribution algorithm

distribution algorithm

tim
e

in
 s

ec
on

ds

number of executations

Figure 11: The timing results of distribution and redistribution algorithm.

of redistribution (Figure 11).

5.2 Decision policy for particle redistribution

This section outlines two redistribution decision policies that determine when particles need to

be redistributed in order to decrease communication costs. The periodic redistribution policy

redistributes particles in a �xed number of time steps, while the dynamic one redistributes particles

when a certain criterion is satis�ed.

Since the periodic redistribution method redistributes particles at intervals of a �xed number of

steps, it is insensitive to variations in communication cost requirements. In addition, the periodic

redistribution method requires a potentially impractical pre-runtime analysis to determine an

optimal periodicity. The Stop-At-Rise (SAR) remapping decision policy was introduced in [9]. The

SAR heuristic trades the cost of problem remapping against time wasted due to load imbalance.

The SAR can also be applied on a PIC algorithm which uses the Lagrangian particle movement

strategy to trade the cost of particle redistribution against the increased communication time

without redistribution. Since computational loads across processors are strictly balanced, the

increase in execution time for each iteration reects the increase in communication time. We

assume the communication time increases linearly as the number of iterations goes up since the

last redistribution. Suppose the particles were last redistributed at iteration i0 and the current

iteration is i1, let t0 and t1 represent the execution time at iterations i0 and i1, respectively. If the

redistribution algorithm is triggered at i1, then the execution time at i1 + 1 is expected to be t0

and the expected time saved according to this redistribution will be (t1� t0) � (i1� i0) (Figure 13).

15

Particle redistribution()

1 Hilbert base indexing(particle)

2 Bucket incremental sorting(particle)

3 Order maintain load balance(particle)

4 span
n

L�p

5 for i 0 to L

6 local bound[i] index of particle[i � span]

Bucket incremental sorting(particle)

1 global bound global concatenate local bound[L� 1]

2 span
n

L�p

3 for i 0 to n

p
� 1

4 index index of particle[i]

5 case index of

6 local bound[i

span
] � index � local bound[i

span
+ 1] :

7 add particle[i] to self list[i

span
]

8 global bound[my id-1] � index � global bound[my id] :

9 bucket num Binary search (index, local bound)

10 add particle[i] to self list[bucket num]

11 o�-processor :

12 dest Binary search (index, global bound)

13 add particle[i] to send list[dest]

14 table[my id, dest] table[my id, dest] +1

15 table global concatenate the my id
th row of table

16 for i 0 to p� 1

17 send addr[i] send list[i]

18 for i 0 to p� 1

19 recv addr[i] allocate memory of size table[i, my id] to store the message from processor i

20 All to many COMM (table, send addr, recv addr)

21 locally sorts recv list based on its particle indices

22 for i 0 to L� 1

23 locally sorts bucket self list[i] based on its particle indices

24 particle merge self list and recv list

Figure 12: Particle redistribution algorithm.

16

t i

t

time

i
number of iterations

i

t t i(0

1

)(11 -

0

0)
1

0

-

Figure 13: The condition to trigger the particle redistribution.

The shaded area is the time saved by executing particle redistribution. Although the execution

time of particle redistribution is di�erent each time, we adopt the previous redistribution time at

i0, Tredistribution as the expected time for the current redistribution. It is worthwhile to trigger

the particle redistribution subroutine when the expected saved time is larger than the time spent

on the redistribution itself. Hence the condition that triggers a particle redistribution is:

(t1 � t0) � (i1 � i0) � Tredistribution: (1)

6 Experimental results

We present results of the simulation of a parallel PIC code for two di�erent cases. The �rst one

consists of simulation of uniformly distributed particles on a two-dimensional problem domain.

The second case consists of irregularly distributed particles that are concentrated in the center

of the domain (Figure 15). The distribution of particles chosen is highly irregular in order to

study the e�ect of such distribution on the performance of our methods. We expect that most

real applications will have intermediate distributions.

6.1 Static vs. periodic redistribution

We compared the performance of static and periodic particle redistribution strategies on two-

dimensional PIC codes for a 32-node CM-5. Each simulation performed 2000 iterations. The

periods of redistribution chosen were 200, 100, 50, 25, 10 and 5 loops. Figure 16 provides the

execution time of three di�erent pairs of numbers of grid points and particles. These results

17

initial distribution after 200 iterations after 2000 iterations

Figure 14: Uniform distribution.

initial distribution after 200 iterations after 2000 iterations

Figure 15: Irregular distribution.

indicate that all the periodic redistribution methods signi�cantly outperform static ones. The

period for which the best performance was achieved depended on the distribution of particles as

well as other parameters.

The execution time, maximum amount of data sent or received by any processor, and number

of messages sent or received by any processor are shown in Figures 17, 18, and 19 respectively. All

of these correspond to simulation of 32768 particles with irregular distribution on 32 processors.

The size of the mesh grid was �xed at 128 � 64 mesh. This corresponds to an average of 4

particles per cell. These graphs show that periodic redistribution leads to reduction in all the

above parameters.

18

static 200 100 50 25 10 5
Number of iterations between redistributions

0

100

200

300

400

T
im

e
in

 s
ec

on
ds

uniform distribution: mesh = 128 x 64, particles = 8192

scatter

fields

gather

push

redistr.

static 200 100 50 25 10 5
Number of iterations between redistributions

0

200

400

600

800

1000

T
im

e
in

 s
ec

on
ds

uniform distribution: mesh = 128 x 64, particles = 32768

scatter

fields

gather

push

redistr.

static 200 100 50 25 10 5
Number of iterations between redistributions

0

1000

2000

3000

4000

T
im

e
in

 s
ec

on
ds

uniform distribution: mesh = 256 x 128, particles = 131072

scatter

fields

gather

push

redistr.

static 200 100 50 25 10 5
Number of iterations between redistributions

0

100

200

300

400

T
im

e
in

 s
ec

on
ds

irregular distribution: mesh = 128 x 64, particles = 8192

scatter

fields

gather

push

redistr.

static 200 100 50 25 10 5
Number of iterations between redistributions

0

200

400

600

800

1000

T
im

e
in

 s
ec

on
ds

irregular distribution: mesh = 128 x 64, particles = 32768

scatter

fields

gather

push

redistr.

static 200 100 50 25 10 5
Number of iterations between redistributions

0

1000

2000

3000

4000

T
im

e
in

 s
ec

on
ds

irregular distribution: mesh = 256 x 128, particles = 131072

scatter

fields

gather

push

redistr.

Figure 16: Total execution time for 2000 iterations on 32 nodes.

19

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.54

0.52

0.5

0.48

0.46

0.44

0.42

0.4

0.38

0.36

0.34

0.32

Number of iterations

T
im

e
in

 s
ec

on
ds

without-redistribution
redistribute particles every 200 iterations

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of iterations

T
im

e
in

 s
ec

on
ds

without-redistribution
redistribute particles every 50 iterations

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of iterations

T
im

e
in

 s
ec

on
ds

without-redistribution
redistribute particles every 100 iterations

Figure 17: Execution time for each iteration. (Irregular distribution, mesh = 128� 64, particles

= 32768, processors = 32)

20

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of iterations

Number of iterations

Number of iterations

Number of iterations

Number of iterations

Number of iterations

without-redistribution
redistribute particles every 200 iterations

without-redistribution
redistribute particles every 200 iterations

without-redistribution
redistribute particles every 100 iterations

without-redistribution
redistribute particles every 100 iterations

without-redistribution
redistribute particles every 50 iterations

without-redistribution
redistribute particles every 50 iterations

M
ax

. a
m

ou
nt

 o
f

da
ta

 s
en

t
M

ax
. a

m
ou

nt
 o

f
da

ta
 s

en
t

M
ax

. a
m

ou
nt

 o
f

da
ta

 s
en

t

M
ax

. a
m

ou
nt

 o
f

da
ta

 r
ec

ei
ve

d
M

ax
. a

m
ou

nt
 o

f
da

ta
 r

ec
ei

ve
d

M
ax

. a
m

ou
nt

 o
f

da
ta

 r
ec

ei
ve

d

Figure 18: Maximum amount of data sent and received in the scatter phase. (Irregular distribu-

tion, mesh = 128� 64, particles = 32768, processors = 32)

21

0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0

5

10

15

20

25

30

35

0 200 400 600 800 1000 1200 1400 1600 1800 2000
5

10

15

20

25

30

35

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of iterations

Number of iterations

Number of iterations

Number of iterations

Number of iterations

Number of iterations

without-redistribution
redistribute particles every 200 iterations

without-redistribution
redistribute particles every 200 iterations

without-redistribution
redistribute particles every 100 iterations

without-redistribution
redistribute particles every 100 iterations

without-redistribution
redistribute particles every 50 iterations

without-redistribution
redistribute particles every 50 iterations

M
ax

. n
um

be
r

of
 m

es
sa

ge
s

se
nt

M
ax

. n
um

be
r

of
 m

es
sa

ge
s

se
nt

M
ax

. n
um

be
r

of
 m

es
sa

ge
s

se
nt

M
ax

. n
um

be
r

of
 m

es
sa

ge
s

re
ce

iv
ed

M
ax

. n
um

be
r

of
 m

es
sa

ge
s

re
ce

iv
ed

M
ax

. n
um

be
r

of
 m

es
sa

ge
 r

ec
ei

ve
d

Figure 19: Maximum number of messages sent and received in the scatter phase. (Irregular

distribution, mesh = 128� 64, particles = 32768, processors = 32)

22

40 20 10 5 dynamic
Number of iterations between redistributions

0

20

40

60

80

100

T
im

e
in

 s
ec

on
ds

uniform distribution: mesh = 256 x 128, particles = 32768

scatter

fields

gather

push

redistr.

40 20 10 5 dynamic
Number of iterations between redistributions

0

20

40

60

80

100

120

140

160

T
im

e
in

 s
ec

on
ds

uniform distribution: mesh = 256 x 128, particles = 65536

scatter

fields

gather

push

redistr.

40 20 10 5 dynamic
Number of iterations between redistributions

0

40

80

120

160

200

240

T
im

e
in

 s
ec

on
ds

uniform distribution: mesh = 512 x 256, particles = 65536

scatter

fields

gather

push

redistr.

40 20 10 5 dynamic
Number of iterations between redistributions

0

100

200

300

400

T
im

e
in

 s
ec

on
ds

uniform distribution: mesh = 512 x 256, particles = 131072

scatter

fields

gather

push

redistr.

40 20 10 5 dynamic
Number of iterations between redistributions

0

20

40

60

80

100

T
im

e
in

 s
ec

on
ds

irregular distribution: mesh = 256 x 128, particles = 32768

scatter

fields

gather

push

redistr.

40 20 10 5 dynamic
Number of iterations between redistributions

0

20

40

60

80

100

120

140

160

T
im

e
in

 s
ec

on
ds

irregular distribution: mesh = 256 x 128, particles = 65536

scatter

fields

gather

push

redistr.

40 20 10 5 dynamic
Number of iterations between redistributions

0

40

80

120

160

200

240

T
im

e
in

 s
ec

on
ds

irregular distribution: mesh = 512 x 256, particles = 65536

scatter

fields

gather

push

redistr.

40 20 10 5 dynamic
Number of iterations between redistributions

0

100

200

300

400

T
im

e
in

 s
ec

on
ds

irregular distribution: mesh = 512 x 256, particles = 131072

scatter

fields

gather

push

redistr.

Figure 20: A comparison of periodic and dynamic redistribution for 200 iterations.

23

number of processors

distribution mesh particles indexing 32 64 128

Hilbert 72.47 38.77 19.83
32768

snake 72.74 39.66 20.50
256� 128

Hilbert 132.65 71.67 36.44
65536

snake 133.76 72.74 37.64
uniform

Hilbert 169.85 91.51 45.58
65536

snake 170.41 91.03 46.57
512� 256

Hilbert 292.55 157.15 79.26
131072

snake 294.87 159.09 80.82

Hilbert 74.88 39.61 20.92
32768

snake 74.89 39.72 20.81
256� 128

Hilbert 138.30 74.06 38.47
65536

snake 139.15 74.25 38.59
irregular

Hilbert 176.95 92.96 47.83
65536

snake 178.34 94.44 48.81
512� 256

Hilbert 292.55 157.15 79.26
131072

snake 294.87 159.09 80.82

Table 2: Computational time (in seconds) of 200 iterations.

6.2 Periodic vs. dynamic redistribution

The dynamic redistribution method assumes linearly increasing execution time and attempts to

reduce communication overhead by trading the redistribution cost and the increased execution

cost since the last redistribution. Figure 20 compares this strategy for simulation of 200 iterations

on the 32-node CM-5. Choosing an optimal period for the periodic redistribution is di�cult.

Increasing the frequency has an adverse e�ect on the total time (execution cost + redistribution

cost). The performance of dynamic redistribution is close to the periodic redistribution with the

best period. Since this strategy uses runtime information such as redistribution cost, execution

cost right after the last distribution and execution time of the current iteration, it succeeds in

adapting to the system behavior without any prior analysis.

6.3 Hilbert vs. snakelike indexing

We compared the performances of Hilbert and snakelike indexing schemes for partitioning parti-

cles. Dynamic redistribution strategy was used for both indexing schemes. Simulations for 200

iterations were performed on uniformly and irregularly distributed particles. Tables 2 shows the

computational time of the 200 simulations. The corresponding overhead is given in Figures 21

and 22.

The overhead includes particle redistribution cost and communication cost in the phases of

24

scattering, �eld solving, and gathering. The amount of overhead becomes an indicator of redis-

tribution quality for di�erent indexing methods. The results presented here show that:

1. The Hilbert indexing scheme is better than snakelike indexing in all cases except for the case

when the number of particles per processor are very small (32K particles on 128 processors

with irregular distribution). It assigns particles spatially close to each other along multiple

dimensions to reduce the o� processor accesses. The subdomains created by a correspond-

ing snakelike ordering are rectangular in nature with high aspect ratios. This results in

boundaries with larger perimeters and greater communication cost.

2. Reasonable alignment between the mesh and particle arrays can be achieved by using the

cell information of a particle in determining its spatial index. Although no explicit measure-

ments were provided to demonstrate this, our experimental results show that the resulting

communication remains the same or decreases with the increase in number of processors.

The amount of decrease in overhead is larger for a larger number of particles. The above

observation is true for uniform as well as irregular distributions.

3. When the number of particles per processor remains the same, similar e�ciencies are main-

tained for a particular distribution (Table 3). For example, 32K particles on 32 processors

and 64K particles on 64 processors (for a 256 � 128 mesh) have similar e�ciencies. The

same results are obtained in case of 64K particles on 64 processors and 128K particles on 128

processors (for a 512� 256 mesh). Thus, assuming that the granularity of computation per

processor remains the same, the indexing schemes scale extremely well for a large number

of processors.

4. As discussed in Section 5, the Hilbert indexing scheme allows for using an incremental

sorting algorithm to reduce the cost of redistribution. The total cost of redistribution

using a Hilbert-based strategy was lower than snakelike-based ordering in all cases. This

suggests the number of redistributions required when using a mapping which takes multiple

dimensions into account is preferable. Further, the overhead of redistribution accounted for

less than 20% of the total overhead for 128 processors.

The results in Table 3 demonstrate that good e�ciencies were achieved for 128 processors,

even for irregular distributions. Clearly, the CM-5 (without vector units) is not representative of

a typical parallel machine, because the ratio of unit computation to unit communication is small.

These e�ciencies would be much smaller for a machine with more powerful nodes relative to the

communication network. Maintaining similar e�ciencies on such a machine would require a larger

number of particles per processor.

25

number of processors

distribution mesh particles 32 64 128

32768 0.91 0.88 0.78
256� 128

65536 0.95 0.92 0.87
uniform

65536 0.95 0.93 0.88
512� 256

131072 0.96 0.95 0.91

32768 0.84 0.79 0.72
256� 128

65536 0.89 0.84 0.79
irregular

65536 0.83 0.78 0.72
512� 256

131072 0.88 0.82 0.77

Table 3: E�ciency of Hilbert indexing scheme.

7 Conclusions

The parallelization of PIC problems requires careful partitioning of particle and mesh domains to

balance the computational load and minimize communication cost. We have presented a detailed

analysis of the communication cost and computational load imbalance for several partitioning

strategies. We have demonstrated that using an independent strategy can maintain load balance

and keep the total communication cost at an acceptable level. We also demonstrated that using

a Hilbert index-based scheme allows for fast partitioning and repartitioning of particles, while

maintaining proximity of particles along more than one dimension.

8 Acknowledgments

We would like to thank David Walker for providing the sequential PIC codes. We would also

like to thank the Army High Performance Computing Center at the University of Minnesota and

the Northeast Parallel Architectures Center at Syracuse University for providing access to their

CM-5. We would like to thank Elaine Weinman for proofreading this paper.

This work was supported in part by NSF under ASC-9213821, ARPA under contract #DABT63-

91-C-0028, NAG-1485, and ONR under contract #N00014-93-1-0158. The content of the infor-

mation does not necessarily reect the position or the policy of the United States government,

and no o�cial endorsement should be inferred.

References

[1] C. Birdsall and A. Langdon, Plasma Physics Via Computer Simulation. McGraw-Hill, New

York, 1985.

26

32 64 128
number of processors

0

2

4

6

8

10
T

im
e

in
 s

ec
on

ds
uniform distribution: mesh = 256 x 128, particles = 32768

scatter

fields

gather

redistr.

Hilbert

snake

Hilbert

snake

Hilbert

snake

32 64 128
number of processors

0

2

4

6

8

10

12

T
im

e
in

 s
ec

on
ds

uniform distribution: mesh = 512 x 256, particles = 65536

scatter

fields

gather

redistr.

Hilbert

snake

Hilbert

snake

Hilbert

snake

32 64 128
number of processors

0

2

4

6

8

10

12

T
im

e
in

 s
ec

on
ds

uniform distribution: mesh = 256 x 128, particles = 65536

scatter

fields

gather

redistr.Hilbert

snake

Hilbert

snake

Hilbert

snake

32 64 128
number of processors

0

2

4

6

8

10

12

14

16

18

20

T
im

e
in

 s
ec

on
ds

uniform distribution: mesh = 512 x 256, particles = 131072

scatter

fields

gather

redistr.Hilbert

snake

Hilbert

snake

Hilbert

snake

Figure 21: Overhead (execution time | computation time) of 200 iterations for uniform distri-

bution.

[2] M. Bolorforoush, N. Coleman, D. Quammen, and P. Wang, \A Parallel Randomized Sorting

Algorithm," Proceedings of the 1993 International Conference on Parallel Processing, August

1992.

[3] I. Gledhill and L. Storey, \Particle Simulation of Plasmas on the Massively Parallel Proces-

sor," Proceedings of the First Symposium on Frontiers of Massively Parallel Computation,

pp. 37{46, 1987.

[4] R. Hockney and J. Eastwood, Computer Simulation Using Particles. Adam Hilger, Bristol,

England, 1988.

[5] T. Hoshino, R. Hiromoto, S. Sekiguchi, and S. Majima, \Mapping Schemes of the Particle-

in-Cell Method Implementation on the PAX Computer," Parallel Computing, vol. 9, pp.

53{75, 1988.

[6] Y. Hwang, R. Das, J. Saltz, B. Brooks, and M. Hodoscek, \Parallelizing Molecular Dynam-

27

32 64 128
number of processors

0

2

4

6

8

10

12

14

16

18

20
T

im
e

in
 s

ec
on

ds
irregular distribution: mesh = 256 x 128, particles = 32768

scatter

fields

gather

redistr.

Hilbert

snake

Hilbert

snake

Hilbert snake

32 64 128
number of processors

0

10

20

30

40

50

T
im

e
in

 s
ec

on
ds

irregular distribution: mesh = 512 x 256, particles = 65536

scatter

fields

gather

redistr.

Hilbert
snake

Hilbert

snake

Hilbert
snake

32 64 128
number of processors

0

4

8

12

16

20

24

T
im

e
in

 s
ec

on
ds

irregular distribution: mesh = 256 x 128, particles = 65536

scatter

fields

gather

redistr.

Hilbert

snake

Hilbert

snake

Hilbert
snake

32 64 128
number of processors

0

10

20

30

40

50

60

70

T
im

e
in

 s
ec

on
ds

irregular distribution: mesh = 512 x 256, particles = 131072

scatter

fields

gather

redistr.

Hilbert

snake

Hilbert

snake

Hilbert

snake

Figure 22: Overhead (execution time | computation time) of 200 iterations for irregular distri-

bution.

ics Programs for Distributed Memory Machines: An Application of the CHAOS Runtime

Support Library," Technical CS-TR-3374 and UMIACS-TR-94-125 Report CS-TR-3374 and

UMIACS-TR-94-125, UMD, November 1994.

[7] Y. Hwang, B. Moon, S. Sharma, R. Das, and J. Saltz, \Runtime Support to Parallelize

Adaptive Irregular Programs," Proceedings of the Workshop on Environments and Tools for

Parallel Scienti�c Computing. SIAM, May 1994.

[8] O. Lubeck and V. Faber, \Modeling the Performance of Hypercubes: A Case Study Using

the Particle-in-Cell Application," Parallel Computing, vol. 9, pp. 37{52, 1988.

[9] D. Nicol and J. Saltz, \Dynamic Remapping of Parallel Computations with Varying Resource

Demands," IEEE Trans. on Computers, vol. 37, no. 9, pp. 1073{1087, September 1988.

[10] C. Ou and S. Ranka, \Parallel Remapping Algorithms for Adaptive Problems," Frontiers'

95, pp. 367{374, February 1995.

28

[11] C. Ou, S. Ranka, and G. Fox, \Fast Mapping and Remapping Algorithm for Irregular

and Adaptive Problems," Proceedings of the 1993 International Conference on Parallel and

Distributed Systems, pp. 279{283, Taipei, Taiwan, December 1993.

[12] H. Shi and J. Schae�er, \Parallel Sorting by Regular Sampling," Journal of Parallel and

Distributed Computing, vol. 14, pp. 361{372, 1992.

[13] D. Walker, \Characterizing the Parallel Performance of A Large-Scale, Particle-in-Cell

Plasma Simulation Code," Concurrency: Practice and Experience, vol. 2, no. 4, pp. 257{288,

December 1990.

29

