
Language Bindings for a Data-Parallel Runtime

Bryan Carpenter Geo�rey Fox Donald Leskiw Xinying Li Yuhong Wen

Guansong Zhang

NPAC at Syracuse University

Syracuse, NY 13244

fdbc,gcf,leskiwd,xli,wen,zgsg@npac.syr.edu

Abstract

The NPAC kernel runtime, developed in the PCRC

(Parallel Compiler Runtime Consortium) project, is

a runtime library with special support for the High

Performance Fortran data model. It provides array

descriptors for a generalized class of HPF-like dis-

tributed arrays, support for parallel access to their ele-

ments, and a rich library of collective communication

and arithmetic operations for manipulating these ar-

rays. The library has been successfully used as a com-

ponent in experimental HPF translation systems. With

prospects for early appearance of fully-featured, e�-
cient HPF compilers looking questionable, we discuss

a class of more easily implementable data-parallel lan-

guage extensions that preserve many of the attractive

features of HPF, while providing the programmer with

direct access to runtime libraries such as the NPAC

PCRC kernel.

1 Introduction

As part of the PCRC [10] project we completed
development of a high-level runtime library for data-
parallel languages [4]. The motivating goal was to sim-
plify translation of High Performance Fortran (HPF)
[6] by providing a coherent interface to the distributed
array descriptors and collective operations needed for
straightforward, e�cient translation of parallel con-
structs like FORALL and array assignments. This goal
was achieved quite successfully, and two experimental
subset HPF translators have used the library to man-
age their communications [13, 7].

Unfortunately it is evident that implementing com-
pilers for a language as complex as full HPF is a
formidable task. On the other hand the runtimes that
have evolved to support HPF and its kin are powerful
and have an underlying elegance, using them without

a compiler|through direct calls from an SPMD pro-
gram written in a standard language|is clumsy and
error prone. This is due in part to the large number
of parameters needed to describe distributed arrays.
We face the possibility that|in the near term future
at least|neither HPF or conventional languages will
permit full exploitation of libraries such as the one de-
veloped in PCRC.

In this paper we discuss possibilities for enhanc-
ing programming languages like Fortran with relatively
simple extensions to support declaration and manipu-
lation of HPF-like distributed arrays. In contrast to
HPF, our extensions assume the programmer speci�es
in full logical detail exactly where computations and
communications are performed. This makes compilers
a much more straightforward proposition. In spite of
this simpli�cation, we argue that|supplemented by a
binding to a suitable collective communication library
such as ours|the resulting hybrid data-parallel/SPMD
programming models can achieve a level of elegance
and expressivity comparable to full HPF.

2 Background: runtime kernel

The kernel of NPAC library is a C++ class library.
It is most directly descended from the run-time li-
brary of an earlier research implementation of HPF [7]
with inuences from the Fortran 90D run-time and the
CHAOS/PARTI libraries [1, 11, 5]. The kernel is cur-
rently implemented on top of MPI. The library design
is solidly object-oriented, but e�ciency is maintained
as a primary goal.

The overall architecture of the library is illustrated
in �gure 1. At the top level there are several compiler-
speci�c interfaces to a common run-time kernel. The
four interfaces shown in the �gure are illustrative.
They include two di�erent Fortran interfaces (used by
di�erent HPF compilers), a user-level C++ interface

PCRC
Java interface

MPI

Distributed data and control

ad++ interface

(Adlib)Kernel run-time

Communication and arithmetic

ranges
Distributed

Groups

Distributed control
‘‘where’’

Process

 ‘‘on’’

SHPF
F90 interface

Distributed Distributed controlIterators on ranges
 Arrays

Random access
schedules

Tree
Schedules

PCRC
F77 interface

reductions
etc

‘‘remap’’, ‘‘shift’’,

schedules
Message

etc
‘‘gather’’/‘‘scatter’’

Figure 1. NPAC runtime architecture

called ad++1, and a Java interface under development.
The development of several top-level interfaces has pro-
duced a robust kernel interface, on which we anticipate
other language- and compiler- speci�c interfaces can be
constructed relatively straightforwardly.

The largest part of the kernel is concerned with
global communication and arithmetic operations on
distributed arrays. These are represented on the right-
hand side of �gure 1. The communication operations
supported include HPF/F90 array intrinsic operations
such as CSHIFT, the function write halo, which up-
dates ghost areas of a distributed array, the function
remap, which is equivalent to a Fortran 90 array as-
signment between two conforming sections of two arbi-
trarily distributed HPF arrays, and various gather- and
scatter- type operations allowing irregular patterns of
data access. Arithmetic operations supported include
all F95 array reduction and matrix arithmetic opera-
tions, and HPF combining scatter. A complete set of
HPF standard library functions is under development.

All the data movement schedules are dependent on
the infra-structure on the left-hand side of the �g-
ure 1. This provides the distributed array descriptor,
and basic support for traversing distributed data (\dis-
tributed control"). Important substructures in the ar-
ray descriptor are the range object, which describes
the distribution of an array global index over a process
dimension, and the group object, which describes the
embedding of an array in the active processor set.

At the time of writing the kernel is fully functional
and quite mature, two of the four interfaces illustrated

1ad++ is currently implemented as a set of header �les de�n-

ing distributed arrays as type-secure container class templates,

function templates for collective array operations, and macros

for distributed control constructs.

are complete, and others are in progress. Results of a
preliminary benchmarks reported in [13] suggest that
an HPF compiler based on the high-level NPAC run-
time can be competetive with commercial compilers.

3 The language model

The next section gives an outline of a Fortran di-
alect for explicit SPMD programming with distributed
arrays. Before attempting a concrete syntax, we will
discuss some of the general goals and features of such
a language.

We aim to provide a exible hybrid of the data par-
allel and SPMD approaches. To this end HPF-like dis-
tributed arrays should appear as language primitives.
New distributed control constructs will be added to fa-
cilitate access to the local elements of these arrays. In
the SPMD mold, the model should allow processors the
freedom to independently execute complex procedures
on local elements: programs should not be constrained
by SIMD-style array syntax.

A design decision is made that all access to non-local
array elements should go through library functions|
typically collective communication operations. This
puts an extra onus on the programmer; but making
communication explicit encourages the programmer to
write algorithms that exploit locality, and simpli�es the
task of the compiler writer.

For the newcomer to HPF, a great strength of the
language lies in the fact that the semantic e�ect of a
particular operation is generally identical to the e�ect
in the corresponding sequential program. This means
that, so long as the programmer understands conven-
tional Fortran, it is very easy for him or her to under-
stand the behaviour of a program at the level of what
values are held in program variables, and the �nal re-
sults of procedures and programs. Of course the ease
of understanding this \value semantics" of a program
is counterbalanced by the di�culty in knowing exactly
how the compiler translates the program. Understand-
ing the performance of an HPF program may require
the programmer to have quite detailed knowledge of
how arrays are distributed over processor memories,
and what strategy the compiler adopts for distributing
computations across processors.

The language model we discuss has some super�cial
(and some deeper) similarities to the HPF model, but
the HPF-style semantic equivalence between the data-
parallel program and a sequential program is aban-
doned in favour of a more direct equivalence between
the data-parallel program and an SPMD program. Be-
cause understanding an SPMD program is presumably
more di�cult than understanding a sequential pro-

2

gram, learning naive use of our language will certainly
be harder than for HPF. Our claim is that once a set of
related concepts about distributed data and distributed

control are mastered, the kind of language we discuss
gives the programmer more intricate control over the
behaviour of a program, and this may ultimately lead
to better performance. On the other hand, by retaining
many of the array-level features of HPF as language
primitives, we still enable a higher-level of program-
ming than is possible in the direct message-passing
style.

We will adopt a distributed data model semantically
equivalent to to the HPF data model. However we de-
scribe the distributed arrays in terms of a slightly dif-
ferent set of basic concepts. In general HPF describes
the decomposition of an array through alignment to
some template, which is in turn distributed over a pro-

cessor arrangement. A processor arrangement is a mul-
tidimensional grid of abstract processors. A template
is a an abstraction of the index space of a distributed
array|it is like a multi-dimensional array mapped to
the process grid, but has no data associated with its
elements.

The analogous concepts in our parametrization of
the distributed array are the distributed range (or sim-
ply range) and the process group (or simply group). A
distributed range is like a single dimension of an HPF
template (or of some triplet-selected subset of that di-
mension). It de�nes a map from an integer subscript
interval into a single dimension of an HPF-like pro-
cessor arrangement. A process group is equivalent to
an HPF processor arrangement, or to a certain subset
of such an arrangement. We emphasize that switch-
ing from templates to ranges and groups is a change of
parametrization only. In itself it does not change the
set of allowed ways to decompose an array. The reason

for the change is that groups and ranges seem to be
better suited to specifying the distribution of program
control.

Our language model di�ers materially from HPF in
its dependence on distributed control constructs. HPF
2.0 provides some similar mechanisms, but only as op-
tional directives. In our language, by contrast, they
are required to specify which process performs each ac-
tion. The simplest example of a distributed control
construct is the ON construct. This is a control con-
struct parametrized by a process group. It speci�es
that the enclosed code block is only executed on pro-
cesses in the group. The second distributed control
construct is called AT. This is very similar to ON, except
that it is parametrized by an element of a distributed
range. The enclosed code block is only executed on pro-
cesses that hold the range element concerned (because

a distributed range corresponds to a single dimension of
an HPF template, this is equivalent to restricting the
operation to some slice of a processor arrangement).
The last and most important distributed control con-
struct is the OVERALL distributed loop. This construct
is parametrized by a range or a subrange. It is a direct
abstraction of the loops in low-level SPMD programs
that iterate over elements of the local portion of some
distributed data structure.

Each of these control constructs restricts the ac-

tive group of processors to some subset. In the case
of ON and AT this restriction is obvious. In the case
of OVERALL the group of processors is e�ectively par-
titioned along the process dimension associated with
the range. With certain restrictions which are easily
stated in terms of the current active process group, the
distributed control constructs can be nested, and col-
lective operations can be called inside distributed con-
trol constructs. In other words, collective library op-
erations need not imply global synchronization|only
synchronization among members of the current active
process group is assumed.

The fundamental constraint that forces the use of
the distributed control constructs is the requirement
that all access to array elements must be local. Al-
though arrays are subscripted with global subscripts
as in HPF, a subscripting operation must not imply
access to an element not held on this processor. Meet-
ing this constraint sounds onerous. We will try to il-
lustrate with concrete examples that the distributed
control constructs match the requirements of typical
parallel algorithms well, and once the basic ideas are
grasped, programming around this constraint becomes
quite natural.

A further advantage of this style is that, because
the underlying programming model is SPMD, the
switch between data parallel programming and low-
level message-passing is merely a change in point of
view. Unlike HPF, there is no need to pass through an
awkward \extrinsic" interface if a particular subcom-
putation cannot easily be handled by collective data-
parallel operations. We simply need to provide inquiry
functions that provide access to the local sequential ar-
ray component of a distributed array, and to the local
physical process id.

4 Outline of an extended Fortran di-

alect

4.1 Example syntax

The examples in the following sections use certain
syntax extensions to Fortran. The syntax is illustra-

3

tive, and by no means �nalized.

A distinguishing property of the proposed system,
compared to HPF, is that it includes ordinary Fortran
as a strict subset, and ordinary Fortran constructs are

unchanged by the translator. Our system will not at-
tempt to exploit parallelism even in \explicitly paral-
lel" constructs such as the array syntax of Fortran 90
or the FORALL statement of Fortran 95. This policy
drastically simpli�es the translator, and gives the pro-
grammer much �ner control over the generated code.

Processor arrangements will be declared as in HPF.
The explicit TEMPLATE concept of HPF is abandoned in
favour a distributed range concept. A distributed range
represents a range of subscript values, and incorporates
a mapping of that range into a dimension of a processor
arrangement. The mapping options will be similar to
HPF: block, cyclic, block-cyclic, etc. A distributed ar-
ray declaration is distinguished from a sequential array
declaration by using a di�erent kind of brackets:

PROCESSORS P(4, 4)

RANGE X(N), Y(M)

DISTRIBUTE X ONTO P(BLOCK, *)

DISTRIBUTE Y ONTO P(*, CYCLIC)

REAL A [X, Y]

INTEGER B [Y]

INTEGER C [X, Y, 10]

REAL D [X(1 : N / 2), Y(::2)]

Ranges X and Y are each distributed over a single di-
mensions of the processor arrangement. The array A is
an N by M distributed array, distributed blockwise in its
�rst dimension and cyclically in its second. In general
the brackets in a distributed array declaration contain
a list of orthogonal ranges2. B is a one dimensional ar-
ray distributed cyclically in the second dimension of P
and implicitly replicated over the �rst. C is a three di-
mensional array with two distributed and one collapsed
range. The declaration of D illustrates how HPF-like

non-trivial alignment relations can be introduced by
using subranges in array declarations. D is an N / 2

by N / 2 distributed array3

Provision of distributed arrays as language primi-
tives provides a clean, systematic interface to libraries
of collective operations. Examples of standard collec-
tive operations are

2
Two ranges are considered orthogonal if they are distributed

over di�erent dimensions of the same processor arrangement. As

a special case a collapsed, on-processor array range is orthogonal

to any other.
3
Triplet subscripting of ranges works in the same was as

triplet subscripting of arrays in Fortran. If lower or upper bounds

are omitted they default to the bounds of the subscripted object,

so Y(::2) is equivalent to Y(1:N:2)|a range including every 2nd

element of Y.

CALL DA_CSHIFT(DST, SRC, DIM, SHIFT)

RES = DA_SUM(SRC)

CALL DA_REMAP(DST, SRC)

Here DST and SRC are distributed arrays. The sub-
routine DA CSHIFT is closely analogous to the Fortran
90 CSHIFT intrinsic. The function DA SUM sums all ele-
ments of the argument and broadcasts the result value.
The subroutine DA REMAP takes two distributed arrays
of the same shape which may have any, unrelated map-

ping and copies the elements of one to the other4.
The syntax for declaration of distributed data is com-

plemented by syntax extensions for distributed control.
The simplest example is the AT construct. A dis-
tributed array is subscripted with a global subscript.
Subscripting expressions are only meaningful on the
processors that hold the elements selected. To make
sure a statement using a distributed array element is
only executed on a processor that holds copies of the
element, a stylized form of conditional called the AT

construct is provided. The code fragment below illus-
trates a pair of nested at constructs.

AT(X(n))

AT(Y(17))

A [n, 17] = B [17] + 23 ;

ENDAT

ENDAT

This construct is an abstraction of the if statement in
a low-level SPMD program that tests whether the local
processor contains a desired array element. The body
of the construct only executes on processors that hold
the speci�ed range element.

A more important and powerful distributed control
construct is the OVERALL distributed loop. This con-
struct super�cially resembles the Fortran 95 FORALL

construct. It di�ers from FORALL in several respects

� The index ranges are distributed ranges, not
triplets.

� There are no restriction on what kind of state-
ments can appear in the body of the construct.
Any executable statements are allowed. This re-
ects the explicit SPMD emphasis of the language,
in constrast to the SIMD heritage of HPF.

� Each \iteration" of the construct is localized to
a well-de�ned processor (or group of processors)
through the use of distributed ranges for the loop
indices. An iteration should only access array ele-
ments held locally on a processor executing the
iteration. This restriction sounds inconvenient:

4As a rule operations like DA CSHIFT and DA REMAP cannot

perform in-place updates. Their arguments should be distinct

and non-overlapping.

4

in practise it can usually be accomodated quite
painlessly by limiting access to arrays aligned with
the loop ranges.

In this simple example of an OVERALL construct is used
to initialize the array A with some expression involving
the global subscripts

OVERALL(I = X, J = Y)

A [I, J] = I + J

ENDOVERALL

In a slightly more complex example we add together
elements from two arrays

OVERALL(I = X, J = Y)

A [I, J] = B [J] + C [I, J, 17]

ENDOVERALL

This operation is legal due to the alignment relation
between the A, B and C arrays.

4.2 Example 1: Cholesky decomposition

Figure 2 gives a parallel implementation of Cholesky
decomposition in the extended language. In the dec-
laration of A the �rst dimension is speci�ed with an
integer range rather than a distributed range. This
means that this dimension is on-processor|collapsed

in HPF terminology. In general the collective opera-
tion DA REMAP copies the elements of one distributed
array or section to another of the same shape. In the
current example, because B has replicated mapping, it
implements a broadcast. In spite of the fact that we
have demanded that the programmer explicitly specify
which processor performs every operation, and exactly
how communications are to be inserted, we claim that
this implementation is at least as simple as any that
could be achieved in HPF (and clearer than anything
that could be written in MPI).

Other features illustrated by this example are con-
struction of sections of distributed arrays (directly
analogous to construction of sections of Fortran 90 ar-
rays) and use of a subrange to parametrize an OVERALL

loop.

4.3 Example 2: Red-Black relaxation

Figure 3 gives a parallel implementation of red-black
relaxation in the new language. Following the propos-
als of HPF 2.0 standard, ghost regions are allowed for
arrays. In the example the width of these regions is
de�ned by specifying the SHADOW attribute (in our lan-
guage this attribute is speci�ed for ranges rather than
arrays). Ghost regions are extensions of the locally

INTEGER, PARAMETER :: N = 100

PROCESSORS P(NP)

RANGE, DISTRIBUTE ONTO P(CYCLIC) :: X(N)

REAL A [N, X]

REAL B [N] ! used as a buffer

! ... initialize the array

ON(P)

DO K = 1, N - 1

AT(X (K))

A [K, K] = SQRT(A [K, K])

DO L = K + 1, N

A [L, K] = A [L, K] / A [K, K]

ENDDO

ENDAT

CALL DA_REMAP(B [K + 1 :], A [K + 1 : , K])

OVERALL(I = X (K + 1 :))

DO J = I, N

A [J, I] = A [J, I] - B [J] * B [I]

ENDDO

ENDOVERALL

ENDDO

AT(X (N))

A [N, N] = SQRT(A [N, N])

ENDAT

ENDON

Figure 2. Implementation of Cholesky decom-
position in mooted syntax.

5

PROCESSORS P(NP, NP)

RANGE X(N), Y(N)

DISTRIBUTE X ONTO P(BLOCK, *)

DISTRIBUTE Y ONTO P(*, BLOCK)

SHADOW (1) X, Y

REAL A [X, Y]

ON(P)

! Initialize the array...

OVERALL(I = X, J = Y)

A [I, J] = ...

ENDOVERALL

DO ITER = 1, NITER

DO ICOLOUR = 0, 1

CALL DA_WRITE_HALO(A, (/CYCL, CYCL/), (/1, 1/))

OVERALL(I = X)

OVERALL(J = Y(MOD(ICOLOUR + I, 2) : : 2))

A [I, J] = (A [I, J - 1] + A [I, J + 1] + &

& A [I - 1, J] + A [I + 1, J]) / 4

ENDOVERALL

ENDOVERALL

ENDDO

ENDDO

ENDON

Figure 3. Implementation red-black relaxation
in mooted syntax.

held block of a distributed array, used to cache val-
ues of elements held on adjacent processors. The ghost
regions are explicitly brought up to date using the sub-
routine DA WRITE HALO from the standard library. The
arguments following the array itself de�ne the mode
of updating ghost regions at the extremes of the array
(cyclic wraparound in this slightly unrealistic example)
and the actual width of the halo to be written. Subse-
quently the OVERALL construct can access elements of
the array displaced by up to one place from the align-
ment of the range parametrizing the construct.

Note the ease with which sites of a particular
colour are selected by using nested OVERALL constructs,
parametrizing the inner one with a subrange. In
HPF this could be expressed using array syntax and
a WHERE construct, but that would be relatively ine�-
cient. Alternatively it could be expressed using nested
INDEPENDENT DO loops or FORALLs, but nesting these
constructs makes it di�cult for a compiler to analyse
them and emit e�cient parallel code. In our scheme no
special analysis is necessary. A simple e�cient scheme
is applied universally to translate subscripts in OVERALL
constructs.

5 Discussion and related work

The language model described in this paper has pre-
viously been investigated using C++ class libraries [2].
Currently we are moving similar syntactic ideas to to
an extended Java dialect. This is seen as an inter-
mediate stage, preliminary to implementing a Fortran
translator. For a more complete exposition of the un-
derlying parallel programming model proposed here,
the reader is refered to [3], which gives examples in an
extended Java syntax. The C++ and Java versions are
essentially prototype systems, not o�ering the immedi-
ate expectation of very high performance. Our hope is
that a Fortran translator for a language such as the one
described here will be an order of magnitude easier to
implement than a compiler for full HPF. We also sus-
pect it may o�er higher performance than many exist-

ing HPF systems, relying on reasonably sophisticated
programmers, rather than on very advanced compilers.
Moreover, we hope that for certain applications the
explicitly SPMD language model espoused here will be
more exible and convenient than HPF.

An initial implementation of our language will take
the form of a translator to ordinary Fortran. The dis-
tributed arrays of the extended language will appear in
the emitted code as a pair|an ordinary Fortran array
of local elements and a handle to a Distributed Array
Descriptor (DAD). Details of the distribution format,
including non-trivial details of global-to-local transla-

6

tion of the subscripts, are managed in the run-time li-
brary. Acceptable performance should nevertheless be
achievable, because we expect that in useful parallel
algorithms most work on distributed arrays will occur
inside OVERALL constructs. In normal usage, the for-
mulae for address translation can then be linearized.
The non-trivial aspects of address translation (includ-
ing array bounds checking) can be absorbed into the
startup overheads of the loop. Since distributed arrays
are usually large, the loop ranges are typically large,
and the startup overheads (including all the run-time
calls associated with address translation) can be amor-
tized. This approach to translation of parallel loops is
discussed in detail in [4].

Note that if array accesses are genuinely irregular,
the necessary subscripting cannot usually be directly

expressed in our language, because subscripts cannot

be computed randomly in parallel loops without vio-
lating the fundamental SPMD restriction that all ac-
cesses be local. This is not regarded as a shortcoming:
on the contrary it forces explicit use of an appropriate
library package for handling irregular accesses (such as
CHAOS [5]). Of course a suitable binding of such a
package is needed in our language.

A complementary approach to communication in
a distributed array environment is the one-sided-
communication model of Global Arrays (GA) [8]. For
task-parallel problems this approach is often more con-
venient than the schedule-oriented communication of
CHAOS (say). Again, the language model we advocate
here appears quite compatible with GA approach|
there is no obvious reason why a binding to a version
of GA could not be straightforwardly integrated with
the the distributed array extensions of the language
described here.

We mention two projects that have some similarity
to the work described here.

ZPL [12] is a new programming language for sci-
enti�c computations. Like Fortran 90, it is an array
language. It has an idea of performing computations
over a region, or set of indices. Within a compound
statement pre�xed by a region speci�er, aligned ele-
ments of arrays distributed over the same region can
be accessed. This idea has certain similarities to our
OVERALL construct. In ZPL, parallelism and communi-
cation are more implicit than in our proposed languge.
The connection between ZPL programming and SPMD
programming is not explicit. While there are certainly
attractions to the more abstract point of view, the
language we are proposing deliberately provides lower-
level access to the parallel machine.

F- - [9] is an extended Fortran dialect for SPMD pro-
gramming. The approach is quite di�erent to the one

proposed here. In F- -, array subscripting is local by
default, or involves a combination of local subscripts
and explicit process ids. There is no analogue of global
subscripts, or HPF-like distribution formats. In F- -
the logical model of communication is built into the
language|remote memory access with intrinsics for
synchronization. In our proposal there are no commu-
nication primitives in the language itself. We follow the
MPI philosophy of providing communication through
separate libraries. While F- - and our approach share
an underlying programming model, we believe that our
framework o�ers greater opportunities for exploiting
established software technologies, such as the PCRC
libraries.

References

[1] A. Agrawal, A. Sussman, and J. Saltz. An integrated
runtime and compile-time approach for parallelizing
structured and block structured applications. IEEE

Transactions on Parallel and Distributed Systems, 6,
1995.

[2] B. Carpenter. Programming in ad++, 1998.
http://www.npac.syr.edu/projects/pcrc/doc.

[3] B. Carpenter, G. Zhang, G. Fox,
X. Li, and Y. Wen. Introduction to Java-Ad, 1997.
http://www.npac.syr.edu/projects/pcrc/doc.

[4] B. Carpenter, G. Zhang, and Y. Wen. NPAC PCRC
runtime kernel de�nition. Technical Report CRPC-
TR97726, Center for Research on Parallel Com-
putation, 1997. Up-to-date version maintained at
http://www.npac.syr.edu/projects/pcrc/doc.

[5] R. Das, M. Uysal, J. Salz, and Y.-S. Hwang. Commu-
nication optimizations for irregular scienti�c compu-
tations on distributed memory architectures. Journal
of Parallel and Distributed Computing, 22(3):462{479,
Sept. 1994.

[6] High Performance Fortran Forum. High Performance
Fortran language speci�cation. Scienti�c Program-

ming, special issue, 2, 1993.
[7] J. Merlin, B. Carpenter, and T. Hey. shpf: a subset

High Performance Fortran compilation system. For-

tran Journal, pages 2{6, Mar. 1996.
[8] J. Nieplocha, R. Harrison, and R. Little�eld. The

Global Array: Non-uniform-memory-access program-
ming model for high-performance computers. The

Journal of Supercomputing, 10:197{220, 1996.
[9] R. Numrich and J. Steidel. F{: A simple parallel ex-

tension to Fortran 90. SIAM News, page 30, 1997.
[10] Parallel Compiler Runtime Consortium. Common

runtime support for high-performance parallel lan-
guages. In Supercomputing `93. IEEE Computer Soci-
ety Press, 1993.

[11] R. Ponnusamy, Y.-S. Hwang, R. Das, J. H. Saltz,
A. Choudhary, and G. Fox. Supporting irregular dis-
tributions using data-parallel languages. IEEE Paral-

lel and Distributed Technology, Spring, 1995.

7

[12] L. Snyder. A ZPL programming guide. Tech-
nical report, University of Washington, May 1997.
http://www.cs.washington.edu/research/projects/zpl/.

[13] G. Zhang, B. Carpenter, G. Fox, X. Li, X. Li, and
Y. Wen. PCRC-based HPF compilation. In 10th In-

ternational Workshop on Languages and Compilers for

Parallel Computing, 1997. To appear in Lecture Notes
in Computer Science.

8

