
Java as a Language for Scienti�c Parallel

Programming

Bryan Carpenter, Yuh-Jye Chang,

Geo�rey Fox, Xiaoming Li

Northeast Parallel Architectures Centre,

Syracuse University, Syracuse, NY 13244

fdbc,yjchang,gcf,lxmgnpac.syr.edu

August, 1997

Abstract

Java may be a natural language for portable parallel programming.

We discuss the basis of this claim in general terms, then illustrate the

use of Java for message-passing and data-parallel programming through

series of case studies. In the process we introduce some proposals for

a Java binding of MPI, and describe the use of a Java class-library to

implement HPF-style distributed data. Prospects for future Java-based

parallel programming environments are discussed.

1

1 Introduction

The explosion of interest in Java over the last year has been driven largely by its

r�ole in bringing a new generation of interactive pages to the World Wide Web.

Undoubtedly various features of the language|compactness, byte-code porta-

bility, security, and so on|make it particularly attractive as an implementation

language for applets embedded in Web pages. But it is clear that the ambitions

of the Java development team go well beyond enhancing the functionality of

HTML documents. Many of their concerns, such as portability, execution in a

heterogenous network environment, and e�ciency, mirror developments in High

Performance Computing world over a number of years[4, 12, 11, 16, 14].

With Java positioned to become a standard programming language on the

Internet, and scienti�c parallel processing edging towards network-based com-

putation, it is natural to ask how these two technologies will interact. How

suitable is Java for scienti�c computing, and do lessons from research in parallel

computing have implications for the development of Java?

Popular acclaim aside, there are some reasons to think that Java may be a

good language for scienti�c and parallel programming.

� Java is a descendant of C++. C and C++ are used increasingly in scien-

ti�c programming. In recent years numerous variations on the theme of

C++ for parallel computing have appeared. See, for example [25, 6, 9, 2,

10, 17].

� Java omits various features of C and C++ that are considered \di�cult"|

notably, pointers. Poor compiler analysis has often been blamed on these

features. The inference is that Java, like Fortran, may be a suitable source

language for highly optimizing compilers (although direct evidence for this

belief is still lacking).

� Java comes with builtin multithreading. On a shared memory platform

independent threads may be scheduled on di�erent processors by a suitable

runtime. In any case multithreading can be very convenient in explicit

message-passing styles of parallel programming [20].

We will return to the question of whether parallel computing may have impli-

cations for the development of Java in section 5.

Section 2 of this article outlines various options for parallel programming

in Java|possible ways to express parallelism, and ways to handle inter-process

communication.

The main technical content of the paper is in sections 3 and 4. Section

3 contains some case studies in which we explore the message-passing style of

programming in Java. We cover parallel programming using sockets directly,

and describe our Java interface to MPI. In section 4 we discuss approaches to

data-parallel programming in Java, and outline one of our demo programs.

In this article our emphasis is more on language bindings and interface issues,

and less on performance. Java compilers are in an early stage of development,

and we assume that current performance �gures are not indicative of future

potential.

2 Issues

2.1 Approaches to Parallelism in Java

Java already supports concurrency through the thread mechanism and monitor

synchronization built into the language. In this article we are interested in

truly parallel computation, involving multiple CPUs. Such parallelism could be

introduced into Java in a number of ways.

It could be achieved through automatic parallelization of sequential code,

but it is unclear why this would be easier for Java than for other languages.

Alternatively, the Java virtual machine for a shared memory multiprocessor can

schedule the threads of a multi-threaded Java program on di�erent processors.

Some success with these approaches is reported in [3]. For computation on a

network (or distributed memory computer) realistic options include language

extensions or directives akin to HPF, or provision of libraries|class libraries|

to support task parallelism or data parallelism.

A popular approach in C++ has been to defer language extensions and

concentrate on class library support for parallel programming. The similarities

between the two languages suggest this may be a fruitful avenue in Java too.

The success of this analogy is by no means automatic, however. Features such

as templates and user-de�ned operator overloading make the C++ language

inherently more customizable than Java. In C++ library-de�ned types can be

used on an identical footing to primitive types|inline methods mean they can

be almost as e�cient as primitive types. Less importantly, but conveniently,

new control constructs can often be simulated in C or C++ through use of

macros. On grounds, presumably, of simplicity and transparency many of these

features have been omitted from Java.

Such caveats notwithstanding, this article will concentrate on class libraries

rather than language extensions. We will be working with class libraries imple-

mented in the standard Java development environment.

2.2 Communication in Java

The standard Java API provides a simpli�ed interface to Internet sockets. This

interface hides much of the ugly detail involved in socket-programming at the

at the traditional C/UNIX level. The java.net interface provides less
exibility

than using the system calls directly. On the other hand, Java's built-in support

for threads adds some
exibility in scheduling communications that is missing

from raw C.

We will give an example of socket programming in section 3.1, but tradi-

tionally this has not been a popular paradigm in the parallel processing world,

where more succesful schemes include

� Message-passing through language-level support [20, 13] or higher-level

library interfaces [12].

� Data parallelism, which we take to mean the style of programming in

which parallelism is achieved through operations on distributed arrays,

with synchronization typically limited to bulk synchronization occuring

naturally through collective array operations.

� Communication through shared memory or shared objects, involving some

more or less intricate mechanism for inter-process synchronization.

The case studies in the rest of this article restrict themselves to message-passing

and data parallelism. As observed in the previous section, communication

through true shared memory is already implicit in the Java thread model. Com-

munication through remote objects is undoubtedly a natural and important

paradigm in Java, especially for access to remote services [23, 18, 17], but it is

not speci�cally tied to scienti�c parallel programming and we will not discuss

it further here.

3 Message-passing case studies

Message-passing remains one of the most e�ective and widely used communi-

cation paradigms in parallel computing. In this section we compare two ap-

proaches to message-passing in Java, in the context of a \scienti�c" application.

The �rst approach is to use the socket interface in the standard Java API. The

second is to work through a Java interface to the message-passing standard,

MPI [12].

To minimize distracting details, our application will be elementary: Con-

way's Life automaton.

3.1 Java sockets

The UNIX socket model is most suitable for programming client-server appli-

cations. Typical scienti�c parallel programs do not �t directly into this model.

Before a SPMD program can start two conditions must obtain: a pool of sym-

metric peer processes must have been created, and each peer must be able to

address a message to any other. Bootstrapping this situation typically involves

one host starting remote invocations of the program (for example by using rsh

or a specialized daemon). All the peers will create listening sockets, and all

the port numbers must be broadcast somehow, then socket connections will be

made.

Figure 1 gives a schematic outline of a distributed Life program using java.net.

The fairly intricate code sketched above for initialization and establishment of

socket connections has been absorbed into the de�nition of an auxilliary class

hpj. The members Input and Output return streams associated with sockets

connected to peer processes. In the example an N by N Life board is divided

blockwise in one dimension, each processor holding a local block of width block-

Size.

We note

� Initialization is a complex procedure and clearly it should not be coded

anew for each application program.

� In this example the messages were contiguous byte vectors that could be

transmitted e�ciently through the read and write methods of the Java

socket API. In general the messages will have more complex types and the

data may not be contiguous in memory. Using the typed primitives of the

standard API may then incur extra costs of copying and type-conversion.

For reasons such as these we suspect that direct socket programming will remain

unattractive to scienti�c parallel programmers, even with the simpli�ed Java

socket API.

3.2 MPI Interface

We have produced a Java interface to an existing MPI implementation [21] using
Java native methods. The interface has been tested on a cluster of UltraSparc
workstations running Solaris1. Our interface is modelled on the proposed C++
bindings of MPI2. For example, many of the most basic functions of the library
are members of the communicator class, Comm:

public class Comm {

public int Size();

public int Rank();

void Send(Object buf, int offset, int count,

Datatype datatype, int dest, int tag) ;

Status Recv(Object buf, int offset, int count,

Datatype datatype, int dest, int tag) ;

1Interfacing Java to MPICH/P4 was not straightforward, due to unpleasant interactions

between the Java run-time and the underlying P4 implementation. For example, standard

implementations of both use the UNIX SIGALRM signal. We found it necessary to patch

the MPICH 1.0.13 release to work round these incompatibilities. The necessary patches are

available from us on request.
2See the article by Skjellum et al in [25].

class life_java {

static public void main(String[] args) throws Exception {

hpj HPJava = new hpj(args);

int np = HPJava.num_processor();

int id = HPJava.my_id();

... compute local `blockSize', `blockBase' (avoiding empty blocks).

// `block' has `blockSize + 2' columns. This allows for ghost cells.

byte block[][] = new byte[blockSize+2][N];

... initialize local block with some pattern

// Main update loop.

int next = (id + 1) % np;

int prev = (id + np - 1) % np;

for(int iter = 0 ; iter < NITER ; iter++) {

// Shift local upper edge into next neighbour's lower ghost edge

HPJava.Output(next).write(block[blockSize]);

HPJava.Output(next).flush();

HPJava.Input(prev).read(block[0]);

// Shift local lower edge into prev neighbour's upper ghost edge

HPJava.Output(prev).write(block[1]);

HPJava.Output(prev).flush();

HPJava.Input(next).read(block[blockSize+1]);

... Calculate a block of neighbour sums.

... Update block of board values.

}

}

}

Figure 1: Skeleton of socket-based Life program.

...

}

Using these members, the socket-based program in the last section can be

transcribed straightforwardly to MPI. To save space we omit this naive trans-

literation3. In the next section we illustrate some of the added value that an

MPI interface brings.

3.3 Derived data types and higher-level MPI features

Description of the data bu�ers passed to communication operations presents

some special problems in Java. Existing MPI bindings depend on a linear mem-

ory model and explicit or implicit use of pointers. Java does not have such a

linear memory model. Even behind the scenes a Java array has no uniquely

de�ned address in memory, because the garbage collector is allowed to relocate

objects unpredicatably during program execution to avoid fragmentation of its

workspace. Our Java interface tries to retain as much of the MPI derived data-

type mechanism as practical, but some functionality has been sacri�ced. The

bu�er argument passed to a send or receive operation must be a one-dimensional

array of primitive type. Any o�set speci�ed in a derived type argument then

refers to a displacement within this one-dimensional array, never a displacement

in memory4.

All MPI derived types expressible through our interface have a uniquely

de�ned base type|a Java primitive type. Interfaces to MPI TYPE HVECTOR

and MPI TYPE HINDEXED are provided, but the strides and displacements

are in units of the base type, not bytes. An interface to MPI TYPE STRUCT

is provided, but all component types in the \struct" must have the same base

type.
In the concrete Java binding of the send function, for example,

void Send(Object buf, int offset, int count,

Datatype datatype, int dest, int tag) ;

the formal buf argument is presented as a generic Java Object. As explained

above, the actual argument must be a linear array. The second argument is

the o�set in this array of the �rst element of the message5. The remaining

3We remark that use of standard mode send in such a contex is \unsafe", and could

deadlock if the system does not provide enough bu�ering. The same caveat applies to the

socket-based version
4Run-time relocation of data causes at least one unresolved problem in making a Java

binding to a standard MPI implementation. In such implementations the request objects for

non-blocking communications will probably retain pointers to the user bu�er area. But the

data address for the Java array could be moved during the lifetime of the request object.

Our current Java binding omits non-blocking communication, so we have not addressed this

problem.
5This o�set is in units of the buf array element|or the base type of datatype|not of

any compound type. The Object + o�set presentation is reminiscent of the interface of the

arrayCopy utility in the standard Java API.

class Life {

void main(String args) {

MPI.Init(args) ;

int dims [] = new int [2] ;

... Set `dims', etc

Cart p = new Cart(MPI.WORLD, dims, periods, false) ;

int coords = new int [2] ;

p.Get(dims, periods, coords) ;

... Compute `blockSizeX', `blockBaseX', `blockSizeY', `blockBaseY'.

// Create `block', allowing for ghost cells.

int sX = blockSizeX + 2 ;

int sY = blockSizeY + 2 ;

block = new byte [sX * sY] ;

... Define initial state of Life board

// Precompute parameters of shift communications.

Datatype edgeXType = MPI.BYTE.Contiguous(sY) ;

edgeXType.Commit() ;

Datatype edgeYType = MPI.BYTE.Vector(sX, 1, sY) ;

edgeYType.Commit() ;

CartShift pX = p.shift(0, 1) ;

CartShift nX = p.shift(0, -1) ;

CartShift pY = p.shift(1, 1) ;

CartShift nY = p.shift(1, -1) ;

// Main update loop.

for(int iter = 0 ; iter < NITER ; iter++) {

... Execute shifts.

... Calculate block of neighbour sums.

... Update block of board values.

}

MPI.Finalize();

}

...

}

Figure 2: Life program using full MPI.

// Execute shifts...

// Shift local upper x edge into next neighbour's lower ghost edge

p.Sendrecv(block, blockSizeX * sY, 1, edgeXType, pX.dst, 0,

block, 0, 1, edgeXType, pX.src, 0) ;

// Shift local lower x edge into prev neighbour's upper ghost edge

p.Sendrecv(block, sY, 1, edgeXType, nX.dst, 0,

block, (blockSizeX + 1) * sY, 1, edgeXType, nX.src, 0) ;

// Shift local upper y edge into next neighbour's lower ghost edge

p.Sendrecv(block, blockSizeY, 1, edgeYType, pY.dst, 0,

block, 0, 1, edgeYType, pY.src, 0) ;

// Shift local lower y edge into prev neighbour's upper ghost edge

p.Sendrecv(block, 1, 1, edgeYType, nY.dst, 0,

block, blockSizeY + 1, 1, edgeYType, nY.src, 0) ;

Figure 3: Full MPI Life program (detail).

arguments correspond directly to arguments of MPI Send. The base type of the

datatype argument must be the type of the elements of buf.

Figures 2, 3 sketch a version of the Life program illustrating several of these

features. As well as derived types, this program uses the Cartesian topologies

of MPI. The Cart class is derived from Comm. In the example, the topology

p represents a two dimensional periodic grid of processes. The Get member

returns the coordinates of the local process. From these the parameters of the

local array block are computed.

The values sX, sY represent the sides of the locally held array segment,

including ghost regions. This segment is created as a one-dimensional Java

array, block. The derived type edgeXType describes the structure of ghost area

on the upper or lower x sides: contiguous regions of the block array of extent sY.

The type edgeYType describes the y-side ghost areas: non-contiguous regions of

count sX, regular stride sY.

The shiftmember of Cart corresponds to the MPI function MPI CART SHIFT:

it returns the source and destination processors for a cyclic shift. The Java

binding returns these values in an object of class CartShift which just con-

tains two integers. Finally, in the main loop, the shifts are executed by using

the Comm member Sendrecv, which corresponds to the standard MPI function

MPI Sendrecv. This performs a send and a receive concurrently (avoiding a

potential deadlock in the implementations given in the previous sections).

The mechanism for accessing global resources used in our MPI interface is

slightly di�erent to the sockets example|static members on anMPI class rather

than dynamic members of a jpi class|but this di�erence is not very important.

4 Data parallellism in Java

The most comprehensive statement of the data parallel model of computation is

the High Performance Fortran standard [11, 19]. That document is supposed to

embody much of the collective experience of the scienti�c parallel programming

community. Presumably, then, any attempt to incorporate data parallelism into

Java should build on the HPF model where possible.

The HPF de�nition consists of a large set of directives a small handful of

language extensions, and a library of new array functions. An initial data-

parallel Java may well be implemented through a class-library. This library

would assume the r�oles of the directives and language extensions in HPF as well

as the HPF library.

We will loosely distinguish two di�erent levels at which a library implemen-

tation of the HPF semantics (or, at least, the HPF distributed data model) can

operate.

� The �rst is the level of the so-called run-time libraries [1, 7, 8, 5]. This kind

of library provides functions for scheduling and executing speci�c patterns

of collective communication already identi�ed by a compiler (in the HPF

case) or else by an application programmer using the library directly.

Such a library may also provide functions for translating between global

subscripts and local, node-level subscripts|ie, for computing the mapping

of a distributed array into the address spaces of individual processors.

� Alternatively, a library can operate at a higher level that conceals all

aspects of data localization and transfer from the user. The only responsi-

bility of the user is to specify the distribution format of arrays when they

are declared. Subsequently the user just tells the library to do particular

operations on particular distributed arrays. It is left to the library to work

out whether or not a communication is implied. In e�ect the library is

operating at the same level as the HPF language. An example of such a

library is A++/P++ [22].

In either case a class library version is likely to include classes to describe the

elements of the HPF data model, such as processor arrangements and the dis-

tributed arrays themselves.

4.1 Parallel arrays and collective communication

At the run-time level, a class library implementation of the HPF model is likely

to include

� Classes to describe process arrays and distributed data arrays.

� Classes or functions to simplify access to locally held elements of a dis-

tributed array (including parallel iteration).

� Functions for collective communication through operations on distributed

arrays: regular \copying" operations including shifts and transposes, arith-

metic reduction operations, irregular gather/scatter operations, and so on.

Our �rst experiments with a Java binding only touch the surface of the full

HPF semantics, but they provide some hints about a general framework. The

interface given here borrows from the C++ class library, Adlib, developed by

one of us [5].

A distributed array is parametrized by a member of the Array class. In C++

Array would naturally be a template for a container class. In Java, generic con-

tainer classes are problematic. Without the template mechanism, the obvious

options are that a container holds items of type Object, the base class for all non-

primitive types, or that a separate container class is provided for each allowed

type of element. The �rst option doesn't allow for array elements of primitive

type, and prevents compile-time type-checking (reminiscent of using void* in

C). The second approach presumably involves restricting elements to the �nite

set of primitive types (int,
oat, . . .)6. For now we have side-stepped the issue

by leaving the data elements out of the Array class. Array de�nes the shape

and distribution of an array, but space for elements is allocated in a separately

declared vector of the appropriate type7.

The constructor for an Array de�nes its shape and distribution format. This

is expressed through two auxilliary classes: the Procs and Range classes. The

Procs class corresponds directly to the HPF processor arrangement. It maps

the set of physical processes on which the program is executing to a multi-

dimensional grid. A Range describes a single dimension of an HPF array. It

embodies an array extent (the size of the array in the dimension concerned),

and a mapping of the subscript range to a dimension of a Procs grid.

In our pilot implementation any parallel Java application is written as a

class extending the library class Node. The Node class maintains some global

information and provides various collective operations on arrays as member

functions. The code for the \main program" goes in the run member of the

application class8.

A simpli�ed version of the code for the \Life" demo is given in �gure 4.

The object p represents a 2 by 2 process grid. The Procs constructor takes

6Perhaps a good compromise is to provide one container class for each primitive type and

one for Object.
7Confusingly enough, this makes our Array more akin to an HPF template than an HPF

array. Needless to say, there is no connection between C++ templates and HPF templates.
8This approach is modelled on the Thread and Applet classes in the standard Java API.

Other approaches to providing library-wide resources were illustrated in earlier sections.

public class Life extends Node implements Runnable {

...

public void run() {

Procs p = new Procs(this, 2, 2) ;

Range x = new Range(N, p, 0) ;

Range y = new Range(N, p, 1) ;

Array r = new Array(p, x, y) ;

int s = r.seg();

byte[] w = new byte[s];

byte[] cn_ = new byte[s];

byte[] cp_ = new byte[s];

... etc, create arrays for 8 neighbours

// Initialize the Life board

for(r.forall(); r.test(); r.next())

w[r.sub()] = fun(r.idx(0), r.idx(1)) ;

// Main loop

for (int k=0; k<NITER; k++) {

// Get neighbours

shift(cn_, w, r, 0, 1, CYCLIC);

shift(cp_, w, r, 0, -1, CYCLIC);

... etc, copy arrays for 8 neighbours

// Life update rule

for(r.forall(); r.test(); r.next()) {

int i = r.sub() ;

switch (cn_[i] + cp_[i] + c_n[i] + c_p[i] +

cnn[i] + cnp[i] + cpn[i] + cpp[i]) {

case 2 : break;

case 3 : w[i] = 1; break;

default: w[i] = 0; break;

}

}

}

}

}

Figure 4: Simpli�ed code of the Life demo program.

the current Node object as an argument, from which it obtains information on

the available physical processes. In this simpli�ed example we assume that the

program executes on exactly four processors.

The objects x and y represent index ranges of size N distributed over the

�rst and second dimensions of the grid p. The default distribution format is

blockwise. Cyclic distribution format can also be speci�ed by using a range

object of class CRange, which is derived from Range (the pilot implementation

does not provide any more general distribution or alignment options).

The object r represents the shape and distribution of a two dimensional

array. This \template" is shared by several distributed arrays|it does not

contain a data vector. The data vectors that hold the local segments of arrays

are created separately using the inquiry function seg, which returns the number

of locally held elements. In the example the elements of the main data array

are held in w. The extra arrays cn , cp , ..., cnn, ... will be used to hold arrays

of neighbour values9.
The \forall loop" initializing w should be read as something like

forall(i in range x, j in range y)

w(i, j) = fun(i, j)

where fun is some function of the global indices de�ning the initial state of the

Life board. The members forall, test, next update internal state of r so that

r.sub() returns the local subscript for the current iteration, and r.idx(0) and

r.idx(1) return the global index values for the current iteration. We are using r

as an iterator class10.

The main loop uses cyclic shift operations to obtain neighbours, communi-

cating data where necessary. The shift operation is a member of the Node class.

It should be overloaded to accept data vectors of any primitive type|here the

array elements are bytes.

Finally w is updated in terms of its neighbours.

Note some characteristic features of the data-parallel style of programming:

� The distribution format of the arrays can be changed just by altering a few

parameters at the start of the program|the main program is insensitive

to these details

� low level message-passing is abstracted into high-level collective operations

on distributed array structures.

9Here we will use whole arrays of neighbours and a shift operation. This is arguably the

more conventional approach in a data-parallel setting, but the the ghost-edge mechanism can

also be �tted into this framework.
10Our Array class is perched somewhere between STL container and iterator classes. This

is a slightly awkward position, and it may be more satifactory to separate these functions into

di�erent classes.

5 Discussion

We have explored the practicality of doing parallel computing in Java, and of

providing Java interfaces to High Performance Computing software. For various

reasons, the success of this exercise was not a foregone conclusion. Java sits on

a virtual machine model signi�cantly di�erent to the hardware-oriented model

that C or Fortran exploit directly. Java discourages or prevents direct access

to the some of the fundamental resources of the underlying hardware (most

extremely, its memory).

Our earliest experiments in this direction involved working entirely within

Java, building new software on top of the communication facilities of the stan-

dard API. The more recent work in sections 3.2 and 3.3 involved creating a

Java interface to an existing HPC package. Which is the better strategy? In

the long term Java may become a major implementation language for large

software packages like MPI. It certainly has advantages in respect of portability

that could simplify implementations dramatically. In the immediate term re-

coding these packages does not appear so attractive. Java wrappers to existing

software look more sensible. On a cautionary note, our experience with MPI

suggests that interfacing Java to non-trivial communication packages may be

less easy than it sounds. Nevertheless, we intend in the future to create a Java

interface to an existing run-time library for data parallel computation.

So is Java, as it stands, a good language for High Performance Computing?

It still has to be demonstrated that Java can be compiled to code of e�ciency

comparable with C or Fortran. Many avenues are being followed simultaneously

towards a higher performance Java. For example, besides the Java chip e�ort

of Sun, it has been reported in an earlier workshop [24] that IBM is develop-

ing an optimizing Java compiler that produces binary code directly, that Rice

University and Rochester University are working on optimization and restruc-

turing of bytecode generated by javac, and that Indiana University is working

on source restructuring to parallelize Java. Parallel interpretation of bytecode

is also an emerging practice. For example, the IBM JVM, an implementation of

JVM on shared memory architectures, was released in spring 1996, and UIUC

has recently started work aimed at parallel interpretation of Java bytecode for

distributed memory systems.

Another promising approach under investigation [15] is to integrate interpre-

tation and compilation techniques for parallel execution of Java programs. In

such a system, a partially ordered set of interpretive frames is generated by an

II/CVM compiler. A frame is a description of some subtask, whose granularity

may range from a single scalar assignment statement to a solver for a system

of equations. Under supervision of the virtual machine (II/CVM), the actions

speci�ed in a frame may be performed in one of three ways:

� Executed by an interpretive module directly, which also incorporates JIT

compilation capability.

� Some precompiled computational library function is invoked locally to ac-

complish the task; this function may be executed sequentially or in paral-

lel.

� The frame is sent to some registered remote system, which will get the

work done, once again either sequentially or in parallel.

With this approach, optimized binary codes for well formed computation sub-

tasks exist in runtime libraries, supporting a high level interpretive environment.

Task parallelism is observed among di�erent frames executed by the three mech-

anisms simultaneously, while data parallelism is observed in the execution of

some of the runtime functions.

Presuming these e�orts satisfactorily address the performance issue, a second

question concerns expressiveness of the Java language. Our �nal interface to

MPI is quite elegant, and provides much of the functionality of the standard C

and Fortran bindings. But creating this interface was a more di�cult process

than one might hope, both in terms of getting a good speci�cation, and in

terms of making the implementation work. In section 4 we noted that the lack

of features like C++ templates (or any form of parametric polymorphism) and

user-de�ned operator overloading (available in many modern languages) made

it di�cult to produce a completely satisfying interface to a data parallel library.

The Java language as currently de�ned imposes various limits to the creativity

of the programmer.

In many respects Java is undoubtedly a better language than Fortran. It

is object-oriented to the core and highly dynamic, and there is every reason to

suppose that such features will be as valuable in scienti�c computing as in any

other programming discipline. But to displace established scienti�c program-

ming languages Java will probably have to acquire some of the facilities taken

for granted in those languages.

References

[1] A. Agrawal, A. Sussman, and J. Saltz. An integrated runtime and compile-

time approach for parallelizing structured and block structured applica-

tions. IEEE Transactions on Parallel and Distributed Systems, 6, 1995.

[2] Susan Atlas, Subhankar Banerjee, Julian C. Cummings, Paul J. Hinker,

M. Srikant, John V. W. Reynders, and Mary Dell Tholburn. POOMA: A

high performance distributed simulation environment for scienti�c applica-

tions. In Supercomputing `95, 1995.

[3] Aart J.C. Bik and Dennis B. Gannon. Automatically exploiting implicit

parallelism in Java. To appear in Concurrency: Practise and Experience,

special issue.

[4] J. Boyle, R. Butler, T. Disz, B. Glickfeld, E. Lusk, R. Overbeek, J. Pat-

terson, and R. Stevens. Portable Programs for Parallel Processors. Holt,

Rinehart and Winston, 1987.

[5] D. B. Carpenter. Adlib: A distributed array library to support HPF trans-

lation, 1995. Presented at the 5th International Workshop on Compilers

for Parallel Computers. URL: http://www.npac.syr.edu/users/dbc/Adlib.

[6] K.M. Chandy and C. Kesselman. CC++: A declarative concurrent object-

oriented programming notation. In Gul Agha, Peter Wegner, and Akinori

Yonezawa, editors, Research Directions in Concurrent Object-Oriented Pro-

gramming, page 24. MIT Press, 1993. ISBN: 0-262-01139-5.

[7] A. Choudhary, G. Fox, S. Ranka, S. Hiranandani, K. Kennedy, C. Koel-

bel, and J. Saltz. Software support for irregular and loosely synchronous

problems. Computing Systems in Engineering, 3:43{52, 1992.

[8] Parallel Compiler Runtime Consortium. Common runtime support for

high-performance parallel languages. In Supercomputing `93. IEEE Com-

puter Society Press, 1993.

[9] J.J. Dongarra, R. Pozo, and D.W. Walker. An object oriented design for

high performance linear algebra on distributed memory architectures. In

Object Oriented Numerics Conference, 1993.

[10] Stephen J. Fink and Scott B. Baden. The KeLP User's Guide. University

of California, San Diego, La Jolla, CA, March 1996. URL: http://www-

cse.ucsd.edu/groups/hpcl/scg/kelp.html.

[11] High Performance Fortran Forum. High Performance Fortran language

speci�cation. Scienti�c Programming, special issue, 2, 1993.

[12] Message Passing Interface Forum. MPI: A Message-Passing Interface

Standard. University of Tenessee, Knoxville, TN, June 1995. URL:

http://www.mcs.anl.gov/mpi.

[13] I. Foster and K. M. Chandy. Fortran M: A language for modular parallel

programming. Journal of Parallel and Distributed Computing, 26(1):24,

1995.

[14] Geo�rey C. Fox and Wojtek Furmanski. Computing on the Web: new ap-

proaches to parallel processing|petaop and exaop performance in the year

2007, 1997. URL: http://www.npac.syr.edu/users/gcf/petastu�/petaweb/.

[15] Geo�rey C. Fox, Xiaoming Li, Yuhong Wen, and Guansong Zhang. Stud-

ies of integration and optimization of interpreted and compiled languages.

Technical Report SCCS-780, NPAC, February 1997.

[16] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sun-

deram. PVM: Parallel Virtual Machine|A Users' Guide and Tutorial

for Networked Parallel Computing. Scienti�c and Engineering Series. MIT

Press, 1994. ISBN: 0-262-57108-0.

[17] A.S. Grimshaw. An introduction to parallel object-oriented programming

with Mentat. Technical Report 91 07, University of Virginia, 1991.

[18] JavaSoft, Sun Microsystems, Inc. RMI Documentation, 1996. URL:

http://java.sun.com/products/JDK/1.1/.

[19] C.H. Koelbel, D.B. Loveman, R.S. Schreiber, G.L. Steel, Jr., and M.E.

Zosel. The High Performance Fortran Handbook. MIT Press, 1994. ISBN:

0-262-61094-9.

[20] Inmos Ltd. occam 2 Reference Manual. Prentice-Hall International, 1988.

ISBN: 0-13-629312-3.

[21] MPICH|a portable implementation of MPI. URL:

http://www.mcs.anl.gov/mpi/mpich/.

[22] R. Parsons and D. Quinlan. A++/P++ array classes for architecture in-

dependent �nite di�erence calculations. In Object Oriented Numerics Con-

ference, 1994.

[23] Jon Siegel. CORBA Fundamentals and Programming. Wiley, 1996. ISBN:

0471-12148-7.

[24] Java for science and engineering computation. Workshop held at Syracuse

University, Dec 16-17, 1996.

[25] Gregory V. Wilson and Paul Lu, editors. Parallel Programming using C++.

MIT Press, 1996. ISBN: 0-262-73118-5.

