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Abstract

The overall aim of this paper is to introduce mpiJava|a Java interface

to the widely used Message Passing Interface (MPI). In the �rst part of

the paper we discuss the design of the mpiJava API and issues associated

with its development. In the second part of the paper we brie
y describe

an implementation of mpiJava on NT using the WMPI environment. We

then discuss some measurements made of communications performance to

compare mpiJava with C and Fortran bindings of MPI. In the �nal part

of the paper we summarize our �ndings and brie
y mention work we plan

to undertake in the near future.

1 Introduction

Recently there has been a great deal of interest in the idea that Java may be

a good language for scienti�c and engineering computation, and in particular

for parallel computing [5, 10, 11, 12]. The claims made on behalf of Java,

that it is simple, e�cient and platform-neutral|a natural language for network

programming|make it potentially attractive to scienti�c programmers hoping

to harness the collective computational power of networks of workstations and

PCs, or even of the Internet.
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A basic prerequisite for parallel programming is a good communication API.

Java comes with various ready-made packages for communication, notably an

easy-to-use interface to BSD sockets, and the Remote Method Invocation (RMI)

mechanism. Interesting as these interfaces are, it is questionable whether par-

allel programmers will �nd them especially convenient. Sockets and remote

procedure calls have been around for about as long as parallel computing has

been fashionable, and neither of them has been popular in that �eld. Both

communication models are optimized for client-server programming, whereas

the parallel computing world is mainly concerned with \symmetric" communi-

cation, occurring in groups of interacting peers.

This symmetric model of communication is captured in the successful Mes-

sage Passing Interface standard (MPI), established a few years ago [9]. MPI

directly supports the Single Program Multiple Data (SPMD) model of paral-

lel computing, wherein a group of processes cooperate by executing identical

program images on local data values. Reliable point-to-point communication is

provided through a shared, group-wide communicator, instead of socket pairs.

MPI allows numerous blocking, non-blocking, bu�ered or synchronous commu-

nication modes. It also provides a library of true collective operations (broadcast

is the most trivial example). An extended standard, MPI 2, allows for dynamic

process creation and access to memory in remote processes.

The existing MPI standards specify language bindings for Fortran, C and

C++. In this article we discuss a binding of MPI 1.1 for Java, and describe an

implementation using Java wrappers to invoke C MPI calls through the Java

Native Interface [14]. The software is publically available from

http://www.npac.syr.edu/projects/pcrc/mpiJava

1.1 Related work

Early work by two of the current authors on Java MPI bindings is reported in

[3, 4]. In those papers we compared various approaches to parallel programming

in Java, including socket programming and MPI programming. A comparable

approach to creating full Java MPI interfaces has been taken by Getov and

Mintchev [17, 13]. In their work Java wrappers were automatically generated

from the C MPI header. This eases the implementation work, but does not lead

to a fully object-oriented API. A subset of MPI is implemented in the DOGMA

system for Java-based parallel programming [16]. MPI Software Technology, Inc

have announced their intention to deliver a commercial Java interface to MPI

called JMPI [15]. Java implementations of the related PVM message-passing

environment have been reported in [18] and [8].

1.2 Overview of this article.

First we outline the the API and describe various special issues that arise in

Java. Implications of object serialization for the Java MPI interface are explored
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Figure 1: Principal classes of mpiJava

brie
y. Di�culties due to the lack of true multidimensional arrays in Java are

mentioned.

This discussion is followed by a description of an implementation of the pro-

posed Java binding through a set of wrappers that use the Java native methods

interface (JNI) to call existing MPI implementations. The virtues and problems

of this implementation strategy are discussed, and results of tests and bench-

marks on Solaris and Windows NT are presented.

2 Introduction to the mpiJava API

The MPI standard is explicitly object-based. The C and Fortran bindings rely

on \opaque objects" that can be manipulated only by acquiring object handles

from constructor functions, and passing the handles to suitable functions in the

library. The C++ binding speci�ed in the MPI 2 standard collects these objects

into suitable class hierarchies and de�nes most of the library functions as class

member functions. The mpiJava API follows this model, lifting the structure of

its class hierarchy directly from the C++ binding. The major classes of mpiJava

are illustrated in Figure 1.

The class MPI only has static members. It acts as a module containing global

services, such as initialization of MPI, and many global constants including the

default communicator COMM WORLD.

The most important class in the package is the communicator class Comm. All

communication functions in mpiJava are members of Comm or its subclasses. As
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MPI datatype Java datatype

MPI.BYTE byte

MPI.CHAR char

MPI.SHORT short

MPI.BOOLEAN boolean

MPI.INT int

MPI.LONG long

MPI.FLOAT float

MPI.DOUBLE double

MPI.PACKED

Figure 2: Basic datatypes of mpiJava

usual in MPI, a communicator stands for a \collective object" logically shared

by a group of processors. The processes communicate, typically by addressing

messages to their peers through the common communicator.

Another class that is important for the discussion below is the Datatype

class. This describes the type of the elements in the message bu�ers passed to

send, receive, and all other communication functions. Various basic datatypes

are prede�ned in the package. These mainly correspond to the primitive types

of Java, shown in �gure 2.

The standard send and receive operations of MPI are members of Comm with

interfaces

public void Send(Object buf, int offset, int count,

Datatype datatype, int dest, int tag)

public Status Recv(Object buf, int offset, int count,

Datatype datatype, int source, int tag)

In both cases the actual argument corresponding to buf must be a Java array.

In the current implementation they must be arrays with elements of primitive

type. By implication they must be one-dimensional arrays, because Java \multi-

dimensional arrays" are really arrays of arrays. In these and all other mpiJava

calls, the bu�er array argument is followed by an o�set that speci�es the element

in the array where the message actually starts.

2.1 Special features of the Java binding

The mpiJava API is modelled as closely as practical on the C++ binding de-

�ned in the MPI 2.0 standard (currently we only support the MPI 1.1 subset).

A number of changes to argument lists are forced by of the restriction that ar-

guments cannot be passed by reference in Java. In general outputs of mpiJava

methods come through the result value of the function. In many cases MPI
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import mpi.* ;

class Hello {

static public void main(String[] args) {

MPI.Init(args) ;

int myrank = MPI.COMM_WORLD.Rank() ;

if(myrank == 0) {

char [] message = "Hello, there".toCharArray() ;

MPI.COMM_WORLD.Send(message, 0, message.length, MPI.CHAR, 1, 99) ;

}

else {

char [] message = new char [20] ;

MPI.COMM_WORLD.Recv(message, 0, 20, MPI.CHAR, 0, 99) ;

System.out.println("received:" + new String(message) + ":") ;

}

MPI.Finalize();

}

}

Figure 3: Minimal mpiJava program (run in two processes)

functions return more than one value. This is dealt with in mpiJava in various

ways. Sometimes an MPI function initializes some elements in an array and also

returns a count of the number of elements modi�ed. In Java we typically return

an array result, omitting the count. The count can be obtained subsequently

from the length member of the array. Sometimes an MPI function initializes

an object conditionally and returns a separate 
ag to say if the operation suc-

ceeded. In Java we return an object handle which is null if the operation

fails. Occasionally an extra �eld is added to an existing MPI class to hold extra

results|for example the Status class has an extra �eld, index, initialized by

functions like Waitany. Rarely none of these methods work and we resort to

de�ning auxilliary classes to hold multiple results from a particular function. In

another change to C++, we often omit array size arguments, because they can

be picked up within the wrapper by reading the length member of the array

argument.

As a result of these changes mpiJava argument lists are often more concise

than the corresponding C or C++ argument lists.

Normally in mpiJava, MPI destructors are called by the Java finalize

method for the class. This is invoked automatically by the Java garbage col-

lector. For most classes, therefore, no binding of the MPI class FREE function

appears in the Java API. Exceptions are Comm and Request, which do have ex-
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plicit Free members. In those cases the MPI operation could have observable

side-e�ects (beyond simply freeing resources), so their execution is left under

direct control of the programmer.

2.2 Derived datatype vs Object serialization

In MPI new derived types of class Datatype can be created using suitable library

functions. The derived types allow one to treat contiguous, strided, or indirectly

indexed segments of program arrays as individual message elements. The corre-

sponding array subsections can then be communicated in a single function call,

potentially exploiting any special hardware or software the platform provides for

exchanging scattered data between user space and the communication system.

Currently mpiJava provides all the derived datatype constructors of stan-

dard MPI, with one limitation: it places signi�cant restrictions on its binding

of MPI TYPE STRUCT. In C or Fortran this function can be used to describe

an entity combining �elds of di�erent primitive (or derived) type. Because of

the assumption that bu�ers are one-dimensional arrays with elements of prim-

itive type, mpiJava imposes a restriction that all the types combined by its

Datatype.Struct member must have the same base type, which must agree

with the element type of the bu�er array. Also mpiJava does not provide an

analogue of MPI BOTTOM bu�er address, or the MPI ADDRESS function for �nding

o�sets relative to this absolute memory base. In C or Fortran these functions

allow bu�ers to include �elds from separately declared variables or arrays, but

the mechanism does not sit very well with the pointer-free Java language model.

Approaches based on the MPI derived datatype model do not seem to be the

best way to alleviate this restriction. A better option is probably to exploit the

run-time type information already provided in Java objects. We are developing

a version of mpiJava that adds one new prede�ned datatype:

MPI.Object

A message bu�er can then be an array of any serializable Java objects. The

objects are serialized automatically in the wrapper of send operations, and un-

serialized at their destination.

The absence of true multi-dimensional arrays in Java limits another use of

derived data types. In MPI the MPI TYPE VECTOR function creates a derived

datatype representing a strided section of an array. In C or Fortran this strided

section can be identi�ed with a section of a multi-dimensional array. (It could

describe, say, an edge of the local patch of a two-dimensional distributed array.)

In Java there is no equivalence between a multi-dimensional array and a contigu-

ous patch of memory, or a one-dimensional array. The programmer may choose

to linearize all multi-dimensional arrays in the algorithm, representing them as

one-dimensional arrays with suitable index expressions. In this case derived

datatypes can be used to send and receive sections of the array. Alternatively

the programmer may use Java arrays of arrays to represent multi-dimensional
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MPIprog.java

JNI C Interface

Native Library (MPI)

Import mpi.* ;Import mpi.* ;

Figure 4: Software Layers

arrays. This simpli�es the index arithmetic in the program. Sections of the

array are then explicitly copied to one-dimensional bu�ers for communication.

The latter option seems to be more popular with programmers.

Although, for reasons of conformance of with MPI standards, we expect

to continue supporting derived datatypes in mpiJava, their value in the Java

domain is less clearcut than in C or Fortran. Allowing serializable objects as

bu�er elements is probably a more powerful facility.

3 mpiJava implementation on WMPI

3.1 Introduction

A crucial part of mpiJava is the JNI C interface library. This library has the JNI

stubs that bind the Java MPI calls to the underlying native MPI library|Figure

4 provides a simple schematic view of the software layers involved.

The development and testing of mpiJava was undertaken on various Sun and

SGI UNIX platforms using MPICH. A number of problems were encountered

with MPI on these systems which was generally caused by the interaction of

the mpiJava JNI and the native MPI library. These problems led us to explore

a number of di�erent MPI environments, including those for NT. Currently,

WMPI [21] on NT is the only environment that enables mpiJava to work con-

sistently and e�ciently. In this section of the paper we will describe the WMPI

implementation of mpiJava for NT.
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3.2 WMPI

WMPI from the Instituto Supererior de Engenharia de Coimbra, Portugal is

a full implementation of MPI for Microsoft Win32 platforms. WMPI is based

on MPICH and includes a P4 [2] device standard. P4 provides provides the

communication internals and a startup mechanism. The WMPI package is a

set of libraries (for Borland C++, Microsoft Visual C++ and Microsoft Vi-

sual FORTRAN). The release of WMPI provides libraries, header �les, exam-

ples and daemons for remote start-up. WMPI can co-exist and interact with

MPICH/ch p4 in a cluster of mixed UNIX and Win32 platforms. WMPI is still

under development and freely available. WMPI and other MPI environments

for NT had been explored thoroughly in a previous project [1].

3.3 mpiJava under WMPI

To create a release of mpiJava for WMPI the following steps were undertaken

Step 1: Compile the mpiJava JNI C interface into a Win32 Dynamic Link

Library (mpiJava.dll).

Step 2: Modify the name of the library loaded by the mpiJava Java interface

(MPI.java) to that of the newly compiled library.

Step 3: Create a JNI interface toWMPI. This was necessary as underWMPI a

master process is �rst spawned. Its purpose is to �rst read in a job con�guration

�le and use the information within it to set up and run the actual MPI processes.

An idiosyncrasy of WMPI is that all MPI processes must have a �le name with

the extension \.EXE". This led to the need to produce a JNI interface to WMPI

so that the JVM was loaded and the \main" method of mpiJava Java class

started. Once these three steps had been completed mpiJava for WMPI was

ready for testing.

3.4 Functionality Tests

An integral part of the development of this project was to produce or translate

a number of basic MPI test codes to mpiJava. An obvious starting point was

the C test suite originally developed by IBM [19]. This suite had been modi�ed

to comply fully with the MPI standard and to be compatible with MPICH.

The suite consists of �fty-seven C programs that test the following MPI calls

and data types: collective operations, communicators, data types, enviromental

inquiries, groups, point to point and virtual topologies. These codes were all

translated to mpiJava.
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Under WMPI these codes were run either as multiple processes on a single

machine (Shared Memory mode|SM) or as multiple processes running on sep-

arate machines (Distribute Memory mode|DM). Under WMPI all the codes

ran in both modes without alterations being made apart from specifying that

more global memory was needed by WMPI.

4 Simple Communications Performance Measure-

ment

4.1 Introduction

At this early stage of our project we have decided to restrict performance mea-

surements to those that will give some indication of the basic inter-processor

communications performance. The actual computational performance of each

process is felt to be dependent on the local JVM and associated technologies

used by speci�c vendors to increase the performance of Java.

4.2 PingPong Communications Performance Tests

In this program increasing sized messages are sent back and forth between

processes|this is commonly called PingPong. This benchmark is based on

standard blocking MPI Send/MPI Recv. PingPong provides information about

latency of MPI Send/MPI Recv and uni-directional bandwidth. To ensure that

anomalies in message timings are minimized the PingPong is repeated many

times for each message size. The codes used for these tests were those devel-

oped by Baker and Grassl [20]. The three existing codes (MPI-C, MPI-Fortran

and Winsock-C) were used for comparison and we implemented an mpiJava

version for our purposes.

The main problem encountered running the PingPong code was that under

WMPI on Win32 MPI Wtime() had been implemented with a millisecond reso-

lution. It was necessary to adapt each of the codes to use an alternative times

with microsecond (�s) resolution. The performance tests shown in the next

section were run on two similar systems:

� Two dual processor (P6 200 MHz) NT 4 workstations each with 128

MBytes of DRAM.

� Two dual processor (UltraSparc 200 MHz) Solaris workstations with 256

MBytes of DRAM.

Both systems were connected via 10BaseT Ethernet and the tests were carried

out when there was little network activity and on quiet machines.
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WMPI-C WMPI-J MPICH-C MPICH-J

SM 67.2 �s 161.4 �s 148.7 �s 374.6 �s

DM 623.3 �s 689.7 �s 679.1 �s 961.2 �s

Table 1: Times for 1byte messages.

4.3 Message Start up latencies

In Table 1 we show the transmission time in microseconds to send a 1 byte

message in each of the environments tested. In SM the mpiJava wrapper adds

an extra 94 �s (140%) and 226 �s (152%) compared with WMPI and MPICH

C respectively. In DM the mpiJava wrapper adds and extra 66 �s (11%) and

282 �s (42%) compared to WMPI and MPICH C respectively.

4.4 Results in Shared Memory Mode (Figure 5)

The mpiJava curve mirrors that of C with an almost constant o�set up to 8K,

thereafter the curves converge meeting at 256K. Under MPICH, the curves for

C and mpiJava mirror each other in a similar fashion to those under WMPI,

again there is a constant o�set and convergence at around 256K.

Under WMPI the peak bandwidth of C is around 65 MBytes/s and mpiJava

is 54 MBytes/s. The peaks occur at around 64K. Under MPICH the bandwidth

is 
attening out, but still increasing for C and mpiJava, at the 1M. The actual

rate measured at this point is about 50 MBytes/s.

Clearly the WMPI C code perform best of those tested. The performance of

mpiJava in SM under WMPI is good|it exhibits a fairly constant overhead of

95 �s up to 2K, thereafter it converges with the C curve. The performance the C

code under MPICH is slightly surprising as the NT and Solaris platforms used for

these tests had similar speci�cations. It is assumed that the performance re
ects

the usage of MPICH rather than the native version of MPI for Solaris. Even so,

the MPICH results for mpiJava show that it exhibits reasonable performance.

4.5 Results in Distributed Memory Mode (Figure 6)

In DM the di�erences between the MPI codes is not as pronounced as seen in

SM. Under WMPI the C and mpiJava codes display very similar performance

characteristics throughout the range tested. Under MPICH, there is distinct

performance di�erence between C and mpiJava. However the di�erence is much

smaller than in SM and the curves converge at the 4k. All curves peak at about

1 MByte/s, which is about 90% of the maximum attainable on 10Mbps Ethernet

link.
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4.6 Overall Results Discussion

In both SM and DM modes mpiJava adds a fairly constant overhead compared

to normal native MPI. In an environment like WMPI, which has been optimized

for NT, the actual overheads of using mpiJava are relatively small at around

100�s. Under MPICH the situation is not quite so good, here the use of mpiJava

introduces an extra overheads of between 250-300�s.

It should be noted that these results compare codes running directly under

the operating systems with those running in the JVM. For example, according

to [6] a single 200 MHz PentiumPro will achieve in excess of 62 M
op/s on a

Fortran version of LinPack. A test of the Java LinPack code [7] gave a peak

performance of 22 M
op/s for the same processor running the JVM. The dif-

ference in performance will account for much of the additional overhead that

mpiJava imposes on C MPI codes. From this it can be deduced that the quality

and performance of JVM on each platform will have the greatest e�ect on the

usefulness of mpiJava for scienti�c computation.

5 Conclusions

5.1 Overall Summary

We have discussed the design and development of mpiJava|a pure Java inter-

face to MPI. We have also highlighted the bene�ts of a fully object-oriented Java

API compared to those currently available. Our performance tests have shown

that mpiJava should ful�l the needs of MPI programmers not only in terms of

functionality but also in terms of good performance when compared to similar

C MPI programs. Overall, we feel that we have implemented a well-designed,

functional and e�cient Java interface to MPI.

5.2 Particular Conclusions

� mpiJava provides a fully functional and e�cient Java interface to MPI.

� Our performance tests have shown that, in terms of communication speeds,

WMPI on NT outperforms MPICH on Solaris.

� When used for distributed computing the current implementation of mpi-

Java does not impose a huge overhead on top of the native MPI interface.

� We have discovered some of the limitations in the usage fo JNI. In par-

ticular with MPICH where we had problems with UNIX signals. We are

hopeful that these problems will disappear when we start using JDK 1.2

and native threads.
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� Our performance tests indicate that much of the additional latency that

mpiJava imposes is due to the relatively poor performance of the JVM

rather than the impact of messages of traversing additional software layers.

� The syntax of mpiJava is easy to understand and use, thus making it rela-

tively simple for programmers with either a Java or scienti�c background

to take up.

� We believe that mpiJava will also provide a popular means for teaching

students the fundamentals of parallel programming with MPI.

5.3 Future Work

We plan to continue to improve mpiJava with further Java features, such as

object serialization, and also add in the functionality that has been proposed in

MPI 2. We intend to \port" mpiJava to a multitude of new MPI environments,

including LAM, Sun MPI and Globus. We are also planning a pure Java MPI

environment which does not rely on native MPI services.
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Figure 5: PingPong Results in Shared Memory mode
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Figure 6: PingPong Results in Distributed Memory mode
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