
HPJava: Data Parallel Extensions to Java

Bryan Carpenter, Guansong Zhang, Geo�rey Fox

Xinying Li, Yuhong Wen

NPAC at Syracuse University

Syracuse, NY 13244

fdbc,zgs,gcf,xli,weng@npac.syr.edu

February 7, 1998

Abstract

We outline an extension of Java for programming with distributed
arrays. The basic programming style is Single Program Multiple Data

(SPMD), but parallel arrays are provided as new language primitives.

Further extensions include three distributed control constructs, the most
important being a data-parallel loop construct. Communications involv-

ing distributed arrays are handled through a standard library of collective

operations. Because the underlying programming model is SPMD pro-
gramming, direct calls to MPI or other communication packages are also

allowed in an HPJava program.

Introduction. This article focuses on the potential of Java as a language

for scienti�c parallel programming. We envisage a framework for parallel com-

puting called HPJava. Here we describe some �rst steps towards a general

framework, making speci�c proposals for the sector of HPJava most directly

related to its namesake: High Performance Fortran. Rather than follow the

HPF model directly, we propose introducing some of the characteristic ideas of

HPF|speci�cally its distributed array model and array intrinsic functions and

libraries|into a basically SPMD programming model. Because the program-

ming model is SPMD, direct calls to MPI or other communication packages

are allowed from the HPJava program. The language outlined here provides

HPF-like distributed arrays as language primitives, and new distributed control

constructs to facilitate access to the local elements of these arrays.

Distributed arrays. HPJava adds class libraries and some additional syntax

for dealing with distributed arrays. Some or all of the dimensions of a these

arrays can be declared as distributed ranges. A distributed range de�nes a

1

range of integer subscripts, and speci�es how they are mapped into a process

grid dimension. It is represented by an object of base class Range.

Process grids|equivalent to processor arrangements in HPF|are described

by suitable classes. A base class Group describes a general group of processes and

has subclasses Procs1, Procs2, . . . , representing one-dimensional process grids,

two-dimensional process grids, and so on. The inquiry function dim returns an

object describing a particular dimension of a grid.
In the example

Procs2 p = new Procs2(3, 2) ;

Range x = new BlockRange(100, p.dim(0)) ;

Range y = new BlockRange(200, p.dim(1)) ;

float [[#,#]] a = new float [[x, y]] on p ;

a is created as a 100 � 200 array, block-distributed over the 6 processes in p.
The Range subclass BlockRange describes a simple block-distributed range of
subscripts|analogous BLOCK distribution format in HPF. The arguments of the
BlockRange constructor are the extent of the range and an object de�ning the
process grid dimension over which the range is distributed. The fragment above
is essentially equivalent to the HPF declarations

!HPF$ PROCESSORS p(3, 2)

REAL a(100, 200)

!HPF$ DISTRIBUTE a(BLOCK, BLOCK) ONTO p

In HPJava the type-signatures and constructors of distributed arrays use double

brackets to distinguish them from ordinary Java arrays. If a particular dimen-

sion of an array has a distributed range, the corresponding slot in the type

signature of the array should include a # symbol. In general the constructor of

the distributed array must be followed by an on clause, specifying the process

group over which the array is distributed (it defaults to the APG, see below).

Distributed ranges of the array must be distributed over distinct dimensions of

this group.
The language provides a library of functions for manipulating its arrays,

closely analogous to the array transformational intrinsic functions of Fortran
90:

float [[#,#]] b = new float [[x, y]] on p ;

HPJlib.shift(b, a, -1, 0, CYCL) ;

float g = HPJlib.sum(b) ;

The shift operation with shift-mode CYCL executes a cyclic shift on the data in

its second argument, copying the result to its �rst argument. The sum operation

simply adds all elements of its argument array. In general these functions imply

inter-processor communication.

2

The on construct and the active process group. Often in SPMD pro-
gramming it is necessary to restrict execution of a block of code to processors
in a particular group p. Our language provides a short way of writing this
construct

on(p) {

...

}

The language incorporates a formal idea of an active process group (APG). At

any point of execution some process group is singled out as the APG. An on(p)

construct speci�cally changes the value of the APG to p. On exit from the

construct, the APG is restored to its value on entry.

Locations and the at construct. Subscripting operations on distributed
arrays are subject to a strict restriction. As already emphasized, the HPJava
model is explicitly SPMD. An array access such as

a [17, 23] = 13 ;

is legal, but only if the local process holds the element in question. The language

provides further constructs to alleviate the inconvenience of this restriction.
The idea of a location is introduced. A location can be viewed as an abstract

element, or \slot", of a distributed range (conversely, a range can be thought
of as a set of locations). An individual location is described by an object of
the class Location. Any location is mapped to a particular slice of a process
grid. The syntax x [n] represents location n in range x. Locations are used to
parametrize a new distributed control construct called the at construct. This is
analogous to on, except that its body is executed only on processes that hold
the speci�ed location. Locations can also be used directly as array subscripts,
in place on integers. The array access above can be safely written as:

Location i = x [17], j = y [23] ;

at(i)

at(j)

a [i, j] = 13 ;

Locations used as array subscripts must be elements of the corresponding ranges

of the array.

Distributed loops. The last and most important distributed control con-
struct in the language is called over. It implements a distributed parallel loop.
The argument of over is a member of the special class Index. This class is a
subclass of Location, so it is syntactically correct to use an index as an array
subscript (the e�ect of such subscripting is only well-de�ned inside an over con-
struct parametrised by the index in question). Here is an example of a pair of
nested over loops:

3

float [[#,#]] a = new float [[x, y]],

b = new float [[x, y]] ;

Index i, j ;

over(i = x | :)

over(j = y | :)

a [i, j] = 2 * b [i, j] ;

The body of an over construct executes, conceptually in parallel, for every

location in the range of its index (or some subrange if a non-trivial triplet is

speci�ed). An individual \iteration" executes on just those processors holding

the location associated with the iteration. Because of the rules about where

an individual iteration iterates, the body of an over can usually only combine

elements of arrays that have some simple alignment relation relative to one

another. The idx member of Range can be used in parallel updates to yield

expressions that depend on global index values.

Figure 1 gives a parallel implementation of Choleski decomposition in the

extended language. The �rst dimension of a is sequential (\collapsed" in HPF

parlance). The second dimension is distributed (cyclically, to improve load-

balancing). This a column-oriented decomposition. The example involves one

new operation from the standard library: the function remap copies the elements

of one distributed array or section to another of the same shape. The two

arrays can have any, unrelated decompositions. In the current example remap

is used to implement a broadcast. Because b has no range distributed over p,

it implicitly has replicated mapping; remap accordingly copies identical values

to all processors. This example also illustrates construction of Fortran-90-like

sections of distributed arrays (using double brackets and triplet subscripts) and

use of non-trivial triplets in the over construct.

Discussion. We have covered the most important language features we pro-

pose to implement. In the context of an explicitly SPMD programming envi-

ronment with a good communication library, we claim these extensions provide

much of the concise expressiveness of HPF, without relying on very sophisti-

cated compiler analysis. The object-oriented features of Java are exploited to

give an elegant parameterization of the distributed arrays in the extended lan-

guage. Because of the relatively low-level programming model, interfacing to

other parallel-programming paradigms is more natural than in HPF.

The language extensions described were devised partly to provide a conve-

nient interface to a distributed-array library developed in the Parallel Compiler

Runtime Consortium (PCRC) project. The HPJava compiler itself is being

implemented initially as a translator to ordinary Java, through a compiler con-

struction framework also developed in the PCRC project. The distributed arrays

of the extended language will appear in the emitted code as a pair|an ordinary

Java array of local elements and a Distributed Array Descriptor object (DAD).

Details of the distribution format, including non-trivial details of global-to-local

4

Procs1 p = new Procs1(P) ;

on(p) {

Range x = new CyclicRange(N, p.dim(0));

float [[,#]] a = new float [[N, x]] ;

float [[]] b = new float [[N]] ; // buffer

Location l ;

Index m ;

for(int k = 0 ; k < N - 1 ; k++) {

at(l = x [k]) {

float d = Math.sqrt(a [k, l]) ;

a [k, l] = d ;

for(int s = k + 1 ; s < N ; s++)

a [s, l] /= d ;

}

HPJlib.remap(b [[k + 1 :]], a [[k + 1 : , k]]);

over(m = x | k + 1 :)

for(int i = x.idx(m) ; i < N ; i++)

a [i, m] -= b [i] * b [x.idx(m)] ;

}

at(l = x [N - 1])

a [N - 1, l] = Math.sqrt(a [N - 1, l]) ;

}

Figure 1: Choleski decomposition.

translation of the subscripts, are managed in the run-time library. Acceptable

performance should nevertheless be achievable, because we expect that in useful

parallel algorithms most work on distributed arrays will occur inside over con-

structs with large ranges. In normal usage, the formulae for address translation

can then be linearized, and non-trivial aspects of address translation (including

array bounds checking) can be amortized in the startup overheads of the loop. If

array accesses are genuinely irregular, the necessary subscripting cannot usually

be directly expressed in our language; subscripts cannot be computed randomly

in parallel loops without violating the SPMD restriction that accesses be local.

This is not regarded as a shortcoming: on the contrary it forces explicit use of

an appropriate library package for handling irregular accesses (such as CHAOS).

Of course a suitable binding of such a package is needed in our language.

References. An extended version of this article, including references, is avail-

able at http://www.npac.syr.edu/projects/pcrc/doc.

5

