
A Prototype of FORTRAN-to-Java Converter

Geo�rey Fox, Xiaoming Li�

NPAC at Syracuse University

Syracuse, NY 13244, fgcf,lxmg@npac.syr.edu

Zheng Qiang, Wu Zhigang

Computer Science Department

Harbin Institute of Technology

Harbin, 150001, China, fzq,wzgg@pactpc.hit.edu.cn

July 20, 1997

Abstract

This is a report on a prototype of a FORTRAN 77 to Java con-

verter, f2j. Translation issues are identi�ed, approaches are presented,

a URL is provided for interested readers to download the package, and

some unsolved problems are brought up. F2j allows value added to

some of the investment on FORTRAN code, in particular, those well

established FORTRAN libraries for scienti�c and engineering compu-

tation.

Key words: FORTRAN, Java, Automatic Translation

Acknowledgement: The authors would like to thank the referees of

this paper and attendants of the Workshop on Java for Science and Engi-

neering, where the paper was presented, for their insightful comments.

1 Introduction

As Java gets its dominance in Internet programming, it is natural for people

to consider how Java may also be used in scienti�c and engineering computa-

tions. As Joe Keller, director of marketing and support/workshop products

�Contacting author, visiting scholar from HIT, China

1



at Sun, indicated: while the �rst Java versions were built for portability, the

next versions will be built based on performance [10].

Making Java faster is necessary for exploiting full potential of Java lan-

guage for Internet applications, and many research groups and venders are

pursuing various technologies to improve Java's performance. These tech-

nologies include, but are not limited to, JIT compilation, optimizing com-

piler, parallel interpretation, and parallelization of source code, etc. [11].

Thus, Java will be fast, and the faster Java gets, the more scienti�c and

engineering problems can be solved in Java | taking Java's well known

advantages, and with acceptable performance. After all, Java now is faster

than FORTRAN 20 years ago, and people were doing pretty good science

and engineering with FORTRAN then.

While observing that computers are never fast enough to meet the re-

quirements of leading edge science and engineering work, it should be safe to

say that many circumstances where FORTRAN is used are not really time

critical.

For more than 30 years, FORTRAN is still the fastest language for num-

ber crunching. But it seems a tradition that people like to build converters

that translate FORTRAN programs to whatever popular languages. Besides

the famous f2c maintained at Bellcore [7], there was also a FORTRAN to

Pascal converter [9] when Pascal was popular. And there are some compa-

nies, part of their businesses is to convert FORTRAN programs to others [7].

Any way, there are some good reasons for turning FORTRAN to something

more promising. Java's platform neutralness and mobility make it a more

attractive language to turn legacy code into.

Thus, we have embarked on the e�ort of building a FORTRAN to Java

converter, with a belief that Java is certainly more useful than Pascal, and

will be more widely used than C.

From implementation point of view, the converter is based on HPFfe [1]

and a previous FORTRAN-to-C conversion work done by one of the authors

[8]. HPFfe constructs an abstract syntax tree (AST) for input FORTRAN

program, a FORTRAN-to-C conversion module then turns this AST to a C

counterpart. An enhanced unparsing process �nally spells out a Java pro-

gram from this intermediate AST. Thus, we observe the following process:

FORTRAN source
A
�! FORTRAN AST

B
�! C AST

C
�! Java source

It seems weird to have a C AST involved in the middle. A more natural

approach would be de�ning an intermediate representation (IR) for Java,

2



and turning the AST for a FORTRAN program to the Java IR, followed

by a straightforward Java unparsing. The path we took is merely for our

convenience, since a FORTRAN-to-C module is already there, working with

HPFfe in concert, and there is not much di�erence between C and Java.

From user's point of view, an application in FORTRAN consists of mul-

tiple source �les, and each �le has one or more program units. F2j takes

as input a FORTRAN source �le, say module1.f, and turns it into a seman-

tically equivalent Java source �le module1.java. Each FORTRAN program

unit is translated into a Java class in the �le. At the moment, no package

information is incorporated in the Java source. Thus, the unnamed default

package is assumed.

2 Main issues to be addressed in a FORTRAN-to-

Java converter

Although it is true that translating a FORTRAN program to Java program

is relatively easier than other way around, some issues have to be dealt

carefully for both semantical equivalence of the corresponding programs and

e�ciency of the resulting Java program. Our experience has shown that

some of the issues are non trivial. In fact, we have not reached satisfactory

solutions for some of them. In this section, we brie
y introduce the main

issues that have been addressed in our converter. We describe our translation

schemes for each one of them in the next section.

� Naming convention.

Basically, there are two kinds of names in the resulting Java program.

One is type name, i.e., class name; the other is variable name. It is

obvious that majority of those names should be derived from names

in the input FORTRAN program, based on some convention. More-

over, some additional names have to be created to compensate the

discrepancies of the two languages.

� Correspondence between FORTRAN program units (main program,

subroutine subprogram, function subprogram, and block data subpro-

gram) and Java classes.

In fact, this is one of our basic decision, namely making a one-to-one

correspondence between FORTRAN program units and Java classes.

It may be conceivable to design a many-to-one scheme. But we thought

3



it would make things complicated, though some bene�t of it is ob-

served.

� The matching of function/subroutine calls in FORTRAN and method

invocations in Java.

The basic problem is that FORTRAN passes arguments by address,

while Java passes arguments by value for primitive data types and by

reference for general objects.

� Di�erences in data types.

Although Java provides a rich type system and FORTRAN is very

primitive in this regard, to e�ectively represent FORTRAN types in

Java needs some design.

In particular, FORTRAN array presents a major problem. In FOR-

TRAN, array is not really a distinct data type. Instead, it's an `non

encapsulated memory region'. Programmers are allowed to do various

`tricks' within that region, for instance, forming another array from

part of the region through subprogram interface. In Java, an array is

an object. One can not assign new meaning (give a name) to a part

of the object.

� FORTRAN speci�c statements.

FORTRAN has some statements, such as GOTO, COMMON, EQUIVALENCE,

and various I/O statements, etc., which are not present in modern

languages. We need to �nd proper Java correspondence for them.

In what follows, our discussion will be focused on translation schemes for

the above issues. Coding details will not be discussed, since it is closely

related to the data structure of the AST.

3 The translation approaches

From top level, a FORTRAN library is converted into a Java package, a FORTRAN

�le, �lename.f, is converted into a Java �le, �lename.java, and each FORTRAN

program unit is turned to a Java class.

Besides, the following issues are addressed in the converter.

4



3.1 Naming conventions

Following rules are made for the formation of names in resulting Java pro-

grams.

� Since a Java class is generated for each FORTRAN function or subrou-

tine, the name of the class is the name of the original function/subroutine

name with ` c' attached to it. `c' stands for `class'.

For example: a function in a FORTRAN source code named func1

will be converted to a Java class with the name func1 c.

The FORTRAN main program is also converted into a class, but ` mc' is

attached to its name to form the Java class name.

� A class variable is generated for each scalar dummy argument in order

to solve the problem of argument passing. The name of the class

variable is the name of the original argument with ` cv' (class variable)

appended to it. For example: class variable para1 cv is generated for

the argument para1.

This is just what we have implemented, not a perfect solution. There

are some non trivial subtlety here. We'll discuss more about it in

section 3.3.

� `j' is inserted before each statement label in FORTRAN source code

to form a Java statement lable.

For example: label 10 will be converted to j10 in Java program.

� Other names in the Java program are identical to those in FORTRAN.

3.2 How to produce a class

A primary di�erence between object oriented language and procedural lan-

guage is the former introduces the powerful concept of class. Many other

di�erences are derived from it. Class is a basic concept in Java [3], but it

does not exist in FORTRAN 77 [6]. Although the direction of this di�erence

does not present major di�culty for our job, since class is a more general

concept than procedure, some details have to be taken care.

In order to successfully convert a FORTRAN source to Java source,

classes has to be produced. But how to do it? At least two approaches can

be considered.

5



� A class is generated for a whole FORTRAN source �le with methods

in the class corresponding to functions/subroutines in the FORTRAN

�le;

� A class is generated for each function/subroutine. It contains a \public

static" method which is semantically equivalent to the original func-

tion/subroutine.

Less .class �le will be generated and higher performance will be achieved

(due to less dynamic run-time loadings) if the �rst method is used, but some

di�culties will be brought into function/subroutine invocation and param-

eter passing, which we do not have a clear idea yet. So the second method

has been adopted. Besides, the name rules speci�ed above are observed with

this method.

As an example, the following FORTRAN subroutine

subroutine signMeUp(price, price1)

integer price, price1

price = price1 + 1

return

end

will be converted into:

class signMeUp_c {

static int price_cv;

static int price1_cv;

public static signMeUp(int price,int price1) {

price=price1+1 ;

price_cv = price;

price1_cv = price1;

return;

}

}

As we see, two extra class variables are produced. Their use is to solve

argument passing problem as described below.

3.3 Subprogram invocation mechanism

Di�erent mechanisms for argument passing is a major issue for the trans-

lation. In FORTRAN, when a function/subroutine is called, the addresses

6



of the actual arguments (variables) are passed to it [6]. In Java, the values

of the arguments are passed for primitive data types and the references (a

kind of value) are passed for objects [3]. This means, in Java, the values

of the actual argument variables will not get changed upon returning from

methods, while FORTRAN often expects a change.

There is a similar problem when converting FORTRAN to C. There,

pointers are used to solve it [7, 8]. But in Java, there is no pointer.

Two approaches were considered.

1. The �rst method is based on the following facts:

Java passes non primitive data (object) to methods by reference | a

kind of address. Thus, if the reference is not modi�ed in the method,

i.e., not appearing at left hand side of an assignment statement, the

modi�cation to the member of the object is observed by the caller [3].

So, we might declare a class for each FORTRAN data type, for exam-

ple:

class INTEGER {

public int value;

};

and put all this kind of classes into one package named data type.

This package should be imported in every produced .java �le. Then,

every variable declaration statement should be converted to the class

declaration statement. When a function/subroutine is invoked, the

corresponding object should be passed into the function/subroutine.

And in the invoked function, memory is not reallocated to the object

[3]. The member of the object is modi�ed if the argument in the source

FORTRAN �le is modi�ed.

For instance, the following FORTRAN program:

program main

integer a, b

call xx(a,b)

end

subroutine xx(d,e)

integer d, e

7



d = 3

e = 4

return

end

yields the following Java program:

class main_mc {

public static void main(String args[]) {

INTEGER a = new INTEGER();

INTEGER b = new INTEGER();

xx_c.xx(a,b);

}

}

class xx_c {

public static void xx(INTEGER d, INTEGER e) {

d.value = 3;

e.value = 4;

return;

}

}

This approach is easy to implement, but not e�cient, since objects are

arti�cially created and accessing object is much slower (about 3 times)

than primitive type access in Java. We did not use this method in our

implementation.

2. The second approach.

As mentioned above, a class is generated for each function/subroutine.

A method semantically equivalent to the function/subroutine is con-

tained in this class. The second approach introduces some class vari-

ables into the class, besides the method. Each class variable, which

is generated according to the arguments, serves as an intermedium

between actual argument and dummy argument: before the func-

tion/subroutine returns, the class variable is assigned the value of

argument if it is modi�ed in the function/subroutine; after the in-

vocation statement in the caller, the actual argument is assigned the

value of the class variable. The names of the class variables are the

names of the arguments with ` cv' appended to it.

8



For the same FORTRAN program above, the following Java program

is produced under this scheme.

class main_mc {

public static void main(String args[]) {

int a=0, b=0;

xx_c.xx(a,b);

a = xx_c.d_cv; // produced by converter, modify actual arg

b = xx_c.e_cv;

}

}

class xx_c {

static int d_cv;

static int e_cv;

public static void xx(int d,int e) {

d = 3;

e = 4;

d_cv = d;

e_cv = e;

return;

}

}

This scheme is currently implemented in our converter. Notice how the

CALL statement in FORTRAN is converted to corresponding method

invocation in Java.

While being more e�cient, this method also su�ers from a few prob-

lems (we thank one of the referees who pointed out some of them).

The �rst problem is that it does not support separate conversion of

FORTRAN program unit, namely, names of dummy arguments of a callee

must be known when converting a caller. The second problem is in-

capability of handling dummy arguments' aliasing, namely things like

CALL FOO(a,a). In this case, two dummy arguments refer to the same

memory location, the order of updating the two dummies in callee de-

termines the value that caller will see after the subroutine returns. But

the order of assigning class variables to actual arguments is normally

�xed. The third problem is thread safety. Unprotected static class

variables may be accessed concurrently in an unpredictable way, when

the class is used by multiple threads.

9



FORTRAN Java

Integer int

Real 
oat

Double precision double

Complex class Complex

Logical boolean

Character String

Table 1: Mapping between data types

3.4 About data types

Table 1 gives a mapping between FORTRAN and Java data types.

FORTRAN complex and character types need some special treatment.

� Complex data type.

The issue is that Java does not have complex type and it does not

support operator overloading. Thus, we have de�ned a class named

Complex, which includes two data �elds for real and imaginary parts

of a complex quantity and methods corresponding to primitive arith-

metic operations (+, {, *, /). Moreover, a simple copy method is

included to mimic assignment between two complex variables. (the

standard clone() method seems unnecessarily complicated to use for

our purpose.)

For the following example,

program complx

complex com1,com2

com1 = (1.2,2.3)+(2.3,2.2)*(2.3,2.5)

com2 = (1.0,1.0)/(1.0,1.0)*(1.0,1.0)-(4.3,3.4)

com2 = com1

end

Corresponding Java program looks like,

class complx_mc {

public static void main(String args[]) {

Complex com1,com2;

10



com1 = ((new Complex((float)1.2,(float)2.3)))

.add((new Complex((float)2.3,(float)2.2))

.mult((float)2.3,(float)2.5));

com2 = ((new Complex((float)1.0,(float)1.0))

.div((float)1.0,(float)1.0).mult((float)1.0,(float)1.0))

.minus((new Complex((float)4.3,(float)3.4))) ;

com2 = com1.copy();

}

}

� Character strings

FORTRAN character data are �xed length strings of characters.

Java String has variable length. There are two possible ways to map

FORTRAN character data to Java elements, either to char arrays, or

to Strings. We decided on the latter. Thus, the following,

character * 10 s1, s2

s1 = '1234567890'

s2 = s1(2:4)//'abc'

s1(2:4) = 'xyz'

is translated into

String s1, s2;

s1 = "1234567890";

s2 = s1.substring(1,4) + "abc";

s1 = s1.substring(0,1) + "xyz" + s1.substring(4,s1.length());

Note that we have taken care of the di�erence between substring des-

ignations in FORTRAN and Java. The fact that String object is

read-only does not hurt here, since a new object is created and old one

is to be garbage collected automatically.

� Arrays

There are some simple issues such as array declaration and element

accessing within the program unit where the array is declared. They

can be treated readily. For instance, the following program

program foo

integer a(1:10)

11



integer b(1:10,-10:10)

integer c(1:10,-10:10,-10:0)

integer i,j,k

do 10 i=1,10

a(i)=10 - i

do 10 j=10,-10,-1

b(i,j) = i + j

do 10 k = -10,0,2

10 c(i,j,k) = i + j - k * i / j

end

is translated by our converter into:

class foo_mc {

public static void main(String args[]) {

int a[] = new int [10-1+1] ;

int b[][] = new int [10-1+1][10-(-10)+1] ;

int c[][][] = new int [10-1+1][10-(-10)+1][0-(-10)+1] ;

int i,j,k ;

for (i=1; i<=10; i=i+1) {

a[i-1] = 10-i ;

for (j=10; j>=-10; j=j-1) {

b[i-1][j-(-10)] = i+j ;

for (k=-10; k<=0; k=k+2)

j10: c[i-1][j-(-10)][k-(-10)] = i+j-k*i/j ;

}

}

}

}

However, the major problem occurs when passing arrays to subpro-

grams. This is because Java array is `semantically' di�erent from

FORTRAN array (and also di�erent from C array). A FORTRAN array

is a collection of consecutive memory locations, organized according to

dimensioning information. And a Java array is not required to keep its

elements together. In fact, we should expect the elements of a multiple

dimensional Java array scattered in the memory, (see section 15.9.1 of

reference [3]). As a result there is no concept of storage majority for

Java arrays.

This makes some well established practice in FORTRAN program-

ming, which takes the advantage of consecutiveness of array elements,

12



hard to have an e�ective Java counterpart. The following is an exam-

ple (provided by one of attendants of the workshop).

REAL X(10)

...

CALL F(X,10)

CALL F(X(3),8)

...

END

SUBROUTINE F(A,N)

REAL A(N)

...

END

Things will be even more interesting, if multiple dimension arrays are

involved as arguments. We have not come to a satisfactory scheme yet.

An attractive solution is to linearize all arrays to single dimension and

pass array name together with a starting index to method.

3.5 FORTRAN speci�c statements

We describe the scheme used in f2j for translating COMMON, EQUIVALENCE,

and labeled DO statements.

COMMON statement COMMON statements are widely used in FORTRAN

libraries as a means to implement global data, and allow storage sharing

among di�erent program units. In Java, public static variables can be ac-

cessed and shared from all other classes. So we convert a COMMON block

into a class with variables in the COMMON block being translated into public

static variables in the class.

In this case, some additional naming rules are needed:

� Blank common block is converted into class named NonameCommon;

� Named common block retains its name as the class name;

� The members of the class derived from common block inherit the orig-

inal variable names from the �rst occurrence of the common block

declaration.

13



As an example, the following FORTRAN program,

program comm

integer a,b,fff,i1,i2

real d,f,f10

common a,b,d

common /c0/fff,f

a =0

b =10

d = 5.0

fff = 987.0

f = 3.456

end

integer function myfunc()

integer b,d,i

real c,f1,f2

common b,d,c

common /c0/i,f1

b = 10

d = 5

c = 0.1

i = 3

f1 =19.844

myfunc = d + b

end

is translated into

class NonameCommon {

public static int a;

public static int b;

public static float d;

}

class c0_c {

public static int fff;

public static float f;

}

class comm_mc {

public static void main(String args[]) {

myfunc_c myfunc_o ;

int ReplaceMentVar0,i1,i2 ;

14



float ReplaceMentVar1,f10 ;

NonameCommon.a = 0 ;

NonameCommon.b = 10 ;

NonameCommon.d = (float)5.0 ;

c0_c.fff = (float)987.0 ;

c0_c.f = (float)3.456 ;

}

}

class myfunc_c {

public static int myfunc() {

int ReplaceMentVar2 ;

float ReplaceMentVar3,f2 ;

NonameCommon.a = 10 ;

NonameCommon.b = 5 ;

NonameCommon.d = (float)0.1 ;

c0_c.fff = 3 ;

c0_c.f = (float)19.844 ;

return(NonameCommon.b+NonameCommon.a);

}

}

This scheme solves global variable problem, and partly solves storage sharing
problem. It fails when two corresponding common variables have di�erent
type, such as in

PROGRAM MAIN

INTEGER A, B, C

COMMON /C1/A,B,C

...

END

SUBROUTINE FOO()

REAL X,Y,Z

COMMON /C1/X,Y,Z

...

END

A similar drawback is also associated with our current treatment for EQUIVALENCE

statement.

EQUIVALENCE statement In our converted program, EQUIVALENCE

statement is treated in a simple minded fashion, namely, when the variables

15



are accessed, we replace them with the variable's name which �rst appears

in the EQUIVALENCE statement. Thus, the following program,

program main

integer a,b,c

equivalence (a,b)

a = 10

b = 9

c = 8

end

is translated into

class main_mc {

public static void main(String args[]) {

int a,b,c; //b is of no use, but is kept

a = 10 ;

a = 9 ;

c = 8;

}

}

Labeled DO statement It is not di�cult to deal with labeled DO state-

ments, since the labels for nested DO loops must be properly nested, which

have a natural correspondence to nested FOR loops in Java. We simply

keep those labels (of course change them to Java labels) and add proper `f'

and `g'.

The following program,

program bbb

integer a(10)

integer b(10,10)

integer c(10,10,10)

integer i,j,k

do 20 i=1,10

do 10 j=10,1,-1

b(i,j) = i + j

do 10 k = 1,10,2

10 c(i,j,k) = i + j - k * i / j

20 a(i)=10 - i

end

16



becomes,

class bbb_mc {

public static void main(String args[]) {

int a[] = new int [10] ;

int b[][] = new int [10][10] ;

int c[][][] = new int [10][10][10] ;

int i,j,k ;

for (i=1;i<=10;i=i+1) {

for (j=10;j>=1;j=j-1) {

b[i-1][j-1]=i+j ;

for (k=1;k<=10;k=k+2)

j10: c[i-1][j-1][k-1]=i+j-k*i/j ;

}

j20: a[i-1]=10-i ;

}

}

}

3.6 I/O and FORMAT statement

We have implemented translation of three kinds of I/O statements in their

primitive forms: WRITE, PRINT and READ. FORTRAN provides sophisticated

formatting facility for I/O through edit descriptors [6, page 13-5], while

Java does not [4, page 189]. This discrepancy makes it di�cult to faithfully

translate FORTRAN I/O statements to Java. Thus, in our �rst attempt,

formatting information is largely ignored. Nevertheless, some \important"

formatting information, such as data items interleaved with pre-speci�ed

character strings, is properly translated. Thus, for the FORTRAN program:

program io

integer a,b,c,d,e

100 format (i3,'Happy Day!')

200 format (i5,'Get',i8,'Hello')

a=9

b=6

c=5

write(*,200) a,b,c

print 200, a,b,c

write(*,200) a,b,b,c

print 200, a,b,c,d

write(*,100) a,b,c

print 100, a,b,c

17



write(*,*) 'A=',a,'B=',b,'C'

print *, 'A=',a,'B=',b,'C'

write(*,'(i5,i9)') a,b

print '(i5,i9)', a,b

end

f2j converts it into:

class io_mc {

public static void main(String args[]) {

int a,b,c,d,e ;

a=9 ;

b=6 ;

c=5 ;

System.out.println(a+" "+"Get"+" "+b+" "+"Hello"+"\n"+c+" "+"Get");

System.out.println(a+" "+"Get"+" "+b+" "+"Hello"+"\n"+c+" "+"Get");

System.out.println(a+" "+"Get"+" "+b+" "+"Hello"+"\n"

+b+" "+"Get"+" "+c+" "+"Hello");

System.out.println(a+" "+"Get"+" "+b+" "+"Hello"+"\n"

+b+" "+"Get"+" "+c+" "+"Hello");

System.out.println(a+" "+"Happy Day!"+"\n"+b+" "+"Happy Day!"+"\n"

+c+" "+"Happy Day!");

System.out.println(a+" "+"Happy Day!"+"\n"+b+" "+"Happy Day!"+"\n"

+c+" "+"Happy Day!");

System.out.println("A="+" "+a+" "+"B="+" "+b+" "+"C");

System.out.println("A="+" "+a+" "+"B="+" "+b+" "+"C");

System.out.println(a+" "+b);

System.out.println(a+" "+b);

}

}

Notice that we have inserted a blank space between two consecutive data

items, and we have translated the e�ect of cyclic use of formatting rules.

4 Current limitations and considerations for fur-

ther improvement

While a prototype package can be download from

http://www.npac.syr.edu/projects/pcrc/f2j.html for interested readers to

play with, some more work is needed for the f2j to be truly usable. Be-

sides the following items identi�ed for further work, we plan to incorporate

the f2j into a web server, so that a user does not have to download the

18



package. Instead, he submits his FORTRAN program to our f2j server, and

it will email him back a Java program.

� Array processing. As mentioned previously, current f2j can only handle

arrays within one program unit. We need to implement a scheme that

is able to translate arrays as dummy arguments to subprograms.

� GOTO statement was left untouched in current f2j. It seems feasible

to convert GOTO e�ectively, using Java break, continue, and try-catch-

�nally construct.

� A Java package which is functionally equivalent to FORTRAN intrinsic

functions should be constructed, which will surely have a lot to do with

class java.lang.Math.

� Although basic I/O statements have been translated, those associated

with �le operations need to be covered, as well as a reasonable coverage

of FORMAT statement.

� BLOCK DATA subprogram is not supported at the moment.

� About argument passing between program units, the current imple-

mentation has three problems as discussed previously. They are to be

solved.

� The current treatment for COMMON and EQUIVALENCE statements are

not general enough. Sequence and storage association issue involved

with these two statements is not addressed.

References

[1] Xiaoming Li, et al, \HPFfe: a Front-end for HPF," NPAC Technical

Report, SCCS-771, May 1996.

[2] Li Xinying, \HPF front end technical report," PACT technical report,

May 1996.

[3] James Gosling, Bill Joy, and Guy Steele, The Java Language Speci�ca-

tion. Addison-Wesley, Reading, Massachusetts, 1996.

[4] Ken Arnold and James Gosling, The Java Programming Language.

Addison-Wesley, Readings, Massachusetts, 1996.

19



[5] Tan Haoqiang, FORTRAN 77 structural programming. Tsinghua Pub-

lishing House.

[6] ANSI X3.9-1978, ISO 1539-1980(E), American National Standard Pro-

gramming Language FORTRAN. American National Standards Insti-

tute, April 3, 1978.

[7] S. I. Feldman, David M. Gay, Mark W. Maimone, N.L. Scryer, \A

Fotran to C Converter," Computing Science Technical Report No. 149,

Bellcore, Morristown, NJ, May 16, 1990, last updated March 22, 1995.

[8] Qiang Zheng, \A FORTRAN to C translator based on Sigma system,"

PACT technical report (in Chinese), July, 1994.

[9] R. A. Freak, \A FORTRAN to Pascal Translator," Software| Practice

and experience, Vol. 11, 1981, 717-732.

[10] Krista Ostertag, \Java: Beyond the Hype," VARBusiness, March 1,

1997, 63-64.

[11] Geo�rey C. Fox (ed.), Concurrency: Practice and experience, Vol. 9,

No. 6, June 1997, a special issue on Java for computational science and

engineering | simulation and modeling.

20


