
Chapter 1

High-Performance

Commodity Computing

In this chapter, we consider the role of commodity, o�-the-self software technolo-

gies and components in the construction of computational grids. We take the

position that computational grids can and should build on emerging commodity

network computing technologies, such as CORBA, Microsoft's COM, JavaBeans,

and less sophisticated Web and networked approaches. These technologies are

being used to construct three-tier architectures, in which middle-tier application

servers mediate between sophisticated backend services and potentially simple

frontends. The decomposition of application functionality into separate presen-

tation, application, and backend service tiers results in a distributed comput-

ing architecture that, we argue, can be extended transparently to incorporate

grid-enabled second- and/or third-tier services. Consequently, the three-tier ar-

chitecture being deployed for commodity network applications is well suited to

serve as an architecture for computational grids, combining high performance

with the rich functionality of commodity systems. The distinct interface, server,

and specialized service implementation layers enable technological advances to

be incorporated in an incremental fashion.

This commodity approach to grid architecture should be contrasted with

more specialized grid architectures such as Globus (Chapter ??) and Legion

(Chapter ??). Clearly, these latter technologies can be used to implement lower-

tier services. This would seem to be consistent with the Globus design philos-

ophy, given that it de�nes a service-oriented approach to metacomputing. The

integration of Legion into the commodity architecture is more problematic, in

that Legion de�nes a model for the programmer that the three-tier model will

1

2 High-Performance Commodity Computing

not expose. That said, Legion could be encapsulated into backend services as

well.

The rest of this chapter proceeds as follows. We �rst de�ne what we mean

by commodity technologies and explain the di�erent ways that they can be used

in high-performance computing. Then, we discuss an emerging distributed com-

modity computing and information system in terms of a conventional three-tier

commercial computing model. We describe how this model can be used as a

CORBA facility, and we give various examples of how commodity technologies

can be used e�ectively for computational grids. Finally, we discuss how com-

modity technologies such as Java can be used to build parallel programming

environments that combine high functionality and high performance.

1.1 Commodity Technologies

The past few years have seen an unprecedented level of innovation and progress

in commodity technologies. Three areas have been critical in this develop-

ment: the Web, distributed objects, and databases. Each area has developed

impressive and rapidly improving software artifacts. Examples at the lower

level include Hypertext Markup Language (HTML), Hypertext Transfer Pro-

tocol (HTTP), MIME, Internet Inter-ORB Protocol (IIOP), Common Gateway

Interface (CGI), Java, JavaScript, JavaBeans, Common Object Request Broker

Architecture (CORBA), Common Object Model (COM), ActiveX, Virtual Real-

ity Markup Language (VRML), object broker ORBs, and dynamic Java servers

and clients. Examples at the higher level include collaboration, security, com-

merce, and multimedia technologies. Perhaps more important than these raw

technologies is a set of open interfaces that enable large components to be quickly

integrated into new applications.

We believe that computational grid environments can and should be con-

structed that incorporate these commodity capabilities in such a way as to

achieve both high performance and high functionality.

One approach to this goal would be to use just a few of the emerging com-

modity technologies as \point solutions." For example:

� VRML or Java3D could be used for scienti�c visualization.

� Web (including Java applets) frontends could provide convenient customiz-

able interoperable user interfaces to high-performance facilities [22].

� The public key security and digital signature infrastructure being devel-

oped for electronic commerce could enable more powerful approaches to

secure high-performance systems.

1.2. The Three-Tier Architecture 3

� Java could become a common scienti�c programming language.

� The universal adoption of Java DataBase Connectivity and the growing

convenience of Web-linked databases could result in the growing impor-

tance of systems that link large-scale commercial databases with high-

performance computing resources.

� The emerging \object Web" (linking the Web, distributed objects, and

databases) could encourage a growing use of modern object technology.

� Emerging collaboration and other distributed information systems could

encourage new distributed work paradigms in place of traditional approaches

to collaboration [30].

Our focus, however, is not on such point solutions but on exploiting the

overall architecture of commodity systems for high-performance parallel or dis-

tributed computing. One might immediately raise the objection that over the

past thirty years, many other major broad-based hardware and software develop-

ments have occurred|-such as IBM business systems, UNIX, Macintosh and PC

desktops, and video games|without any profound impact on high-performance

computing software. We believe, however, that the emerging distributed com-

modity computing and information system (DcciS) is di�erent: it gives us a

worldwide, enterprise-wide distributing computing environment. Whereas previ-

ous software revolutions could help individual components of a high-performance

computing system, DcciS can, in principle, be the backbone of a complete high-

performance computing software system|whether it be for some global dis-

tributed application, an enterprise cluster, or a tightly coupled large-scale par-

allel computer.

To achieve this goal, we must add high performance to the emerging DcciS

environment. This task may be extremely di�cult; but, by using DcciS as a

basis, we inherit a multi-billion dollar investment and what is, in many respects,

the most powerful productive software environment ever built.

1.2 The Three-Tier Architecture

Within commodity network computing, the three-tier architecture has become

pervasive. As shown in Figure 1.1, the top level of this model provides a cus-

tomizable client tier, consisting of components such as graphical user interfaces,

application programs, and collaboration tools. The middle tier, often referred to

as an application server, consists of high-level agents that can provide applica-

tion functionality as well as a range of high-level services such as load-balancing,

4 High-Performance Commodity Computing

PICTURE SHOWING 3-TIER MODEL

Figure 1.1: Industry three-tier view of enterprise = computing

integration of legacy systems, translation services, metering, and monitoring.

An important aspect of the middle tier is that it both de�nes interfaces and

provides a control function, coordinating requests across one or more lower-tier

servers. The bottom tier provides backend services, such as traditional relational

and object databases. A set of standard interfaces allows a rich set of custom

applications to be built with appropriate client and middleware software. As

indicated in Figure 1.1, these layers can use Web technology such as Java and

JavaBeans, distributed objects with CORBA, and standard interfaces such as

Java DataBase Connectivity (JDBC).

1.2.1 Implementing Three-Tier Architectures

To date, two basic technologies have been used to construct commodity three-

tier networked computing systems: distributed object systems and distributed

service systems. Distributed object-based systems = are build on object-oriented

technologies such as CORBA, COM, and JavaBeans (when combined with re-

mote method invocation, or RMI). These technologies are discussed in depth in

Chapter ??. Object-oriented systems are ideal for de�ning middle-tier services.

They provide well-de�ned interfaces and a clean encapsulation of backend ser-

vices. Through the use of mechanisms such as inheritance, these systems can be

easily extended, allowing specialized services to be created.

In spite of the advantages of the distributed object approach, many network

services today are provided through a distributed service architecture. The most

notable example is the World Wide Web, in which the middle-tier service is

provided by a distributed collection of HTTP servers. Linkage to backend ser-

1.2. The Three-Tier Architecture 5

vices (databases, simulations, and other custom services) is provided via c-stom

programs called via CGI scripts.

The uses of Web technology in networked databases provides a good ex-

ample of how the distributed services architecture is used. Originally, remote

access to these databases was provided via a two-tier client-server architecture.

In these architectures, sophisticated clients would submit SQL queries to remote

databases using proprietary network access protocols to connect the client to

the server. The three-tier version of this system might use Web-based forms

implemented on a standard thin client (i.e., a Web browser) with middle-tier ap-

plication functionality implemented via CGI scripts in the HTTP server. These

scripts then access backend databases by using vendor-speci�c methods. This

scenerio becomes even more attractive with the introduction of Java and JDBC.

Using this interface, the middle-tier HTTP service can communicate transpar-

ently to a wide range of vendor databases.

Currently, a mixture of distributed service and distributed object architec-

tures is deployed, using CORBA, COM, JavaBean, HTTP servers and CGI

scripts, Java servers, databases with specialized network protocols, and other

services. These all coexist in a heterogeneous environment with common themes

but disparate implementations. We believe that in the near future, there will

be a signi�cant convergence of network computing approaches that combines

both the distributed server and distributed object approaches [7, 8]. Indeed,

we already see a blurring of the distinction between Web and distributed object

servers, with Java playing a central role in this process.

On the Web side, we are seeing a trend toward the use of extensible Java-

based Web servers. Rather than implementing middle-tier services using CGI

scripts, written in a variety of langauges, these servers can be customized on

the y through the use of Java \servlets." Alternatively, CORBA ORBs already

exist whose functionality can be = implemented by using Java.

We also believe that these advances will lead to an integrated architecture in

which Web-based services (browsers, Java, JavaBeans) = and protocols (HTTP,

RMI) are used to construct the top layer, distributed object services and pro-

tocols (such as CORBA and IIOP) are used to interface to the lower tier, and

the middle tier consists of a distributed set of extensible servers that can process

both Web-based and distributed object protocols. The exact technologies used

are not critical; however, for the sake of discussion, we will consider a middle tier

based on an integrated Java and CORBA server. We believe that the resulting

\object-Web" three-tier networked computing architecture will have profound

importance and will be the most appropriate way to implement a range of com-

putational grid environments.

6 High-Performance Commodity Computing

1.2.2 Exploiting the Three-Tier Structure

We believe that the evolving service/object three-tier commodity architecture

can and should form the basis for high-performance computational grids. These

grids can incorporate (essentially) all of the services of the three-tier architec-

ture outlined above, using its protocols and standards wherever possible, but

using specialized techniques to achieve the grid goal of dependable performance.

One might achieve this goal by simply porting commodity services to high-

performance computing systems. Alternatively, one could continue to use the

commodity architecture on current platforms while enhancing speci�c services to

ensure higher performance and to incorporate new capabilities such as high-end

visualization (e.g., immersive visualization systems: Chapter ??) or massively

parallel endsystems (Chapter ??). The advantage of this approach is that it

facilitates tracking the rapid evolution of commodity systems, avoiding the need

for continued upkeep with each new upgrade of the commodity service. This

results in a high-performance commodity computing environment that o�ers

the evolving functionality of commodity systems without requiring signi�cant

re-engineering as advances in hardware and software lead to new and better

commodity products.

The above discussion indicates that the essential research challenge for high-

performance commodity computing is to

enhance the performance of selected components within a commod-

ity framework in such a way that the performance improvement is

preserved through the evolution of the basic commodity technologies.

We believe that the key to achieving this goal is to exploit the three-tier structure

by keeping high-performance computing enhancements in the third layer|which

is, inevitability, the home of specialized services. This strategy isolates high-

performance computing issues from the control or interface issues in the middle

layer.

Let us briey consider how this strategy works. Figure 1.2 shows a hybrid

three-tier architecture in which the middle tier is implemented as a distributed

network of servers. In general, these servers can be CORBA, COM, or Java-

based object-Web servers: any server capable of understanding one of the basic

protocols is possible. The middle layer not only includes networked servers with

many di�erent capabilities but can = also contain multiple instantiations of the

same server to increase performance. The use of high-functionality but modest-

performance communication protocols and interfaces at the middle layer limits

the performance levels that can be reached. Nevertheless, this �rst step gives

a modest-performance, scalable, parallel (implemented, if necessary, in terms of

1.3. A High-Performance Facility for CORBA 7

HYBRID SERVER ARCHITECTURE

Figure 1.2: Today's heterogeneous interoperating hybrid server architecture.

High-performance commodity computing involves adding high performance in

the third tier.

multiple servers) system that includes all commodity services (such as databases,

object services, transaction processing, and collaboratories).

The next step is applied only to those services whose lack of performance con-

stitutes a bottleneck. In this case, an existing backend (third layer) implementa-

tion of a commodity service is replaced by its natural high-performance version.

For example, sequential databases are replaced by parallel database machines,

and sequential or socket-based messaging distributed simulations are replaced

by message-passing implementations on low-latency, high-bandwidth dedicated

parallel machines (specialized architectures or clusters of workstations).

Note that with the right high-performance software and network connec-

tivity, clusters of workstations (Chapter ??) could be used at the third layer.

Alternatively, collections of middle-tier services could be run on a single paral-

lel computer. These various possibilities underscore the fact that the relatively

clean architecture of Figure 1.3 can become confused. In particular, the physical

realization may not reect the logical architecture shown in Figure 1.2.

1.3 A High-Performance Facility for CORBA

As discussed above, we envision the middle tier of the network computing ar-

chitecture providing the interface to high-performance computing capabilities.

In the CORBA based strawman that we have presented, this means that high-

8 High-Performance Commodity Computing

PICTURE OF OBJECT-WEB

Figure 1.3: Integration of Object Technologies (CORBA) and the Web=3D

performance computing components must be integrated into the CORBA archi-

tecture.

CORBA is de�ned in terms of a set of facilities, where each facility de�nes

an established, standardized high-level service. Facilities are split those that are

required by most applications (called horizontal facilities) and those facilities

that are de�ned to promote interoperability within speci�c application domains.

As CORBA evolves, it is expected that some vertical facilities will migrate to

become horizontal facilities.

We believe that high-performance computing can be integrated into the

CORBA model by creating a new facility which de�nes how CORBA objects in-

teract with one another in a high-performance environment. CORBA currently

supports only relatively simple computing models, including the embarrass-

ingly parallel activities of transaction processing or dataow. High-performance

commodity computing therefore would �ll a gap by providing CORBA's high-

performance computing facility.

This new facility allows us to de�ne a commercialization strategy for high-

performance computing technologies. Speci�cally, academia and industry should

experiment with high-performance commodity computing as a general framework

for providing high-performance CORBA services. Then, one or more industry-

led groups should propose high-performance commodity computing speci�ca-

tions, following a process similar to the MPI or HPF forum activities. Such

speci�cations could include another CORBA facility, namely, that involved in

user interfaces to (scienti�c) computers. This facility could comprise interfaces

1.4. High-Performance Communication 9

necessary for performance tools and resource managers, �le systems, compilation,

debugging, and visualization.

We note that we focus here on the use of CORBA, analogies exist in the Java

and COM object models. In particular, in Section 1.6, we discuss how wrappers

might be used to provide a Java framework for high-performance computing.

1.4 High-Performance Communication

Communication performance is a critical aspect of the performance of many high-

performance systems. Indeed, a distinguishing feature between distributed and

high-performance parallel computation is the bandwidth and latency of com-

munication. In this section, we present an example of how high-performance

communication mechanisms can be integrated into a commodity three-tier com-

puting system.

The example we consider is a multidisciplinary simulation. As discussed in

Chapter ??, multidisciplinary applications typically involve the linkage of two or

more modules|say, computational uid dynamics and structures applications|

into=20 a single simulation. We can assume that simulation components are

individually parallel.

As an initial approach, one could view the linkage between components se-

quentially, with the middle tier coordinating the movement of data from one

simulation component to the other at every step in the simulation. If higher

performance is required, one may need to link the components directly, using a

high-performance communication mechanism such as the Message Passing Inter-

face (MPI) [?]. The connections between modules can be set up by a middle-tier

service (such as WebFlow or JavaBeans); then, two third-tier modules can com-

municate to one another without intervention of the middle-tier service. Control

ow returns to the middle tier when the simulation is complete.

A third possibility is to keep the control function within the middle tier, set-

ting up high-performance connections between the two modules and initiating

data transfer at every step in the simulation. Unlike the �rst scenario we con-

sidered, the actual transfer of data between modules would take place using the

high-performance interface, not through the middle tier. This alternative pre-

serves the advantages of both approaches, using the commodity protocols and

services of the three-tier architecture for all user-visible control functions while

exploiting the performance of high-performance software only where necessary.

A key element of this example is the structure of the middle-tier service. One

approach would be to use JavaBeans (see Chapter ??) as the vehicle for inte-

grating the individual simulation components. In the JavaBeans model, there is

10 High-Performance Commodity Computing

a separation of control (handshake) and implementation. This separation makes

it possible to create JavaBeans \lister objects" that reside in the middle tier

and act as a bridge between a source and sink of data. The lister object can

decide whether high performance is necessary or possible and invoke the spe-

cialized high-performance layer. As discussed above, this approach can be used

to advantage in runtime compilation and resource management, with execution

schedules and control logic in the middle tier and high-performance communica-

tion libraries implementing the determined data movement. This approach can

also be used to provide parallel I/O and high-performance CORBA.

1.5 High-Performance Commodity Services

A key feature of high-performance commodity computing is its support for

databases, Web servers, and object brokers (see Section 1.1). In this section,

we use the additional example of collaboration services to illustrate the power of

the commodity computing approach.

Traditionally, a collaborative system is one in which speci�c capabilities are

integrated across two or more clients. Examples of such systems include white-

boards, visualization, and shared control. With the introduction of the exible

Java-based three-tier architecture, support for collaboration can also be inte-

grated into the computing model by providing collaboration services in the mid-

dle tier.

Building grid applications on the three-tier architecture provides a well-

de�ned separation between high-performance computing (bottom tier) and col-

laboration (top and middle tier). Consequently, we can reuse collaboration sys-

tems built for the general Web market to address areas that require people to be

integrated with the computational infrastructure, such as computational steering

and collaborative design.

This con�guration enables the best commodity technology (e.g., from busi-

ness or distance education) to be integrated into the high-performance computing

environment. Currently, commodity collaboration systems are built on top of

the Web and are not yet de�ned from a general CORBA point of view. Nev-

ertheless, facilities such as WorkFlow [20] are being developed, and we assume

that collaboration will emerge as a CORBA capability to manage the sharing

and replication of objects.

We note that CORBA is a server-server model in which clients are viewed

as servers (i.e., run ORBs) by outside systems. This makes the object-sharing

view of collaboration natural, whether an application runs on the \client" (e.g.,

1.6. Commodity Parallel Computing 11

COLLABORATORY PICTURE

Figure 1.4: Collaboration in today's Java Web Server implementation of the

three-tier computing model. Typical clients (top right) are = independent, but

Java collaboration systems link multiple clients through object (service) sharing.

a shared Microsoft Word document) or the backend tier (e.g., a shared parallel

computer simulation).

Two systems, TANGO [30] and WebFlow [29], can be used to illustrate the

di�erences between collaborative and computational sharing. Both systems use

Java servers for their middle tier. TANGO provides collaboration services as in

Figure 1.4. Client-side applications are replicated by using an event distribution

model. To put a new application into TANGO, one must be able to de�ne both

its absolute state and changes therein. By using Java object serialization or

similar mechanisms, this state is maintained identically in the linked applications.

On the other hand, WebFlow integrates program modules by using a dataow

paradigm. With this system, the module developer de�nes data input and output

interfaces and builds methods to handle data I/O. Typically, there is no need to

replicate the state of a module in a WebFlow application.

1.6 Commodity Parallel Computing

Most of the discussion in this chapter has focused on the use of commodity tech-

nologies for computational grids, a �eld sometimes termed high-performance dis-

tributed computing. We believe, however, that commodity technologies can also

be used to build parallel computing environments that combine high function-

ality and high performance. In this section, we �rst compare alternative views

12 High-Performance Commodity Computing

PICTURE OF SIMPLE MULTI-TIER VIEW

Figure 1.5: A parallel computer viewed as a single CORBA object in a classic

host-node computing model. Logically, the host is in the middle tier and the

nodes in the lower tier. The physical architecture could di�er from the logical

architecture.

of high-performance distributed parallel computers. Then, we discuss Java as a

scienti�c and engineering programming language.

1.6.1 High-Performance Commodity Communication

Consider �rst two views of a parallel computer. In both, various nodes and

the host are depicted as separate entities. These represent logically distinct

functions, but the physical implementation need not reect the distinct services.

In particular, two or more capabilities can be implemented on the same sequential

or shared-memory multiprocessor system.

Figure 1.5 presents a simple multitier view with commodity protocols (HTTP,

RMI, COM, or the IIOP pictured) to access the parallel computer as a single

entity. This entity (object) delivers high performance by running classic HPCC

technologies (such as HPF, PVM, or the pictured MPI) in the third tier. This

approach has been successfully implemented by many groups [27] to provide

parallel computing systems with important commodity services based on Java

and JavaScript client interfaces. Nevertheless, the approach addresses the par-

allel computer only as a single object and is, in e�ect, the \host-node" model

of parallel programming [31]; the distributed computing support of commodity

technologies for parallel programming is not exploited.

Figure 1.6 depicts the parallel computer as a distributed system with a fast

network and integrated architecture. Each node of the parallel computer runs

1.6. Commodity Parallel Computing 13

PICTURE OF DISTRIBUTED SYSTEM

Figure 1.6: Each node of a parallel computer instantiated as a CORBA object.

The \host" is logically a separate CORBA object but could be instantiated

on the same computer as one or more of the nodes. Via a protocol bridge,

one could address objects using CORBA with local parallel computing nodes

invoking MPI and remote accesses using CORBA where its functionality (access

to many services) is valuable.

a CORBA ORB (or, perhaps more precisely, a stripped-down ORBlet), Web

server, or equivalent commodity server. In this model, commodity protocols

can operate both internally and externally to the parallel machine. The result

is a powerful environment where one can uniformly address the full range of

commodity and high-performance services. Other tools can now be applied to

parallel as well as distributed computing.

Obviously, one should be concerned that the exibility of this second parallel

computer is accompanied by a reduction in communication performance. Indeed,

most commodity messaging protocols (e.g., RMI, IIOP, and HTTP) have unac-

ceptable performance for most parallel computing applications. However, good

performance can be obtained by using a suitable binding of MPI or other high-

speed communication library to the commodity protocols.

In Figure 1.7, we illustrate such an approach to high performance, which

uses a separation between messaging interface and implementation. The bridge

shown in this �gure allows a given invocation syntax to support several messaging

services with di�erent performance-functionality tradeo�s. In principle, each

service can be accessed by any applicable protocol. For instance, a Web server or

database can be accessed by HTTP or CORBA; a network server or distributed

computing resource can support HTTP, CORBA, or MPI.

14 High-Performance Commodity Computing

PICTURE OF BRIDGE

Figure 1.7: A message optimization bridge allows MPI (or equivalently Globus

or PVM) and commodity technologies to coexist with a seamless user interface.

Note that MPI and CORBA can be linked in one of two ways: (1) the

MPI function call can call a CORBA stub, or (2) a CORBA invocation can be

trapped and replaced by an optimized MPI implementation. Current investi-

gations of a Java MPI linkage have raised questions about extending MPI to

handle more general object data types. One could, for instance, extend the MPI

communicator �eld to indicate a preferred protocol implementation, as is done

in Nexus [33]. Other research issues focus on e�cient object serialization needed

for a high-performance implementation of the concept in Figure 1.7.

1.6.2 Java and High-Performance Computing

We have thus far discussed many critical uses of Java in both client interfaces and

middle-tier servers to high-performance systems. Here, we focus on the direct

use of Java as a scienti�c and engineering programming language [26], taking

the role currently played by Fortran 77, Fortran 90, and C++. (In our three-tier

architecture, this is the use of Java in lower-tier engineering and science appli-

cations or in a CORBA vertical facility designed to support high-performance

computing.)

User Base. One of Java's important advantages over other languages is that

it will be learned and used by a broad group of users. Java is already being

adopted in many entry-level college programming courses and will surely be

attractive for teaching in middle or high schools. We believe that entering college

1.6. Commodity Parallel Computing 15

students, fresh from their Java classes, will reject Fortran as quite primitive in

contrast. C++, as a more complicated systems-building language, may well be

a natural progression; but although it is quite heavily used, C++ has limitations

as a language for simulation. In particular, it is hard for C++ to achieve good

performance even on sequential code. We expect that Java will not have these

problems.

Performance. Performance is arguably a critical issue for Java. However,

there seems little reason why native Java compilers, as opposed to current

portable JavaVM interpreters or \just in time" (JIT) compilers, cannot obtain

performance comparable with that of C or Fortran compilers. One di�culty

in compiling Java is its rich exception framework, which could restrict com-

piler optimizations: users would need to avoid complex exception handlers in

performance-critical portions of a code. Another important issue with Java is

the lack of any operator overloading, which could allow e�cient elegant handling

of Fortran constructs like COMPLEX. Much debate centers on Java's rule that

code not only must run everywhere but must give the same value on all ma-

chines. This rule inhibits optimization on machines such as the Intel Pentium

that include multiple add instructions with intermediate results stored to higher

precision than �nal values of individual oating-point operations.

An important feature of Java is the lack of pointers. Their absence allows

much more optimization for both sequential and parallel codes. Optimistically,

one can say that Java shares the object-oriented features of C++ and the per-

formance features of Fortran. An interesting area is the expected performance

of Java interpreters (using JIT techniques) and compilers on the Java bytecodes

(virtual machine). Currently, a PC just in time compiler shows a factor of 3{10

lower performance than C-compiled code, and this can be expected to decrease

to a factor of 2. Hence, with some restrictions on programming style, we expect

Java language or VM compilers to be competitive with the best Fortran and

C compilers. We also expect a set of high-performance \native-class" libraries

to be produced, which can be downloaded and accessed by applets to improve

performance in the usual areas one builds scienti�c libraries.

Parallelism. To discuss parallel Java, we consider four forms of parallelism

seen in applications.

1. Data Parallelism. By data parallelism we mean large-scale = parallelism

found from parallel updates of grid points, particles, and other basic com-

ponents in scienti�c computations (see Chapter ??). Such parallelism is

supported in Fortran by either high-level data parallel HPF or, at a lower

16 High-Performance Commodity Computing

level, Fortran plus message passing. Java has no built-in parallelism of this

type, but the lack of pointers means that natural parallelism is less likely

to be obscured. There seems no reason why Java cannot be extended to

high-level data-parallel form (HPJava) in a similar way to Fortran (HPF)

or C++ (HPC++). Such an extension can be done by using threads on

shared-memory machines, while in distributed-memory machines, message

passing may be used.

2. Modest-Grain Functional Parallelism. Functional parallelism refers to the

Functional parallelism arises when... type of parallelism used when compu-

tation and I/O operations are overlapped, a situation exploited extensively

by Web browsers. This parallelism is built into the Java language with

threads but has to be added explicitly with libraries for Fortran and C++.

3. Object Parallelism. Object parallelism is quite natural for C++ = or Java.

Java can use the applet mechanism to represent objects portably.

4. Metaproblem Parallelism. Metaproblem parallelism occurs in applications

that are made up of several di�erent subproblems, which themselves may

be sequential or parallel.

Interpreted Environments. Java andWeb technology suggest new program-

ming environments that integrate compiled and interpreted or scripting lan-

guages. In Figure 1.8, we show a system that uses an interpretedWeb client inter-

acting dynamically with compiled code through a typical middle-tier server [32].

This system uses an HPF = backend, but the architecture is independent of the

backend language. The Java or JavaScript frontend holds proxy objects pro-

duced by an HPF frontend operating on the backend code. These proxy objects

can be manipulated with interpreted Java or JavaScript commands to request

additional processing, visualization, and other interactive computational steering

and analysis. We note that for compiled (parallel) Java, the use of objects (as

opposed to simple types in the language) probably has unacceptable overhead.

However, such objects are appropriate for interpreted frontends, where object

references are translated into e�cient compiled code. We believe such hybrid

architectures are attractive and warrant further research.

Evaluation. In summary, we see that Java has no obvious major disadvantages

and some clear advantages compared with C++ and especially Fortran as a basic

language for large-scale simulation and modeling. Obviously, we cannot and

should not port all our codes to Java. Putting Java (or, more generally, CORBA)

wrappers around existing code does, however, seem a good way of preserving old

1.7. Related Work 17

PICTURE OF JAVA FRONT-END

Figure 1.8: An architecture for an interpreted Java frontend communicating with

a middle-tier server controlling dynamically an HPCC backend

codes. Java wrappers can both document their capability (through the CORBA

trader and JavaBean Information services) and allow de�nition of methods that

allow such codes to be naturally incorporated into larger systems. In this way

a Java framework for high-performance commodity computing can be used in

general computing solutions. As compilers get better, we expect users will �nd it

more and more attractive to use Java for new applications. Thus, we can expect

to see a growing adoption by computational scientists of commodity technology

in all aspects of their work.

1.7 Related Work

The Nile project [14] is developing a CORBA-based distributed-computing solu-

tion for the CLEO high-energy physics experiment using a self-managing, fault-

tolerant, heterogeneous system of hundreds of commodity workstations, with ac-

cess to a distributed database in excess of about 100 terabytes. These resources

are spread across the United States and Canada at 24 collaborating institutions.

TAO [16] is a high-performance ORB being developed by Douglas Schmidt

of Washington University. Schmidt conducts research on high-performance im-

plementations of CORBA [15], geared toward real-time image processing and

telemedicine applications on workstation clusters over ATM. TAO, which is based

on an optimized version of public domain IIOP implementation from SunSoft,

outperforms commercial ORBs by a factor of 2 to 3.

The OASIS (Open Architecture Scienti�c Information System) [18] environ-

18 High-Performance Commodity Computing

ment, being developed by Richard Muntz of UCLA for scienti�c data analysis,

allows one to store, retrieve, analyze, and interpret selected datasets from a large

collection of scienti�c information scattered across heterogeneous computational

environments of earth science projects such as EOSDIS. Muntz is exploring the

use of CORBA for building large-scale object-based data-mining systems. Sev-

eral groups are also exploring specialized facilities for CORBA-based distributed

computing. Examples include the Workow Management Coalition [20] and

Distributed Simulations [21].

1.8 Summary

We have described the three-tier architecture employed in commodity computing

and also reviewed a number of the commodity technologies that are used in

its implementation. We have argued that the resulting separation of concerns

among interface, control, and implementation may well make the integration of

high-performance capabilities quite natural. We have also sketched a path by

with this integration may be achieved. We believe that while=20 signi�cant

challenges must be overcome before commodity technologies can guarantee the

performance required for computational grids, there is much to be gained from

structuring approaches to grid architectures in terms of this framework.

1.9 Further Reading

The three-tier architecture is reviewed in an article in Byte [23].

[We need a good set of 5 review articles and books.]

Bibliography

[1] Object Management Group, http://www.omg.org .

[2] CORBA Compo-

nent Model RFP, http://www.omg.org/library/schedule/CORBA Compo-

nent Model RFP.htm.

[3] IBM, Netscape, Oracle, and SunSoft, CORBA Component Imperatives,

http://www.omg.org/news/610pos.htm.

[4] Dale Rogerson, Inside COM - Microsoft's Component Object Model, Mi-

crosoft Press, 1997.

[5] JavaBeans, http://www.javasoft.com/beans/

[6] Robert Englander, Developing JavaBeans, O'Reilly & Associates, 1997.

[7] CORBA 2.0/IIOP Speci�cation, http://www.omg.org/corba/c2indx.htm.

[8] Robert Orfali and Dan Harkey, Client/Server Programming with Java and

CORBA, Wiley, 1997.

[9] OrbixWeb for Java from IONA, http://www.iona.com.

[10] VisiBroker for Java from Visigenic, http://www.visigenic.com.

[11] JacORB by Freie Universit=3DE4t Berlin,

http://www.inf.fu-berlin.de/ brose/jacorb/.

[12] omniORB2 by Olivetti and Oracle Research Laboratory

http://www.orl.co.uk/omniORB/omniORB.html.

[13] The Electra Object Request Broker,

http://www.olsen.ch/�ma�eis/electra.html.

[14] Nile: National Challenge Computing Project http://www.nile.utexas.edu/.

19

20 BIBLIOGRAPHY

[15] Douglas Schmidt, Research on High Performance and Real-Time CORBA,

http://www.cs.wustl.edu/�schmidt/corba-research-overview.html.

[16] Douglas Schmidt, Real-time CORBA with TAO (The ACE ORB),

http://www.cs.wustl.edu/�schmidt/TAO.html.

[17] Steve Vinoski, Object Interconnections, column in C++ Report,

http://www.iona.com/hyplan/vinoski/.

[18] E. Mesrobian, R. Muntz,

E. Shek, S. Nittel, M. LaRouche, and M. Krieger, OASIS: An Open Ar-

chitecture Scienti�c Information = System, 6th International Workshop on

Research Issues in Data Engineering, New Orleans, February, 1996. See also

http://techinfo.jpl.nasa.gov/JPLTRS/SISN/ISSUE36/MUNTZ.htm.

[19] WORB - Web Object Request Broker,

http://osprey7.npac.syr.edu:1998/iwt98/projects/worb.

[20] Workow Mangement Coalition, http://www.aiai.ed.ac.uk/project/wfmc/.

[21] DoD Modeling and Simulation O�ce (DMSO), High Level Architecture and

Run-Time Infrastructure, http://www.dmso.mil/hla.

[22] Geo�rey Fox, \Introduction to Web Technologies and Their Applications,"

Syracuse report SCCS-790.

http://www.npac.syr.edu/techreports/html/0750/abs-0790.html.

[23] Three-tier commercial computing model, Byte, August 1997,

http://www.byte.com/art/9708/sec5/art1.htm.

[24] Mark Baker Portsmouth, Collection of links relevant to HPcc Hori-

zontal CORBA facility and seamless interfaces to HPCC computers,

http://www.sis.port.ac.uk/ mab/Computing-FrameWork/.

[25] Compilation of references to use of Java in computational science and

engineering (including proceedings of Syracuse and Las Vegas meetings),

http://www.npac.syr.edu/projects/javaforcse.

[26] Geo�rey Fox and Wojtek Furmanski, Java for parallel computing and as

a general language for scienti�c and engineering simulation and modeling,

Concurrency: Practice and Experience, 9: 415{426, 1997.

[27] Jim Almond, Resource for seamless computing,

http://www.ecmwf.int/html/seamless/.

BIBLIOGRAPHY 21

[28] David Bernholdt, Geo�rey Fox, and Wojtek Furmanski, Towards High Per-

formance Object Web Based FMS, whitepaper for ARL MSRC PET Pro-

gram, Sept. 1997.

[29] D. Bhatia, V. Burzevski, M. Camuseva, G. Fox, W. Furmanski, and G.

Premchandran, WebFlow { A visual programming paradigm for Web/Java

based coarse grain distributed computing, Concurrency: Practice = and

Experience, 9: 555{578, 1997.

[30] L. Beca, G. Cheng, G. Fox, T. Jurga, K. Olszewski, M. Podgorny, P.

Sokolowski, and K. Walczak, Java enabling collaborative education, health

care and computing, Concurrency: Practice and Experience, 9: 521{534,

1997. See alsohttp://trurl.npac.syr.edu/tango/.

[31] K. Dincer and G. Fox, Using Java and JavaScript in the Virtual Pro-

gramming Laboratory: A web-based parallel programming environment,

Concurrency: Practice and Experience, 9: 521{534, 1997; see = also

http://www.npac.syr.edu/users/dincer/papers/vpl/.

[32] E. Akarsu and T. Haupt, Integrated Environment for HPF Compiler and

Interpreter, http://www.npac.syr.edu/projects/hp�/.

[33] I. Foster, J. Geisler, C. Kesselman, and S. Tuecke, Managing multiple com-

munication methods in high-performance networked computing systems, J.

Parallel and Distributed Computing, 40:35{48, 1997.

